光场相机拍出3D照片

光场相机拍出3D照片
光场相机拍出3D照片

光场相机拍出3D照片

日前,美国Lytro公司推出了世界上首款光场相机,该相机能捕捉一个场景中来自所有方向的光线,能够让用户在拍完照片之后再借助电脑进行对焦处理,处理后的照片效果完美。#创意家居##数码玩意#。

爱乐活居家Zakka杂货数码玩意。

光场相机(Light Field Camera),顾名思义,它所捕捉的不再是一个光面,而是整个光场(light field)。光场相机的相关研究始于20世纪90年代的斯坦福大学,而当时研究人员为了捕捉光场,整整动用了100台相机。如今,Lytro刚刚发布的光场相机小到可以直接揣到口袋里。

光场引擎1.0技术,利用计算机将这些信息转换成人眼可以看到的图像。

光场相机所拍摄的是一个3D场景,而人们可以根据个人的需要和喜好来选择他们想看到的照片。

还在苦苦计算你相机超焦距景深范围吗?不如把对焦这个麻烦的工作带回家再说吧!世界首款消费型光场相机(Light Field Camera)在经过年初的技术展示后,现在已经正式现身。

爱乐活——有态度、正能量的品质生活社区。

热爱生活,乐于分享的各类达人聚在这里,分享消费攻略,激发生活灵感,发现城市最IN 的角落。在这里,有爱,有乐,有生活。

【更多精彩内容尽在爱乐活】

文章来源:https://www.360docs.net/doc/c413290430.html,/post/0ad1cf1d7f2f757e5b4c634b?from=wenku/?from=wenku

照相机的组成及工作原理

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/c413290430.html,)照相机的组成及工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。 一、照相机的组成 镜头 取景器 快门和光圈 输片计数机构 机身 二、照相机的工作原理 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。 三、照相机的分类划分 1、照相机根据其成像介质的不同

可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性

照相机成像原理和构造

照相机成像原理和构造 光博会后看到照相机后的观后感,了解照相机原理及构造,以下资料来自专业人士介绍以及所学工程光学教材知识。 照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。 胶卷上涂着一层感光物质,它能把这个像记录下来,经过显影、定影后成为 底片,用底片洗印就得到相片。 照相时,物体离照相机镜头比较远,像是倒立、缩小的。 照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。

最早的照相机结构十分简单,仅包括暗箱、镜头和感光材料。现代照相机比较复杂,具有镜头、光圈、快门、测距、取景、测光、输片、计数、自拍等系统,是一种结合光学、精密机械、电子技术和化学等技术的复杂产品。 1550年,意大利的卡尔达诺将双凸透镜置于原来的针孔位置上,映像的效果比暗箱更为明亮清晰;1558年,意大利的巴尔巴罗又在卡尔达诺的装置上加上光圈,使成像清晰度大为提高;1665年,德国僧侣约翰章设计制作了一种小型的可携带的单镜头反光映像暗箱,因为当时没有感光材料,这种暗箱只能用于绘画。 1822年,法国的涅普斯在感光材料上制出了世界上第一张照片,但成像不太清晰,而且需要八个小时的曝光。1826年,他又在涂有感光性沥青的锡基底版上,通过暗箱拍摄了一张照片。 1839年,法国的达盖尔制成了第一台实用的银版照相机,它是由两个木箱组成,把一个木箱插入另一个木箱中进行调焦,用镜头盖作为快门,来控制长达三十分钟的曝光时间,能拍摄出清晰的图像。 1860年,英国的萨顿设计出带有可转动的反光镜取景器的原始的单镜头反光照相机;1862年,法国的德特里把两只照相机叠在一起,一只取景,一只照相,构成了双镜头照相机的原始形式;1880年,英国的贝克制成了双镜头的反光照相机。 随着感光材料的发展,1871年,出现了用溴化银感光材料涂制的干版,1884年,又出现了用硝酸纤维(赛璐珞)做基片的胶卷。 随着放大技术和微粒胶卷的出现,镜头的质量也相应地提高了。1902年,德国的鲁道夫利用赛得尔于1855年建立的三级像差理论,和1881年阿贝研究成功的高折射率低色散光学玻璃,制成了著名的“天塞”镜头,由于各种像差的降低,使得成像质量大为提高。在此基础上,1913年德国的巴纳克设计制作了使用底片上打有小孔的、35毫米胶卷的小型莱卡照相机。 不过这一时期的35毫米照相机均采用不带测距器的透视式取景器。1930年制成彩色胶卷;1931年,德国的康泰克斯照相机已装有运用三角测距原理的双像重合测距器,提高了调焦准确度,并首先采用了铝合金压铸的机身帘快门。

照相机工作原理

五、镜头 现在我们来探究一下照相机的工作原理,并从镜头开始深入学习一些基本部件的详细知识. 光线沿直线传播,通过被称作孔径的圆孔投射到胶片上. 镜头并不是胶片成像所必需的,正如前面已经提及的针孔照相机,其工作时就没有镜头.来自被摄体的光线通过一个微小的针孔进入不透光的盒子,如上图所示,并在胶片上形成一幅倒立的影像. 考虑到针孔照相机的工作特性如此之简单,因而其产生的影像应该说是相当令人满意了,但并不能算是足够好的,原因如下: 1. 即使在最好的环境条件下,胶片上所形成的影像也不是非常的清晰. 2. 由于通过针孔所进入的光量只是很少的一部分,因此充分的胶片曝光往往需要很长的时间,有时会

长达数小时. 而镜头会解决这些问题: 1. 镜头能聚焦光束,可以在胶片上产生清晰的影像. 2. 镜头允放接纳大量的光线,只需若干分之一秒的很短时间即可获得适当的曝光. 如上图所示,镜头的孔径比针孔大很多倍,所以在确定的一段时间内,允许更多的光线进入照相机. 什么是镜头的基本功能 所有镜头具备的基本功能都是相同的,即让光线进入照相机并聚焦光线在胶片上形成清晰的影像. 什么是固定焦点照相机 有些照相机的镜头是固定的,即它不能够与照相机分开,不能够更换,甚至不能前后移动.它被永久地

固定在适当的位置上.老式的柯达布朗尼照相机、某些最简单的"瞄准就拍"的照相机以及所有一次性使用的照相机都属于这种类型,它们被称为固定焦点照相机。使用这种照相机可以拍摄远于某个确定距离(比如4英尺以外)的所有景物并得于相当清晰的照片。 什么是可变焦点照相机 大多数照相机的镜头都可以前后移动,对一定范围内不同距离的物体进行聚焦。这些照相机就被称为可变焦点照相机。 摄影者可以通过调理可变焦点镜头的位置,使镜头最小聚焦距离以外任意距离的被摄体都产生最清晰影像。例如,前后移动镜头就可以分别对12英寸、3英尺或20英尺远的景物进行聚焦。 什么是自动聚焦照相机 有些照相机是靠计算机微处理器芯片控制镜头内的微电机自动完成聚焦任务的。其典型的工作过程如下:当把快门按钮按下一半时,镜头筒就会自动地转动直至画幅中央任意物体所形成的影像完全清晰为止。很多高级的"瞄准就拍"式照相机和单镜头反光照相机都具有自动聚焦功能。大多数这样的单镜头反光

机器视觉基础知识详解模板

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

Raytrix公司光场相机

Raytrix公司光场相机-R系列 概述: Raytrix GmbH公司创建于2008年,其光场相机技术处于世界领先地位,是全球唯一的工业级光场相机。现凌云与Raytrix达成了战略合作关系,成为Raytrix全线产品的代理商,并可进行从五百万到七千万像素的产品定制。 光场相机在结构原理和成像结果与普通相机有很大的不同,一次拍摄即可捕获视场范围内所有光矢量信息(如灰度、颜色、空间位置、尺寸等)。通过后期的重聚焦可获得不同景深的图像信息,以及景物的深度信息。 而这项技术的关键在于Raytrix在主镜头与图像传感器间加了独特的微透镜阵列,如下图所示,光场相机则是物体透过主镜头后由微透镜重新聚焦成像,从而不同位置的微透镜可采集到像素点完整的图像信息和位置信息。 技术原理:

光线在自由空间中的传播是可以用两个平面、四个坐标(四维量,学术上称为光场)来唯一表示的,而成像过程是对这个四维光场进行了一个二维积分,从而得到了二维图像。光场相机可采集空间中任意点发出的任意方向的光,相当于直接记录了四维光场,不同焦深的图像再做不同情况下的二维积分,得到不同物距的图像信息。 Raytrix的核心技术优势在于:1、利用在相机的主镜头和传感器之间加入三种不同焦距的微透镜组成的阵列获取光场信息,从而很大程度上扩大了景深; 2、通过专业的软件算法对获取的图像信息进行重聚焦,从而得到高分辨率的四维光场信息。一次取景即可获得3D影像和3D景深信息,从而实现:a.具有立体视差的多视角影像;b.软件自由对焦;c.全幅对焦;d.立体深度信息。 3、专业的相机矫正与图像重建技术:Raytrix光场相机在成像过程中不仅从硬件上对光路进行了矫正,还从软件上对图像的畸变进行了矫正,它通过对标定板的两次拍摄(如图1)建立起物体的图像坐标系与物理坐标系中像素点的坐标对应关系,从而还原了物体的真实数据信息,如下图所示,矫正前图像的深度以及弧度都是有畸变的,经过矫正后能还原物体的真实信息,再经过对图像的拼接后可获得物体完整3D图像结构。

多光谱相机原理及组成

多光谱相机原理及组成 多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率高但是数据量大难以进行分析、存储、检索,而多光谱成像是将所有的信息结合在一起,这不仅仅是二维空间信息,同时也把光谱的辐射信息也包含在内,从而在更宽的谱段范围内成像。 多光谱相机的基本构成 1.光学系统 可以在各个谱段内范围内成像,可以很好的的控制杂散光,是多光谱相机最重要的部分,对工作谱段范围和分辨能力起了决定性的作用,还可以设定工作焦距视场角大小等 2.控制和信息处理器 控制监督多光谱相机的整个工作过程,并收集图像数据,并进行储存。 3.热控装置 由温度控制器、隔热材料、散热器、热控涂层等组成 4.其他结构 物镜、电路系统、探测器及其他零配件 多光谱相机的工作谱段范围 人眼所能能识别的光谱区间为可见光区间,波长从400nm到700nm;普通数码相机的光谱响应区间与人眼识别的光谱区间相同,包含蓝、绿、红、三个波段;而多光谱相机的工作谱段范围在其基础上,可以分可见光、近红外光、紫外光等每台多光谱相机的分辨率不同,所应用的领域也不同 就比如说我们在做植被调查的时候,植被的可见光波段对绿色比较敏感对红色和蓝色反射较弱。相对于可见光波段,植被在近红外波段具有很强的反射特性,多数植被在可见光波段的光谱差异很小。而在近红外波段的光谱差异更大,光谱差异越明显越有利于分类。 光谱特性 我们知道像素运用复杂的大气准则来,复原反射光谱和辐射光谱所的到的数据分析,得到不同物质的反射率不同,称之为光谱特征。如果有足够的光谱特证,可用于识别场景中的专用材质,其中包括光谱范围、宽度、分辨率。范围是指相机获取图像来自的光谱段,谱段的宽度反映了谱段设置的要求、通过努力衡量大气中物质的光谱特性还有传感器的光谱响应,就要考虑大气中的吸收和散射。多光谱相机的光学系统 光学系统是指由透镜、反射镜、棱镜和光阑等多种光学元件按一定次序组合成的系统。通常用来成像或做光学信息处理。曲率中心在同一直线上的两个或两个以上折射(或反射)球面组成的光学系统称为共轴球面系统,曲率中心所在的那条直线称为光轴。其中参数包括焦距、视场角、相对孔径等。 多光谱相机的反射光学系统 如果光学系统中的光学镜片为反射镜,则此系统称之为反射系统,反射式光学系统最大的优势就在于其光谱范围很大,对各个谱段都适用,并且不需要矫正二级光谱,但是因选用的是非球面镜片,会使系统的加工和装配变得十分困难,增加制作工艺难度

相机工作原理

工作原理 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图像信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 单反相机取景器 单反相机的取景器称为TTL(Through The Lens)单反取景器。这是专业相机上必备的取景方式,也是真正没有误差、通过镜头的光学取景器。这种取景器的取景范围可达实拍画面的95%。惟一缺点就是如果镜头过小,取景器会很暗淡,影响手动对焦。不过现在都具备自动对焦,这一点已无大碍。当然,如用了TTL单反取景器,为了不使取景器过暗,厂家自会用大口径高级镜头,所以目前单反相机的镜头普遍较大,就是这个因素造成的。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图象信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 反光镜的翻起动作带来了一些问题: 拍摄照片的瞬间,取景器会被挡住。由于被遮挡的时间只是刹那间的事情,因此这对于立即复位的反光镜来说并不是什么主要问题。但是,又引出了一些偶然性问题。例如,在使用频闪光拍摄时,将不能通过取景器看到频闪装置是否闪光正常。 反光镜运动的噪声。这在需要安静的场所这可能会成为重要问题。由于测距取景式照相机中没有突然阻挡光路的移动反光镜,所以不会产生这种噪声。 相机的震动,即由反光镜的翻起动作所造成的照相机整体的运动。假设用1/500秒的快门速度进行拍摄,那么不必担心。这种震动不至被察觉。但是,如果以较低的快门速度拍摄一幅精确照片的话,比如在微弱的光线下使用远摄镜头进行拍摄时,这种震动对成像就可能很成问题。 使用SLR取景还存在另一个问题。比如我们想使用f/32这样的小光圈进行拍摄,而光圈f/32允许进入镜头的光线是非常微弱的,这会导致取景器中看到的影像也很暗淡,可能会难以聚焦。 单反相机主要特点 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 单反就是指光线直接照到取景器上,而不用通过棱镜的反射! 光线损失的少!

光场成像原理

光场成像理论 目录 1. 光场概念 (1) 1.1 七维全光函数 (1) 1.2 全光函数的降维 (1) 2. 光场采集设备的发展与典型结构 (2) 2.1 多相机光场采集 (3) 2.2 单相机光场采集 (6) 3. 微透镜阵列的光场采集 (11) 3.1 基于针孔阵列的光场采集 (11) 3.2 基于微透镜阵列的光场采集 (13) 1. 光场概念 1.1七维全光函数 光场(Light field)的概念最早于1936年由A.Gershun 提出,用以描述光在三维空间中的辐射传输特性。1991年,E.adelson 和J.Bergen 根据人眼对外部光线的视觉感知,提出全光函数(Plenoptic function),利用七维函数表征场景中物体表面发出(或反射)的光线。 在全光函数可以表示为: 7(,,,,,,)P P x y z t θ?λ= 其中,,,x y z —表征光纤中任意一点的三维坐标; ,θ?—表征光纤传输方向 λ—表征光线波长 t —表示时间 此时,全光函数7(,,,,,,)P P x y z t θ?λ=表示了波长为 λ的光线t 时刻经过三维空间中坐标为(,,)x y z 的点,且传播方向为(,)θ?的一条光线。与只包含位置信息的光场不同,全光函数的七维表示增加了光线的色彩信息及动态变化。 1.2 全光函数的降维

根据全光函数7(,,,,,,)P P x y z t θ?λ=的意义, 当光线在自由空间中传播时,其频率(即波长λ)不发生变化,对于静态场,此时全光函数可由七维降至五维,即 5(,,,,)P P x y z θ?= 由于观察者往往受限于目标的成像范围,此时五维光场出现一位冗余,当给定光线在自由空间的辐射不发生变化,因此在限光器的空间范围内,五维光场可以表示为四维光场。 四维光场的参数化表征可有一下三种方式: 1) 方向-点参数化表政法。 利用光线与平面的交点(,)x y 和光线方向(,)θ?作为四维参数来描述光场中的光线。 2) 球面光场参数表征法。 利用紧紧包围三维物体的球面上两点,可以表征球面封闭范围内任意一条光线的传播。尽管该参数表征方式采样均匀,但无法表征与球面相切的光线。 3) 双平面参数化表征法。 双平面参数化表征法是采用光线与两个平行平面的焦点坐标来对光场中光线进行参数化表征。其表达形式为(,,,)L s t u v ,其中(,)s t 和(,)u v 分表是光纤盒两平面的坐标交点。 由于实际中大部分成像系统都可以简化成两个相互平行的平面,如传统光学系统中的光瞳面和探测器像面,因此双平面参数化表征法具有较高的合理性和实用性。 图1.1 三种光场参数化模型 2. 光场采集设备的发展与典型结构 区别于传统成像方式,光场成像是一种计算成像技术,对捕获光场信息进行相应的数字处理才能得到相应的图像信息。从目前光场相机的结构组成上区分,可分为多相机阵列和单相机改造两种方式。 多相机阵列采集光场信息是通过相机阵列对同一目标进行成像,因为每一个相机分别处于不同视角,因此对应光场的一个方向采样。 单相机改造结构是利用在单个相机中引入光学调制元件,改变成像结构进行如何光场的

照相机的工作原理

照相机的工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。医学成像设备、天文观测设备等等。照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。分为一般的照相与专业的摄像。 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、数码照相机 文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。

任何一种分类方法都不能包括所有的照相机,对某一照相机又可分为若干类别,例如135照相机按其取景、快门、测光、输片、曝光、闪光灯、调焦、自拍等方式的不同,就构成一个复杂的型谱。 照相机利用光的直线传播性质和光的折射与反射规律,以光子为载体,把某一瞬间的被摄景物的光信息量,以能量方式经照相镜头传递给感光材料,最终成为可视的影像。照相机的光学成像系统是按照几何光学原理设计的,并通过镜头,把景物影像通过光线的直线传播、折射或反射准确地聚焦在像平面上。摄影时,必须控制合适的曝光量,也就是控制到达感光材料上的合适的光子量。因为银盐感光材料接收光子量的多少有一限定范围,光子量过少形不成潜影核,光子量过多形成过曝,图像又不能分辨。照相机是用光圈改变镜头通光口径大小,来控制单位时间到达感光材料的光子量,同时用改变快门的开闭时间来控制曝光时间的长短。 从完成摄影的功能来说,照相机大致

光场相机原理

光场相机Lytro的运作原理和运算方法 概略Lytro以在照片拍摄后,照片的对焦点可以自由变换的相机而被知晓.Lytro称其为光场相机.成像部分是由图像感应器和微型镜头所构成,并得到入射光束集中的光场.然后从光场再处理成最终的画面,光线集中相当于计算镜头的运作.本文就Lytro的动作原理和画面生成的运算方法进行解释. 1.前言数码相机是在摄像像素点上形成鲜亮的光像,并把此光像忠实的反应成数码影像的装置。但是光场相机则是采用与数码相机完全不同的原理所被认知。此相机是采用光场(光线空间)得到多条光线,再将光线集合并经过一种图像处理得到最终成像的相机。其代表机能为利用摄影后的后处理,变更相机焦点距离的再对焦机能。初期的光场相机是用多台相机纵横排列成的相机矩阵的实配.相机矩阵对机能有验证作用,但是没有实用性.另一方面,Ng试做了在成像像素的前面配置微镜头,通过致密的框体集中光线的光场相机.之后,Ng 为了将此技术商品化而成立了公司,在2012年开发了Lytro.本文是根据Ng的论文及实际的分析解析为基础解释Lytro的运作原理,机能,运算方法等. 2. Lytro的影像感应器图1为Lytro的影像感应器的扩大照片影像感应器是数码相机用的CMOS感应器,内间距为1.4μm,影像感应器上覆盖蜂巢结构的微镜头,微镜头的内间距为14μm。影像感应器3280*3280像素的面积上覆盖330*380个微镜头,一个微镜头的直 径大约是10个像素点的长度。 微镜头和保护用玻璃一体成型,CMOS感应器上面有少量空间,保护玻璃上面平坦,底面排列微镜头。保护玻璃和微镜头的厚度约为430μm,另外CMOS表面设置了拜尔型彩色滤膜。

光场成像原理

光场成像原理

————————————————————————————————作者:————————————————————————————————日期: ?

光场成像理论 目录 1. 光场概念 (3) 1.1 七维全光函数 (3) 1.2 全光函数的降维 (3) 2. 光场采集设备的发展与典型结构 (4) 2.1 多相机光场采集 (5) 2.2 单相机光场采集 (8) 3. 微透镜阵列的光场采集 (13) 3.1 基于针孔阵列的光场采集 (13) 3.2 基于微透镜阵列的光场采集 (15) 1. 光场概念 1.1 七维全光函数 光场(Ligh t field)的概念最早于1936年由A.Gershun 提出,用以描述光在三维空间中的辐射传输特性。1991年,E .adels on和J.Bergen 根据人眼对外部光线的视觉感知,提出全光函数(Ple no pti c functio n),利用七维函数表征场景中物体表面发出(或反射)的光线。 在全光函数可以表示为: 7(,,,,,,)P P x y z t θ?λ= 其中,,,x y z —表征光纤中任意一点的三维坐标; ,θ?—表征光纤传输方向 λ—表征光线波长 t —表示时间 此时,全光函数7(,,,,,,)P P x y z t θ?λ=表示了波长为λ的光线t 时刻经过三维空间中坐标为(,,)x y z 的点,且传播方向为(,)θ?的一条光线。与只包含位置信息的光场不同,全光函数的七维表示增加了光线的色彩信息及动态变化。 1.2 全光函数的降维

根据全光函数7(,,,,,,)P P x y z t θ?λ=的意义,当光线在自由空间中传播时,其频率(即波长λ)不发生变化,对于静态场,此时全光函数可由七维降至五维,即 5(,,,,)P P x y z θ?= 由于观察者往往受限于目标的成像范围,此时五维光场出现一位冗余,当给定光线在自由空间的辐射不发生变化,因此在限光器的空间范围内,五维光场可以表示为四维光场。 四维光场的参数化表征可有一下三种方式: 1) 方向-点参数化表政法。 利用光线与平面的交点(,)x y 和光线方向(,)θ?作为四维参数来描述光场中的光线。 2) 球面光场参数表征法。 利用紧紧包围三维物体的球面上两点,可以表征球面封闭范围内任意一条光线的传播。尽管该参数表征方式采样均匀,但无法表征与球面相切的光线。 3) 双平面参数化表征法。 双平面参数化表征法是采用光线与两个平行平面的焦点坐标来对光场中光线进行参数化表征。其表达形式为(,,,)L s t u v ,其中(,)s t 和(,)u v 分表是光纤盒两平面的坐标交点。 由于实际中大部分成像系统都可以简化成两个相互平行的平面,如传统光学系统中的光瞳面和探测器像面,因此双平面参数化表征法具有较高的合理性和实用性。 图1.1 三种光场参数化模型 2. 光场采集设备的发展与典型结构 区别于传统成像方式,光场成像是一种计算成像技术,对捕获光场信息进行相应的数字处理才能得到相应的图像信息。从目前光场相机的结构组成上区分,可分为多相机阵列和单相机改造两种方式。 多相机阵列采集光场信息是通过相机阵列对同一目标进行成像,因为每一个相机分别处于不同视角,因此对应光场的一个方向采样。 单相机改造结构是利用在单个相机中引入光学调制元件,改变成像结构进行如何光场的

最新科技领域的创新发明汇总

2011年科技领域的创 新发明

虽然有关最新款iPhone或Facebook改版的消息占据了2011年大多数新闻头条,但还有很多其它公司在这一年默默地(有些则不那么安静)展示了自己的奇思妙想。这些发明从高科技产品(智能计算机和自动驾驶飞机)到令人惊艳的小东西(可以诊断世界上最令人头痛的部分疑难杂症的小纸片)不一而足。 虽然今年有很多人痛悼苹果主帅乔布斯(Steve Jobs)的离世,但创造力和发明并没有因此远去。乔布斯被认为是他所在的时代里伟大的创新者之一。 以下是几个今年最令人叹为观止的一些发明: IBM的“沃森”计算机(Watson Computer) David Plunkert 虽然有关最新款iPhone或Facebook改版的消息占据了2011年大多数新闻头条,但还有很多其它公司在这一年默默地(有些则不那么安静)展示了自己的奇思妙想。 当国际商业机器公司(International Business Machines Corp.)的“沃森”在今年2月全美电视直播的智力竞赛中击败两名真人冠军时,科幻小说中的一幕成为了现实。这一胜利可谓人工智能领域的里程碑事件,会让人联想到经典科幻电影《2001太空漫游》(2001: A Space Odyssey)中的超智能电脑HAL 9000。

“沃森” 是多种技术的合成体,设计初衷是让它理解文字、语言和人类知识的复杂领域,它不只是一个很酷的研发项目。医疗保险公司WellPoint Inc.计划使用“沃森”来对治疗方案给出建议,帮助医生诊断病情。IBM高管认为,随着“沃森”在呼叫中心或工程学领域的应用,它有望在三到五年时间里增长为一个价值10亿美元的业务。 今年与“沃森”共享聚光灯的还有一位无形的助手:苹果公司为智能手机iPhone推出的声音识别软件Siri。虽然产品不完美,但Siri是一系列声音驱动消费类新产品的先导,随之而来的可能会有各种衍生品,如以用户过去的行为和偏好为依据来为他们做决定。 Spencer E. Ante 诺斯罗普(Northrop)的X-47B无人驾驶战斗机机 2 月份,一台无人驾驶的蝙蝠翼战斗机在洛杉矶北部的沙漠上空进行了29分钟的试飞,标志着海军航空进入了一个新时代。这不是我们平常看到的由拥有丰富飞行经验的人员利用远程操纵杆驾驶无人驾驶飞机。X-47B的飞行任务由一台电脑控制,而操作者只需点几下鼠标就能发动引擎让飞机上天。 Associated Press X-47B无人机(上图)能完全靠电脑操控。 诺思罗普公司的X-47B能够在其两个载物仓内装载多达4500磅的武器,也会成为第 一个能够在移动的航母舱面上起降的无人驾驶战斗机。 无人驾驶机技术在过去十年里取得了跨越式的进展,但是其局限性仍然在2011年年末显露了出来,当时伊朗声称击落了一架RQ-170,这是一架由美国军方操纵的无人驾驶隐形战斗机。由航母发射的无人驾驶机在敌人的雷达下将几乎会无迹可寻。

照相机原理和构造56701

一、人眼成像的原理 摄影又称摄影术,就是人们通使用照相机把反射在景物上的光线,通过镜头在感光材料上感光而形成影像的过程。所以有些国家把照相机称为“照光机”,这是比较准确的,也就是说,摄影的过程并不是把景物摄录下来,而是把景物反射出的光线记录在感光材料上,形成的影像本不是景物的影像,而是光线在感光材料上形成了潜影。 照相机最早是谁发明的已无从查考,但第一个在底片的银盐上成像的是法国人达盖尔,就是今天的数码成像也是在达盖尔的银盐成像的基础上发展起来的,成像的原理一直不变。 归根结底,照相机是对人眼的仿生,照相机成像的原理与人眼看到景物在视网膜上成像的原理也是一样的——当然人眼比世界上最先进的照相机都更为先进,结构也更为复杂。下图就是人眼接受外界光线而成像的结构图。(这可是UU比照着生物老师的教科书画的,差点累死) 图(1)简约眼视网膜像的形成图

从上图我们可以看出,人眼中的晶状体就如同一个凸透镜,物体AB经过晶体透过节点后,会在视网膜上形成像ab,当然进入眼中的光线还必须通过瞳孔而到达后主焦点,而瞳孔则会根据光线的强弱自动调节其开孔大小。 眼睛之所以能看见周围的各种物体,一是必须有光,二是眼球内可以成像的构造。当我们睁开眼睛,从周围物体发射或反射而来的光,穿过瞳孔和晶状体,聚集在眼睛后面的视网膜上,形成这些物体的图像。连接视网膜的视神经立即把这些信息传送到大脑,所以我们就能看到这些物体。人以左右眼看同样的对象,两眼所见角度不同,在视网膜上形成的像并不完全相同,这两个像经过大脑综合以后就能区分物体的前后、远近,从而产生立体视觉。当然就这一点而言,照相机只相当于人的一只眼,不可能产生立体的感觉了。 二、照相机的工作原理 明白了以上的道理,我们就很容易理解照相机的成像原理了。下图是简易照相机的成像光路图。

光场成像技术

光场成像技术 1.前言 光场是空间中同时包含位置和方向信息的四维光辐射场的参数化表示,光场数据的获取为计算成像提供了很多新的发展方向。 传统成像方式在拍摄高速运动或者多主体较大间距物体时,容易出现失焦、跑焦现象。对于高速运动物体来说,想抓住精彩一瞬的同时对准焦是非常困难的。此外,要减少高速运动物体带来的运动模糊,如果减少曝光时间则导致图像太暗,增大孔径则造成景深太小,背景模糊。而对多主体目标物来说,焦点往往对准在中心物体上,其他目标由于景深过小往往看不清细节。调小光圈的方法在光线充足的情况下可以使用,但是在拍摄光线不足的室内条件下会带来曝光不足的问题。 光场成像通过记录光辐射在传播过程中的四维位置和方向的信息,相比只记录二维的传统成像方式多出2个自由度,因而在图像重建过程中,能够获得更加丰富的图像信息。此外,还能通过数字重聚焦技术解决特殊场合图像的失焦、背景目标过多等问题; 通过合成孔径技术实现“透视”监视; 在与显微技术融合后,还能得到多视角大景深显微图像,以及重建后的三维立体图。 2.光场成像的发展 光场成像的雏形可以追溯到1903年Ives 发明的双目视差显示系统中运用的针孔成像技术,通过在主透镜的像面处放置针孔面阵列,从而使原像面处的光辐射按角度进行重分布后记录在光探测器上,避免了角度信息的丢失。 1908 年,Lippman 发明集成照相术( integral photography,IP),后来被广泛运用于三维全息成像.通过用微透镜阵列代替针孔面阵列,在底片上接收到有微小差别的一系列基元图像,消除了Ives 装置中的弥散斑。 Gershun 在1936年提出光场的概念,将其定义为光辐射在空间各个位置向各个方向的传播[3]。他认为,到达空间不同点处的光辐射量连续变化,能够通过几何分析进而积分的方法来计算像面上每点的光辐射量。但是,由于计算量庞大,能够进行高次运算的计算机尚未出现,所以当时未能对其理论进行验证。 1948 年,Gabor 利用2 束相干光干涉记录下物体衍射未聚焦的波前,获得第一张全息图。如果把这张全息图看作是包含方向和位置信息的光辐射函数,那么这其实也是一张特殊的光场图像,而非传统只记录强度信息的二维图像。

数码相机的结构及工作原理

一、数码相机的组成:镜头、图像传感器、AD转换 器、CPU、存储芯片、LCD: 作用: 1、镜头:数码相机镜头作用与普通相机镜头作用相同。取景。分类:变焦镜头、定焦镜头。 2、图象传感器:(1)、作用:将光信号转变为电信号。图象传感器是数码相机的核心部件,其质量决定了数码相机的成像质量。图象传感器的体积通常很小,但却包含了几十万个乃至上钱万个具有感光特性的二极管――光电二极管。每个光电二极管即为一个像素。当有光线照射时,光电二极管就会产生电荷累积,光线越多,电荷累积的就越多,然后这些累积的电荷就会被转换成相应的像素数据。(2)、种类。电荷耦合器件(CCD):电路复杂,读取信息需在同步信号控制下一位一位地实地转移后读取,信息读取复杂,速度慢;要三组电源供电,耗电量大,但技术成熟,成像质量好。互补金属氧化物半导体(CMOS):电路简单,信息直接读取,速度较快,只需使用一个电源,耗电两小,为CCD的1/8到1/10;但个光电传感元件、电路之间距离近,相的光、电、磁干扰较严重,对图象质量影响很大。 3、A/D转换器(模拟数字转换器):作用,将模拟信号转换成数字信号的部件。指标:转换速度、量化精度量化精度对应于A /D转换器将每一个像素的亮度或色彩值量化为若干个等级,这个等 级就是数码相机的色彩深度。对于具有数字化接口的图象传感器(如CMOS),则不需A/D转换器。 4、MPU(微处理器)作用:通过对图象传感器的感光强弱程度进行分析,调节光圈和快门。系统结构:一般数码相机采用的微处理器模块的结构如图2所示,包括图象传感器数据处理DSP、SRAM控制器,显示控制器、JPEG编码器、UBS等接口、运算处理单音频接口(非通用模块)和图象传感器时钟生成器等功能模块。

光场相机

光场相机 一、光场相机在三维重建中的优势 在现实世界中,我们周围的环境与物体都是三维的,传统相机仅仅只能把我们所观察到的三维立体信息以平面的二维形式展现给我们,丢失了物体的深度信息。 由于传统摄像模式的固有局限性,导致了现如今基于传统相机的视觉信息采集和基于这些信息的理解和分析都遇到了瓶颈。伴随着 1991 年美国麻省理工学院的阿德尔森(Adelson)提出了关于成像的全光函数[10],研究者们持续不断地致力于采用七维函数中的若干维组合起来描述视觉信息。实际上,不难发现现阶段传统的胶片或数字图像已经无法满足对视觉信息采集的实际应用,它们仅仅是全光函数的一个子集或切片。因此,广大研究者们通过改变现在已有的一些成像设备,立足更快速有效地采集和恢复全光函数的某个或者某几个维度的信息,继而催生了一门全新的学科——计算摄影学[11, 12]。而光场相机以其在成像方面的独特优势,开辟了研究三维成像的新的领域。它完美的打破了现有数字成像技术的局限性,能够看得见场景中被遮挡的部位,同时还能够看清场景中所看不清的内容。伴随着计算机技术的不断发展与提高,以及微透镜阵列在此项技术方面的不断提高,光场相机不断地被广大研究者们所追捧。在此基础上,手持式光场相机、Retrix 光场相机、Adobe 光场相机和英特尔光场相机都在许多应用中都展示了其相比于传统相机巨大的优势。 与二维数字图像相比,光场给我们带来了更加丰富的信息和广泛的应用。其中相对比较典型的应用有:场景重聚焦技术、场景深度计算技术和快速多视角场景渲染技术等。场景重聚焦技术显著地提高了我们对所拍摄图像的后处理能力,它可以让我们在图像拍摄后重新获取聚焦在我们所需要的不同焦点的图像,现在已集成于 Lytro 光场相机。场景深度计算技术作为光场信息潜在的一项应用技术,正是由于光场中引入了光线角度信息,使得在图像层面上产生了同一场景中不同视角的投影,等效于计算机视觉中的立体视角,故我们可以通过类似的方法实现场景深度信息的恢复。 目前,随着计算机技术的提高、光电技术及器件的发展和光场理论的进一步完善,光场相机在三维立体成像这个领域中展现了自己十分强大的实力。利用光场相机有效地感知场景深度信息也成为了一个具有广阔应用前景的研究方向。光场成像技术也随之逐步应用到航空拍摄、动画渲染、安全监视以及立体显示等各个领域,并朝着集成化、多元化、实用化的方向前进。 二、光场三维成像技术研究的意义 光场三维显示可以记录或重现三维物体上各个点元朝各个方向发出的光线,准确地反映空间物体间的相互遮挡情况,是一种新型的、富有潜力的三维显示技术。同时,由光场三维显示衍生出的光场采集技术也给人们带来了全新的拍摄体验。因此,光场三维成像技术具有重要的研究意义,在众多领域有着广阔的应用前景。下面就几种常见的民事、军事应用或应用前景作简要地说明。 (1)光场拍摄和再聚焦 普通相机只能采集三维场景在某一焦距下的平面图像,一旦曝光完成就无法改变拍摄的聚焦参数。随着数字拍摄技术的发展,光场拍摄作为一种新型的数字采集技术,能够实现场景四维光场的采集,完整地记录光场的空间分辨率、角度分辨率和深度信息。在光场拍摄技术的支撑下,人们可以对捕获的场景光场进行再次聚焦,实现任意焦距下的二维图像采集。 (2)裸眼三维显示 二维平面显示的分辨率已经达到了空前的高度,高清、全高清、甚至超高清分辨率的显示设备足以给观看者带来无与伦比的画质感,但它们无法提供场景的深度信息。三维电视

激光相机结构与原理

激光相机结构与原理 1 基本结构组成 (1)激光打印系统:包括激光发射器、调节器、发散透镜、多角透镜、聚焦透镜、高精度电机及滚筒。 (2)胶片传送系统:包括送片盒、收片盒、吸盘、辊轴、电机及动力传动部件等。其功能足将胶片从送片盒中取出,经过传动装置送激光扫描位置,当胶片曝光完毕再将其传送到收片盒或者直接送到洗片机输片口,完成胶片的输送任务。 (3)信息传递与存储系统:此系统包括电子接口,磁盘或光盘、记忆板,电缆或光缆以及A/D转换器、计算机等。它的主要功能是将丰机成像装置显示的图像信息,通过电缆及电子接口、A/D转换器输入到存储器。再进行激光打印。电子接口分视频接口、数字接口、DICOM接口。一台激光相机可以连接多个成像装置,根据成像系统的输出情况选择不同的接口。为保证多机输入同时进行,激光相机装有硬盘,以缓冲进入的图像进行队列打印,确保连续图像输入和图像打印无锁定进行。 (4)控制系统:该系统包括键盘、控制板、显示板以及各种控制键或者按钮,用来控制激光打印程序、幅式选择、图像质量控制调节等作用。 2 工作原理 (1)信号处理:当激光照相机接通电源后,机器控制系统(MCS)对中央处理器(CPU)和传递系统进行自检。自榆完成后,MCS送硬件复位指令到图像管理系统(IMS),使IMS初始化。当Ready指示灯亮时,说明照相机已准备完毕,可以使用。 操作者用遥控器(键盘)存贮按钮存贮每一幅图像,并向多路器(MMU)送出指令、图像数据,MMU接到指令后,由CPU控制输出编排器,根据操作者的设置,将激光照相机图像编排成行、放大、然后将图像数据从数字转化成模拟形式。 (2)光源工作原理:激光相机的光源为激光束,激光束通过发散透镜系统投射到一个转动的多角光镜再折射,折射后的激光束再通过聚焦透镜系统打印在胶片。半导体激光其波长为820nm,在红外线范围内,它可将成像所需的数据直接用激光束写在透明胶片上;气体激光(氦一氖)其波长为633nm,接通激光器后至少要预热10rain,使其达到定温度后才能运转。胶片图像的分辨率主要决定十激光束的直径(像素大小和像素矩阵数) 激光束的强度可以南调节器凋整,调节器受数字信号榨制。成像装置把图像的像素单元值以数字的力。输入到激光打印机的存储器中,并以此直接控制对每个像素单元的激光曝光强度当激光发生器工作正常后,图像模拟信号控制激光调制器。用以改变激光束的明暗度,通过一系列透镜聚焦和反光镜(约10个)把激光束传送到胶片上。在此过程中.利用光敏探测器从一个固定光束分流镜中连续不断采集信号,反馈到激光发生器,使源激光束保持稳定变。用旋转光束分流镜控制光束传送到胶片上使其感光,这种方式亦称X 轴快速扫描。 照相机柜内的鼓是以固定速度传送胶片的,这称为Y轴慢速扫描。这样以600行/秒图像数据的速度准确地复制全部图像。 (3)打印工作原理:胶片由供片的储存暗盒自动提供胶片。在引导轴传送下装载在专用的打印滚筒下,滚筒随即转到打印位置,此时激光柬按照计算机及矩阵指令,把图像的像素单元PIX—EL的灰度值的数字化桁度传人激光相机存储器中,直接控制对f每个像素单元的激光曝光时问、进行缇弱改变。 激光束通过多棱镜的旋转进行扫描式的打印,住全部曝光过程中滚筒和激光束做精确的同步运动,根据生机成像装置编排的版面和图像尺寸。选择多幅照片的图像取舍和排列,用操作盘来完成,进行打印,每幅图像的矩阵像素为4k~5k,待全部图像打印完后胶片即被传输到接片龠内或传输到自显机内自动冲洗。 3 激光相机图像质量的调校原理

超高速摄像机工作原理

超高速摄像机基本依赖于进口设备,与高速相机最大的区别在于超高速摄像机极短的曝光时间、纳秒时间分辨率和纳秒级触发精度、纳秒级的帧间间隔时间(德国standford生产的超高速摄像机可达皮秒)以及数千倍的增益。而高速相机一般只能达到毫秒或微秒级,增益也是从几倍到数十倍左右。 虽然超高速摄像机拥有如此多极其优秀的特点,但超高速摄像机每次拍摄只能获得几张图像(单通道情况下),而高速相机一次拍摄可获得的图像数量可多达几万甚至数十万张。 超高速摄像机作为一种有着尖端科学技术含量的设备,在全球范围内能够生产出优质超高速摄像机的厂家并不多,而德国standford公司可以说是业内顶尖,下面以此公司的产品为例,简单介绍一下超高速摄像机的基本工作原理和特点。 超高速摄像机的超高速图像采集系统主要由相机主机、控制分析软件、图像处理仪组成。各部分示意图如下: 图像采集系统主机内主要由分光系统和ICCD通道系统组成,示意图如下:

在CCD上产生的增强的信号是由一个系列链产生的,通过以下一些部件: 超高速摄像机内部示意图: ICCD通道系统内的基本工作原理:通过透镜将拍摄的目标对像光信号传送到增强器的光阴极上,像增强器在高压窄脉冲控制下输出具有较短曝光时间的图像,并由后续CCD接收和记录。系统曝光时间和摄影频率由像增强器驱动源以及精密同步系统控制。

多通道图像分光耦合系统工作原理:传统的图像分割技术往往使用立方或半透膜分束器将一个图像分割成两个相同的低强度二级图像。由于一般图像都不是单频的,所以传统技术都不可能预测强度比率。XXRapidFrame系列相机使用全反射镜观察所有子图像,使得所有的强度分布都能在一个镜像几何函数中反映出来。这个方法可以很容易地扩展到紫外光谱区域。在每个光学路径的通道上都装有一个滤波器,它能产生一些特殊的效果,比如对一个实验生成三种颜色的图像。对于各种通道设置的不同延迟时间,它还可以用来恢复成3-D空间信息。下图为图像分光耦合系统示意图: Stanford Computer Optics的ICCD摄像机是独立的解决方案,可以通过RS232,Camera Link或USB连接远程操作和调整。4 Spec E软件可以作为一体化解决方案,以满足超高速ICCD摄像机系统的所有操作要求。

相关文档
最新文档