02 金属材料热处理 第二章 纯金属的结晶 教案

02 金属材料热处理 第二章 纯金属的结晶 教案
02 金属材料热处理 第二章 纯金属的结晶 教案

第二章 纯金属的结晶

大多数金属材料都是经过冶炼得到液态金属,然后再经过浇铸而得到固态金属。由液态金属凝固成具有晶态结构固相金属的过程称为结晶。掌握液态金属的结晶规律,对控制铸件或铸锭的组织和性能具有重要作用。

一、本章教学目的

1 介绍金属结晶的基本概念和基本过程

2 阐明金属实际的结晶组织及其控制

二、 教学内容及要求

(1)了解金属结晶的宏观现象与微观过程, 掌握金属结晶的热力学条件, 金属结晶的结构条件;

(2)掌握晶核形成的均匀形核与非均匀形核机制;

(3)了解晶核的长大, 液固界面的微观结构, 晶体长大机制;

(4)掌握液固界面前沿液体中的温度梯度, 晶体生长的界面形状与晶体形态, 长大速度, 晶粒大小的控制;

(5)掌握金属铸锭的组织与缺陷, 铸锭三晶区的形成,铸锭组织的控制。

重点:

(1)晶核的形成条件与方式;

(2)晶核长大界面形状与晶体形态, 晶粒大小的控制;

(2)铸锭三晶区的形成与控制

难点:

(1)金属结晶的热力学条件、结构条件;

(2)温度梯度与生长形态;

(3)铸锭组织的控制。

§2-1 金属结晶的现象

一、冷却曲线与过冷现象

研究纯金属的结晶过程常采用热分析法,即将纯金属加热熔化成液态,然后缓慢冷却下来,记录温度随时间变化的曲线,称为冷却曲线.。从冷却曲线上可以看出,纯金属自液态缓慢冷却时,随着冷却时间的不断增加,热量不断地向外界散失,温度也连续下降;当温度降到理论结晶温度 Tm 时,液态纯金属并未开始结晶,而是需要继续冷却到 Tm以下某一温度 Tn时,液态金属才开始结晶,这种现象称为过冷现象。理论结晶温度与实际结晶温度之差称为过冷度,即有ΔT=Tm-Tn。

如图所示,当液态纯金属的温度降到实际结晶温度 Tn开始结晶后,冷却曲线上会出现一个平台,这是由于液态纯金属在结晶时产生的结晶潜热与向外界散失的热量相等的原因,这个平台一直延续到结晶过程完毕,纯金属全部转变为固态为止,然后再继续向外散热直至冷却到室温,相应的冷却曲线呈连续下降。

通常,实际结晶温度总是低于理论结晶温度,但是在极其缓慢的冷却速度条件下,两者相差甚微(约 0.02℃左右)。过冷度随金属的本性和纯度的不同,以及冷却速度的差异可以在很大的范围内变化。金属种类不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大。当以上两个因素确定之后,过冷度的大小主要取决于冷却速度。在实际工程应用中,液态金属冷却速度总是比较快,冷却速度越快,则过冷度越大,实际结晶温度越低。

二、结晶的一般过程

液态金属是怎样凝固为固态金属的呢?研究表明,金属在结晶时,首先在液态金属内产生晶核,然后晶核长大,最后每个晶核长大成为一个晶粒。已形成晶核不断长大的同时,液态金属中又会不断地产生新的晶核并不断长大,直至液态金属全部消失,晶体彼此相互接触为止,所以一般纯金属是由许多晶核长成的外形不规则的晶粒和晶界所组成的多晶体。如下图所示:

当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并未立即产生,而需要经过一定时间以后才开始出现第一批晶核;结晶开始前的这段停留时间称为孕育期。随着时间的推移,已形成的晶核不断长大,与此同时,液态金属中又产生第二批晶核;依此类推,原有的晶核不断长大,同时又不断产生新的第

三批、第四批……晶核,就这样液态金属中不断形核,形成的晶核不断长大,使液态金属越来越少,直到各个晶体相互接触,液态金属耗尽,结晶过程进行完毕。由一个晶核长成的晶体,就是一个晶粒。由于各个晶核是随机形成的,其位向各不相同,所以各晶粒的位向也不相同,这样就形成一块多晶体金属;如果在结晶过程中只有一个晶核形成并长大,则形成一块单晶体金属。

§2-2 金属结晶的热力学条件

为什么液态金属在理论结晶温度还不能开始结晶,而必须在一定的过冷条件下才能进行呢?这是由热力学条件决定的。热力学第二定律指出,在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变。对于结晶过程而言,结晶能否发生,就要看液态金属和固态金属的自由能孰高孰低。下图是液态、固态纯金属自由能随温度变化的示意图:

由图可见,液态和固态金属的自由能都随着温度的升高而降低,液态金属自由能曲线的斜率比固态金属的大,所以液态金属的自由能降低得更快一些,两条曲线的斜率不同必然导致两条曲线必然在某一温度相交,此时的液态和固态金属的自由能相等,这意味着此时两者共存,处于热力学平衡状态,这一温度就是理论结晶温度Tm。可见,只有当温度低于Tm时,固态金属的自由能才低于液态金属的自由能,液态金属可以自发地转变为固态。因此,液态金属要结晶,其结晶温度一定要低于理论结晶温度Tm,即要有一定的过冷度,此时的固态金属的自由能低于液态金属的自由能,两者的自由能之差构成了金属结晶的驱动力。

§2-3 金属结晶的结构条件

金属结晶是由晶核的形成和长大过程完成的,而晶核是由晶胚生成的。液态金属中短程规则排列的原子集团是形成晶胚的基础。液态金属中存在的短程规则排列原子集团是处于瞬间出现、瞬间消失、此起彼伏、变化不定的状态之中,称为结构起伏或相起伏。只有在过冷液体中出现尺寸较大的相起伏(称为晶胚),才有可能在结晶时转变为晶核。因此,液态金属中的这种此起彼伏,瞬时形成,又瞬时消失的短程规则排列原子集团,是液态金属结晶的形核基础。

瞬时2

瞬时 1

§2-4晶核的形成

晶核的形成有两种,一种为均匀形核,另一种为非均匀形核。

(1)均匀形核:液态金属本身就存在着许多短程规则排列的原子集团,在液态金属的温度低于Tm时,尺寸比较大的原于集团逐渐趋于稳定而成为结晶核心。这种由金属原子自己规则排列形成的晶核,称为均匀形核。晶核形成后,其周围的原子围绕晶核进行有规则的排列,而使晶核逐渐长大,最后长大成为一个晶粒。

(2)非均匀形核:通常液态金属总是存在着各种固态杂质微粒,某些外来的固体小质点也可做为核心进行结晶。凡依靠外来微粒做为晶核的均称为非均匀形核。非均匀形核在金属结晶过程中往往起着更重要的作用。必须指出,并非外来的任何微粒都能起到晶核作用。只有那些晶体结构或晶格常数与基体金属的晶体结构或晶格常数相近似的微细颗粒,才能起到晶核作用。例如,铝合金中加钛,铜合金中加铁等,就有使外来微粒起着非自发形核的作用。

一、均匀形核

1.形核时的能量变化和临界晶核半径

当温度降到熔点以下时,在液态金属中存在结构起伏,即有瞬时存在的有序原子集团,它可能成为均匀形核的晶胚。当过冷液体中出现晶胚时,一方面原子由液态转变为固态将使体系的自由能降低,另—方面,由于晶胚构成新的界面、又会引起表面自由能的增加.因此,体系总的自由能的变化为:

ΔG =- V·ΔG V +S·σ

式中ΔGV 是液、固两相单位体积自由能之差,σ是晶胚单位面积表面能,V 和S分别是晶胚的体积和表面积。为计算上的方便,设晶胚为球形,其半径为r,则上式可写成:

ΔG = -4/3·πr3·ΔGV + 4πr2·σ

由此得到ΔG随 r 变化的曲线:

由图可知:ΔG 在半径为 rk时达到最大值。当r<rk时,随着晶胚尺寸r的增大,则系统的自由能增加,过程不能自动进行,这种晶胚不能成为稳定的晶核,而是瞬时形成,又瞬时消失;

当r>rk时,随着晶胚尺寸的增大,系统的自由能降低,过程可以自动进行,晶胚可以自发地长成稳定的晶核,因此它将不再消失;

当r=rk时,这种晶胚既可能消失,也可能长大成为稳定的晶核,半径为 rk 的晶核叫做临界晶核,而 rk称为临界晶核半径。

rk =2σ/ΔGV

=2σ·Tm/(Lm·ΔT)

可见,临界半径rk与过冷度ΔT成反比,过冷度越大,则临界半径越小

2.临界形核功

晶核半径在rk—ro范围内时,系统的自由能ΔG仍然大于零,即阻力大于驱动力,那么,尺寸在这个范围内的晶核怎样成为稳定晶核?

当r=rk时,ΔG的极大值为ΔGk:

可见,形成临界晶核时自由能的变化为正值,且恰好等于临界晶核表面能的1/3。这表明,形成临界晶核时,体积自由能的下降只补偿了表面能的2/3,还有1/3的表面能没有得到补偿,需要依靠液体中存在的能量起伏来补足,即需要对形核作功,故称ΔGk为临界形核功。

综上所述,形核要在一定的过冷条件下才可能,这时在液体中客观存在的结构起伏和能量起伏,瞬间满足了晶核的尺寸和形核功时,这个晶胚就不再消失,而成为晶核且不断长大。

3.形核率

形核率是指在单位时间单位体积液体中所形成的晶核数。形核率受两个方面因素的控制:一方面是随着过冷度的增加,晶核的临界半径和形核功减小,有利晶核形成,形核率增加(形核功因子N1);另一方面增加过冷度,降低原子的扩散能力,结果给形核造成困难,使形核率减少(原子扩散能力的因子N2)。

二、非均匀形核

如前所述.液态金属均匀形核所需的过冷度很大,约 0.2Tm。例如纯铁均匀形核时的过冷度达295℃,纯铝为130℃。而实际形核过冷度一般不超过20℃,其原因在于产生非均匀形核。在液态金属中总是存在一些微小的固相杂质质点,并且液态金属在凝固时还要和型壁相接触,晶核就可以优先依附于这些现成的固体表面上形成,这种形核方式就是非均匀形核,它使形核时的过冷度大大降低。

1.临界晶核及形核功

形核的主要阻力是晶核的表面能,非均匀形核,依附于固相质点的表面上形

核,能使表面能降低,使形核在较小的过冷度下进行。

设一晶胚依附于型壁平面上形成,如图所示,并且该晶胚是曲率半径为 r 的球冠,θ为该晶胚与型壁表面的浸润角。可求得:

比较均匀形核、非均匀形核的临界半径和形核功,可以看出,非均匀形核临界球冠半径与均匀形核的临界半径是相等的。一般的情况是θ角在0—180之间变化,非均匀形核的球冠体积小于均匀形核的晶核体积,ΔG k’恒小于ΔG k。θ越小,ΔG k’越小,非均匀形核越容易,需要的过冷度也越小。

2.非均匀形核的形核率

非均匀形核的形核率与均匀形核相似,但除受过冷度和温度的影响外,还受固态杂质的结构、数量、形貌及其他一些物理因素的影响。

1)过冷度的影响。由于非均匀形核所需的形核功很小,因此在较小的过冷度条件下形核。

2)固体杂质结构的影响。非均匀形核的形核功与θ角有关,θ角越小,形核功越小,形核率越高。(结构相似、尺寸相当,点阵匹配原理)

3)固体杂质形貌的影响。固体杂质表面的形状各种各样,具有不同的形核率。在曲率半径、接触角相同的情况下,晶核体积随界面曲率的不同而改变。凹曲面的形核效能最高,因为较小体积的晶胚便可达到临界晶核半径,平面的效能居中,凸曲面的效能最低。

4)过热度的影响。过热度是指金属熔点与液态金属温度之差。液态金属的过热度对非均匀形核有很大的影响。当过热度较大时,有些质点的表面状态改变了,如质点内微裂缝及小孔减少,凹曲面变为平面,使非均匀形核的核心数目减少;当过热度很大时,将使固态杂质质点全部熔化,这就使非均匀形核转变为均匀形核,形核率大大降低。

5)其它影响因素。在液态金属凝固过程中进行振动或搅动,一方面可使正在长大§2-5 晶核长大

定晶核出现之后,马上就进入了长大阶段。晶体的长大从宏观上来看,是晶体速度主要取决于液一固界面前沿的温度分布状况和晶核观结构

个并按照晶面原子排列的要求与晶体表面原子结合度来看,光滑界面呈参差不齐的锯齿状,界面两则的固液两相是截然分察时,这种界面是平整的;当从原子尺度观察时,这种界面高低不

、晶核长大机制

的晶体碎裂成几个结晶核心,另一方面又可使受振动的液态金属中的晶核提前形成。

稳的界面向液相逐步推移的过程;从微观上看,则是依靠原子逐个由液相中扩散到晶体表面上,并按晶体点阵规律的要求,逐个占据适当的位置而与晶体稳定牢靠地结合起来的过程。

晶体长大的方式和长大的界面结构。

一、固液界面的微晶体的长大是通过液体中单起来。按原子尺度,把相界面结构分为粗糙界面和光滑界面两类。

1.光滑界面

从显微尺开的,在界面的上部,所有的原于部处于液体状态,在界面的下部,所有的原子均处于固体状态,即所有的原子都位于结晶相晶体结构所规定的位置上。这种界面通常为固相的密排晶面。当从原子尺度观察时,这种界面是光滑平整的。

2.粗糙界面

从微观尺度观平,并存在着厚度为几个原子间距的过渡层。在过渡层中,液相与固相的原子犬牙交错分布。

二1.二维形核长大机制

当固液界面为光滑界面时,若液相原子单个的扩散迁移到界面上是很难形成稳定长大机制

有光滑界面的晶体,其长大速度比按二维晶核长大方式快得多,几乎有一半按照晶体规律而排列的原子位置虚位以待,从液相中、固液界面前沿液体中的温度梯度

晶体长大的一个重要因素,它可分为正是指液相中的温度随至界面距离的增加而提高的温度分布状况,其结是指液相中的温度随至界面距离的增加而降低的温度分布状况,也就状态的,这是由于它所带来的表面自由能的增加,远大于其体积自由能的降低。在这种情况下,晶体的长大只能依靠所谓的二维晶核方式,即依靠液相中的结构起伏和能量起伏,使一定大小的原子集团几乎同时降落到光滑界面上,形成具有一个原子厚度并且有一定宽度的平面原子集团,二维晶核形成后,它的四周就出现了台阶,后迁移来的液相原子一个个填充到这些台阶处,这样所增加的表面能较小,直到整个界面铺满一层原子后,又变成了光滑界面,而后又需要新的二维晶核的形成,否则生长即告中断。晶体以这种方式长大时,其长大速度十分缓慢 。

2.螺型位错在通常情况下,具,由于在晶体长大时,总是难以避免形成种种缺陷,这些缺陷所造成的界面台阶使原于容易向上堆砌,因而较二维晶核机制长大连度快。

3.垂直长大机制

在粗糙界面上扩散过来的原子很容易填入这些位置与晶体连接起来。由于这些位置接待原子的能力是等效的,在粗糙界面上的所有位置都是生长位置,所以液相原子可以连续、垂直地向界面添加,界面的性质水远不会改变,从而使界面迅速地向液相推移。晶体缺陷在粗糙界面的生长过程中不起明显作用。这种长大方式称为垂直长大。它的长大连度很快,大部分金属晶体均以这种方式长大。

三固液界面前沿液体中的温度梯度也是影响温度梯度和负温度梯度两种。

1.正温度梯度

正温度梯度晶前沿液体中的过冷度随至界面距离的增加而减小。一般的液态金属均在铸型中凝固,金属结晶时放出的结晶潜热通过型壁传导出,故靠近型壁处的液体温度最低,结晶最早发生,而越接近熔液中心的温度越高,这种温度的分布情况即为正温度梯度。

2.负温度梯度

负温度梯度是说,过冷度随至界面距离的增加而增大。此时所产生的结晶潜热既可通过已结晶的固相和型壁散失,也可通过尚未结晶的液相散失。

四、纯金属结晶时的生长形态

纯金属结晶时的生长形态,取决于液-固界面的微观结构和界面前沿液相中的温度分布情况。

1.在正的温度梯度下生长的界面形态

正的温度梯度下,结晶潜热只能通过固相而散出,相界面的推移速度受固相传热速度所控制。晶体的生长是以接近平面状向前推移,其形态按界面的微观结构不同,有两种类型:

(1)光滑界面的情况:光滑界面其显微界面为某一晶体学小平面,与熔点Tm 交有一定角度,但从宏观来看,仍为平行于Tm等温面的平直面,这种情况有利于形成规则形状的晶体,其生长形态呈台阶状。

(2)粗糙界面的情况:具有粗糙界面的晶体,在正的温度梯度下成长时,其界面为平行于熔点Tm等温面的平直界面,它与散热方向垂直。

晶体在生长时界面只能随着液体的冷却而均匀一致地向液相推移,一旦局部偶有突出,它便进入低于临界过冷度甚至熔点Tm以上的温度区域,成长立刻减慢下来,甚至被熔化掉。所以固液界面始终保持平面。在这种条件下,晶体界面的移动完全取决于散热方向和散热条件,具有平面状的长大形态,称为平面长大方式。

2.在负的温度梯度下生长的界面形态

负的温度梯度下,相界面上产生的结晶潜热即可通过固相也可通过液相而散失。在这种情况下,如果界面的某一局部偶有凸出,则它将伸入到过冷度更大的液体中,使凸出部分的生长速度增大而进一步伸向液体中。在这种情况下,液—固界面就不可能保持平面状而会形成许多伸向液体的分枝(沿一定晶向),同时在这些晶枝上又可能会长出二次晶枝,在二次晶枝再长出三次晶枝,如图所示。晶体的这种生长方式称为树枝状生长。

、晶粒大小的粒大小的尺度叫晶粒度,晶粒度可用晶粒的平均面积或平均直径表示。粒大小对金属的机械性能有很大影响,在常温下,金属的晶粒越细小,强度和晶粒都是由一个晶核长大而成的。晶粒的大小取决于形核率和.控制晶粒度的方法

随过冷度增加,N/G 值增加,晶粒变细。

成大量的固体质点、搅拌处理:在液态金属结晶时,采用机械振动、超声波振动或电磁搅

五控制

1.晶粒度

表示晶工业生产上采用晶粒度等级来表示晶粒大小。标准晶粒度共分8级,1-4级为粗晶粒,5-8级为细晶粒。通过100倍显微镜下的晶粒大小与标准图对照来评级。

晶硬度则越高,同时塑性韧性也越好。称为细晶强化。除了钢铁外,其它大多数金属不能通过热处理改变其晶粒度大小,因此,通过控制铸造和焊接时的结晶条件来控制晶粒度的大小,便成为改善机械性能的重要手段。

2.决定晶粒度的因素

金属结晶时,每个长大速度的相对大小。形核率越大,则单位体积中晶核数目越多,每个晶核的长大余地越小,因而长成的晶粒越细小。反之,形核率越小而长大速度越大,则会得到越粗大的晶粒。因此,晶粒度取决于形核率N 和长大速度G 之比,N/G 比值越大,晶粒越细小。

31)控制过冷度:2)变质处理:就是在液态金属中加入变质剂,在金属液中形,起非自发形核的作用,促进形核,抑制长大,从而达到细化晶粒,改善性能的目的。如在铝或铝合金中加入微量钛,钢中加入微量钛等,就是变质处理的典型例子。

3)振动拌处理等方法,可获得细小的晶粒。振动、搅拌的细化作用是通过两个方面进行的:一方面可靠外部输入的能量来促进形核,另一方面也可使成长中的枝晶破碎,使晶核数目显著增加。

§2-6 金属铸锭(件)组织与缺陷

在实际生产中,液注入到铸型模具中成型锭组织的形成

粒区所组成:表面细晶区、柱状晶区和中心等轴晶区

属锭模后,由于模壁温度较低,使与它接触的很薄一层液态金模壁温度不断升高,使剩余液态金属的冷却逐渐减慢,并且)中心等轴晶区

模壁温度升高,散热的方向性已不明显,同时锭模中心部分致密,机械性能较好。但由于细晶区总是比较薄的,故对柱状晶的接触面及相邻垂直的柱状晶区的交态金属被浇注到锭模中便得到铸锭,而则得到铸件。铸锭(件)的组织及其存在的缺陷对其加工和使用性能有着直接的影响。

1、金属铸金属铸锭通常由三个晶1)表面细晶区

当液态金属注入金属发生强烈的过冷,形成大量的晶核,这些晶核迅速生长到互相接触,因此铸锭表层获得了细小的等轴晶粒。

2)柱状晶区

在细晶区形成的同时,由于结晶潜热的释放,使细晶区前沿液体的过冷度减小,形核变得困难,而细晶区已生成的晶粒,可以继续向液体中生长。由于垂直于模壁方向的散热速度最快,那些晶轴与模壁垂直的晶粒就会沿着散热相反方向择优长大,从而获得了柱状晶区。

3随柱状晶区的长大,的液态金属的温度逐渐降低并渐趋均匀,最终几乎同时进入过冷状态,并以非均匀方式形核,由于在不同方向上的生长速度相同,因而便形成了等轴晶粒。中心部分的液态金属的冷却速度较慢,过冷度较小,故晶粒就较粗大。

2、铸锭组织的性能与控制

铸锭的细晶粒,组织较整个铸锭的性能影响不大。

在柱状晶区中,因为相互平行的

界面较为脆弱,并常聚集着易熔杂质和非金属夹杂物,使铸锭在热压力加工时,述那种脆弱的交界面,而方向合金成分和浇注条件等因素有关。一般提高浇注温度、加快冷型较多,常见的有缩孔、气孔、疏松、偏析、夹渣、白点等,它们于液态金属结晶时体积收缩且补缩不足造成的。可通过改变结晶时的冷却条件和加冒口等来进行控制。钢锭出现缩孔在锻轧前应切除。时,气孔:气孔是指液态金属中溶解的气体或反应生成的气体在结晶时未逸出而

容易沿这些脆弱面开裂。因此钢锭一般不希望柱状晶区过大。但是,柱状晶组织比较致密。它不象等轴晶那样容易形成疏松。因此,对塑性较好的有色金属,有时为了获得较致密的铸锭。反而要使柱状晶区扩大。因为在热压力加工时,由于这些金属本身具有良好的塑性,不致于发生开裂。

等轴晶区由于在结晶时没有择优取向,故不存在上不同的晶粒彼此交错咬合,各方向上的机械性能均较好。但由于各个等轴晶粒在生长过程中互相交叉,有可能造成许多封闭的小区,并将残留在这些小区中的液体相互隔绝起来。当这些液体结晶收缩时,由于得不到外界液体的补充。就形成很多微小的缩孔(缩松)。因此,等轴晶区的组织就比较疏松。这又使该区的机械性能降低。

合金铸锭的组织与却速度和采用方向性散热等措施,都有利于柱状晶区的发展。而浇注温度低、冷却速度慢、均匀散热、变质处理和附加振动、搅拌等则有利于等轴晶区的发展。

3.铸锭缺陷

铸造缺陷的类对性能是有害的。

1)缩孔:缩孔是由

2)偏析:合金中各部分化学成分不均匀的现象称为偏析。铸锭(件)在结晶由于各部位结晶先后顺序不同,合金中的低熔点元素偏聚于最终结晶区,造成宏观上的成分不均匀,称宏观偏析。适当控制浇注温度和结晶速度可减轻宏观偏析。

3)存留于铸锭(件)中的气泡。铸锭中的封闭的气孔可在热加工时焊合,张开的气孔需要切除。铸件中出现气孔则只能报废。

4)夹杂物

金属材料与热处理含答案

金属材料与热处理含答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气 态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。

1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的() A.屈服点 B.抗拉强度 C.弹性极限 D.以上答案都对 7.做疲劳试验时,试样承受的载荷为()。

金属材料与热处理教案

绪论 引入: 材料金属材料 机械行业本课程得重要性 主要内容:金属材料得基本知识(晶格结构及变性) 金属得性能(力学及工艺性能) 金属学基础知识(铁碳相图、组织) 热处理(退火、正火、淬火、回火) 学习方法:三个主线 重要概念 ①掌握 基本理论 ②成分 组织性能用途热处理 ③理论联系实际 引入:内部结构决定金属性能 内部结构? 第一章:金属得结构与结晶 §1-1金属得晶体结构 ★学习目得:了解金属得晶体结构 ★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型. ★难点:金属得晶体缺陷及其对金属性能得影响. 一、晶体与非晶体 1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。) 规则几何形状 性能特点: 熔点一定 各向异性 2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。 二、金属晶格得类型 1、晶格与晶胞 晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格. 晶胞:构成晶格得最基本单元 2、晶面与晶向 晶面:点阵中得结点所构成得平面。 晶向:点阵中得结点所组成得直线 由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。) 晶胞晶面晶向 3、金属晶格得类型就是指金属中原子排列得规律。 7个晶系 14种类型 最常见:体心立方晶格、面心立方晶格、密排六方晶格 (1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。 属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个) (2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。 属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等 所含原子数1/8×8+6×1/2=4(个) (3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。 所含原子数 1/6×6×2+1/2×2+3=6(个) 三、单晶体与多晶体 金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

金属材料及热处理

本次作业是本门课程本学期的第3次作业,注释如下: 一、单项选择题(只有一个选项正确,共15道小题) 1. 将钢加热到临界温度以上或其它一定温度,保温一定时问,然后缓慢地冷却到室温,这一热处理工艺称为()。 ??(D)?退火 2. 对形状复杂,截面变化大的零件进行淬火时,应选用()。 ??(A)?高淬透性钢 3. 贝氏体是钢经()处理后获得的组织。 ??(A)?等温淬火 4. 钢的回火处理是在()。 ??(C)?淬火后进行 5. 零件渗碳后,一般需经过()才能达到表面硬度高而且耐磨的目的。 ??(A)?低温回火 6. 钢经表面淬火后,将获得()。 ??(D)?一定深度的马氏体 7. 淬硬性好的钢必须具备()。 ??(B)?高的含碳量 8. 完全退火主要适用于()。 ??(A)?亚共析钢 9. ()主要用于各种弹簧淬火后的处理。 ??(B)?中温回火

10. T10在锻后缓冷,随即又采用正火处理的目的是()。 ??(B)?碎化网状的二次渗碳体,为球化退火作组织准备 11. 扩散退火的主要目的是()。 ??(A)?消除和改善晶内偏析 12. 若合金元素能使过冷奥氏体冷却C曲线右移,钢的淬透性将()。 ??(B)?提高 13. 机械制造中,T10钢常用来制造()。 ??(B)?刀具 14. 合金渗碳钢中的()合金元素可起到细化晶粒的作用。 ??(B)?Ti 15. ()热轧空冷即可使用。 ??(D)?低合金高强度钢 二、判断题(判断正误,共10道小题) 16.?珠光体是由铁素体和渗碳体组成的。() 正确答案:说法正确 17.?亚共析钢室温下的平衡组织是铁素体和珠光体。() 正确答案:说法正确 18.?亚共析钢室温下的平衡组织是铁素体和珠光体。() 正确答案:说法正确 19.?过共析钢室温下的平衡组织是奥氏体和一次渗碳体。() 正确答案:说法错误 20.?白口铸铁很硬但几乎无塑性。() 正确答案:说法正确 21.?室温平衡状态的铁碳二元合金都是由F、Fe3C 两个基本相组成,含碳量不同,只是这两个相的数量、形态和分布不同而已。()

(完整版)金属材料与热处理题库及答案

金属材料与热处理(第五版)练习题及答案第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。( √) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 9、钢水浇铸前加入钛、硼、铝等会增加金属结晶核,从而可细化晶粒。( ×) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √)

13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √) 14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √)

金属材料热处理教案

金属材料学教案 第一章金属的结构与结晶 1.1金属的晶体结构 1、晶体与非晶体 非晶体:在物质内部,凡原子呈无序堆积状况的,称为非晶体。 如:普通玻璃、松香、树脂等。 晶体:凡原子呈有序、有规则排列的物质,金属的固态、金刚石、明矾晶体等。 性能:晶体有固定的熔、沸点,呈各向异性,非晶体没有固定熔点,而且表现为各向同性。 2、晶体结构的概念: (1) 晶格和晶胞: 表示原子在晶体中排列规律的空间格架叫做晶格。 能完整地反映晶格特征的最小几何单元,称为晶胞。 (2) 晶面和晶向: 在晶体中由一系列原子组成的平面,称为晶面。 通过两个或两个以上原子中心的直线,可代表晶格空间排列的一定方向,称为晶向。 3、金属晶格的类型: (1) 体心立方晶格:它的晶胞是一个立方体,原子位于立方体的八个顶角上和立方体的中心。如:铬(Cr)、钒(V)、钨(W)、钼(Mo)及α-Fe (2) 面心立方晶格:它的晶胞也是一个立方体,原子位于立方体的八个顶角上和立方体六个面的中心。如:铝(Al)、铜(Cu)、铅(Pb)、镍(Ni)及γ-Fe (3) 密排六方晶格:它的晶胞是一个正六棱柱体,原子排列在柱体的每个顶角上和上、下底面的中心,另外三个原子排列在柱体内。属于这种晶格类型的金属有镁(Mg)、铍(Be)、镉(Cd)、及锌(Zn)等。 1.2 纯金属的结晶 金属由原子不规则排列的液体转变为原子规则排列的固体的过程称为结晶。 1、纯金属的冷却曲线及过冷度。 用热分析法进行研究: 实际结晶温度低于理论结晶温度这一现象称为“过冷现象”。 理论结晶温度和实际结晶温度之差称这“过冷度”(△T=To-T1)。 金属结晶时过冷度的大小与冷却速度有关。冷却速度越快,金属的实际结晶温度越低,过冷度也就越大。 2、纯金属的结晶过程。 结晶过程是晶核的形成与长大的过程。 外形不规则而内部原子排列规则的小晶体称为晶粒。 晶粒与晶粒之间的分界面称为晶界。 3、晶粒大小对金属力学性能的方面。 一般地说,在室温下,细晶粒金属具有较强的强度和韧性。

第六章金属材料及热处理复习进程

第六章金属材料及热 处理

第六章答案 1.用 45 钢制造机床齿轮,其工艺路线为:锻造—正火—粗加工一调 质一精加工—高频感应加热表面淬火一低温回火—磨加工。说明各热处理 工序的目的及使用状态下的组织。 答:锻造后的 45 钢硬度较高,不利于切削加工,正火后将其硬度控制 在 160-230HBS 范围内,提高切削加工性能。组织状态是索氏体。粗加工后, 调质处理整个提高了 45 钢强度、硬度、塑性和韧性,组织状态是回火索氏 体。高频感应加热表面淬火是要提高 45 钢表面硬度的同时,保持心部良好 的塑性和韧性。低温回火的组织状态是回火马氏体,回火马氏体既保持了 45 钢的高硬度、高强度和良好的耐磨性,又适当提高了韧性。2.常用的合金元素有哪些?其中非碳化物形成元素有一一一:碳化物 形成元素有一一一;扩大 A 区元素有——;缩小 A 区元素在一一。

答:常用的合金元素有:锰、铬、钼、钨、钒、铌、锆、钛、镍、硅、 铝、钴、镍、氮等。其中非碳化物形成元素有:镍、硅、铝、钴等;化物 形成元素有:锰、铬、钼、钨、钒、铌、锆、钛等;扩大 A 区元素有:镍、 锰、碳、氮等;小 A 区元素有:铬、铝、硅、钨等。 3.用 W18Cr4V 钢制作盘形铣刀,试安排其加工工艺路线,说明各热 加工工序的目的,使用状态下的显微组织是什么?为什么淬火温度高达 1280℃?淬火后为什么要经过三次 560℃回火?能否用一次长时间回火代 替? 答:工艺路线: 锻造十球化退火→切削加工→淬火+多次 560℃回火→喷砂→磨削加工→成品 热处理工艺: 球化退火:高速钢在锻后进行球化退火,以降低硬度,消除锻造应力, 便于切削加工,并为淬火做好组织准备。球化退火后的组织为球状珠光体。

(完整版)金属材料与热处理题库及答案

金属材料与热处理习题及答案 第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。(×) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √) 13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √)

14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √) 31、晶体有规则的几何图形。( √) 32、非晶体没有规则的几何图形。( √)

金属材料与热处理(含答案)

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。 1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的()

金属材料与热处理教案

金属材料与热处理教案 第一教案 A:课题:绪论 B:课型:新课 C:教学目的与要求 1、了解学习本课程的目的 2、了解本课程的基本内容及其发展史 3、了解金属材料在各行业中的应用 D:教学重点与难点 无 E:教学过程 绪论 一、学习本课程的目的 本课程是研究金属材料的成份、组织、热处理与金属材料的性能间的关系和变化规律的学科。 二、本课程的基本内容 1、主要内容: 包括金属的性能、金属学基础知识、钢的热处理和金属材料等。 2、金属的性能主要介绍: (1)金属的力学性能和工艺性能; (2)金属学基础知识讲述金属的晶体结构、结晶及金属的塑性变形,铁碳合金的组织及铁碳合金相图; (3)钢的热处理讲述热处理的原理和工艺; (4)金属材料讲述碳素钢、合金钢、铸铁、有色金属及硬质合金等金属材料的牌号、成分、组织、热处理、性能及用途。 3、学习本课程的方法 理论联系实际、注意观察现实生活中所接触到的金属材料。三、金属材料与热处理的发展史

金属材料的使用在我国具有悠久的历史。 四、金属材料在工业农业上的应用。 F:小结 G:布臵作业:预习第一章序论及第一章第一小节 第二教案 A:课题:金属的性能 B:课型:新课 C:教学目的与要求 1、掌握金属材料性能(工艺性能、使用性能)的概念、分类 2、掌握力学性能概念及其指标 3、掌握载荷的性质、名称、分类 4、掌握强度的概念及其种类、应力的概念及符号 D、教学重点与难点: 1、金属材料的性能是教学重点 2、金属材料的强度概念及种类是教学难点 E、教学过程: 第一章金属的性能 概论: 1、金属材料的性能包括:使用性能和工艺性能。 2、使用性能:是指金属材料在使用条件下所表现出来的性能,包括①物理 性能(如密度、熔点、导热性、导电性、热膨胀性、磁性等)。②化学性能(如抗腐蚀性、抗氧化性等)。③力学性能(如强度、塑性、硬度、冲击韧性及疲劳强度等)。④工艺性能。 第一节金属的力学性能 一、力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。 力学性能包括:强度、硬度、塑性、硬度、冲击韧性。 二、载荷的概念及分类:

金属材料与热处理课后习题答案

第1章金属的结构与结晶 一、填空: 1、原子呈无序堆积状态的物体叫,原子呈有序、有规则排列的物体称为。一般固态金属都属于。 2、在晶体中由一系列原子组成的平面,称为。通过两个或两个以上原子中心的直线,可代表晶格空间排列的的直线,称为。 3、常见的金属晶格类型有、和三种。铬属于晶格,铜属于晶格,锌属于晶格。 4、金属晶体结构的缺陷主要有、、、、、和 等。晶体缺陷的存在都会造成,使增大,从而使金属的提高。 5、金属的结晶是指由原子排列的转变为原子排列的过程。 6、纯金属的冷却曲线是用法测定的。冷却曲线的纵坐标表示,横坐标表示。 7、与之差称为过冷度。过冷度的大小与有关, 越快,金属的实际结晶温度越,过冷度也就越大。 8、金属的结晶过程是由和两个基本过程组成的。 9、细化晶粒的根本途径是控制结晶时的及。 10、金属在下,随温度的改变,由转变为的现象称为

同素异构转变。 二、判断: 1、金属材料的力学性能差异是由其内部组织结构所决定的。() 2、非晶体具有各向同性的特点。() 3、体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心。() 4、金属的实际结晶温度均低于理论结晶温度。() 5、金属结晶时过冷度越大,结晶后晶粒越粗。() 6、一般说,晶粒越细小,金属材料的力学性能越好。() 7、多晶体中各晶粒的位向是完全相同的。() 8、单晶体具有各向异性的特点。() 9、在任何情况下,铁及其合金都是体心立方晶格。() 10、同素异构转变过程也遵循晶核形成与晶核长大的规律。() 11、金属发生同素异构转变时要放出热量,转变是在恒温下进行的。() 三、选择 1、α—Fe是具有()晶格的铁。 A、体心立方 B、面心立方 C、密排六方 2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为 ()晶格。A、体心立方 B、面心立方 C、密排六方 3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。

金属材料与热处理第六版习题册答案

金属材料与热处理习题册答案 绪论 一、填空题 1、成分、组织、热处理、性能之间。 2、石器时代、青铜器时代、铁器时代、钢铁时代、 人工合成材料时代。3、成分、热处理、性能、性能。 二、选择题: 1、A 2、B 3、C 三、简答题 1、掌握金属材料与热处理的相关知识对机械加工有什么现实意义? 答:机械工人所使用的工具、刀夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理后相关知识,对我们工作中正确合理地使用这些工具,根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺必能的方法都具有非常的现实意义。 2、如何学好《金属材料与热热处理》这门课程? 答:在学习过程中,只要认真掌握重要的概念和基本理论,按照材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际,认真完成作业和实验等教学环节,是完全可以学好这门课程的。 第一章金属的结构和结晶 1-1金属的晶体结构 一、填空题 1、非晶体晶体晶体 2、体心立方面心立方密排立方体心立方面心立方密排立方 3、晶体缺陷点缺陷面缺陷 二、判断题 1、√ 2、√ 3、× 4、√ 三、选择题 1、A 2、C 3、C 四、名词解释 1、晶格与晶胞:P5 答:将原子简化为一个质点,再用假想的线将它们连接起来,这样就形成了一个能反映原子排列规律的空间格架,称为晶格;晶胞是能够完整地反映晶体晶格特征的最小几何单元。 3、单晶体与多晶体 答:只由一个晶粒组成称为单晶格,多晶格是由很多大小,外形和晶格排列方向均不相同的小晶格组成的。 五、简答题书P6 □ 1-2纯金属的结晶 一、填空题

(完整word版)金属材料教案.

机械工程学院课程教案 课程名称金属材料与热处理课程编码教材《工程材料与热加工》大连理工大学出版社 第7 章低合金钢与合金钢学时 2 教学目的: 1 掌握钢的分类与牌号、性能特点及应用 2掌握常用非合金钢的种类、牌号、性能特点及应用; 3 能够识别我非国合金工具钢及常用特殊性能钢的牌号 教学重点: 1. 钢的分类及钢铁合金的分类与牌号、性能特点及应用; 2.非合金钢的种类、牌号、性能特点及应用; 3. 掌握铸造碳钢种类、牌号、性能特点及应用; 教学难点: 1. 钢的分类及钢铁合金的分类与牌号、性能特点及应用; 2.非合金钢的种类、牌号、性能特点及应用; 3. 掌握铸造碳钢种类、牌号、性能特点及应用; 授课形式:讲练结合,传授法

教学内容 第五章钢铁材料 5.1.1 钢的分类及合金牌号统一数字代号体系 5.1.2 钢铁及合金牌号统一数字代号体系 5.2 非合金钢 5.2.1 常存杂质元素的影响及非合金钢的分类 1.常存杂质元素的影响 2.非合金钢的分类 提问或作业

机械工程学院课程教案 课程名称金属材料与热处理课程编码教材《工程材料与热加工》大连理工大学出版社 第 5 章第3、4 节学时 2 教学目的: 1.掌握低合金钢的化学成分、性能与热处理牌号及用途 2.掌握合金钢化学成分、性能与热处理牌号及用途 3.掌握合金工具钢和高速工具钢的化学成分、性能与热处理牌号及用途 教学重点: 1.低合金钢、合金钢、工具钢和高速工具钢的化学成分 2.低合金钢、合金钢、工具钢和高速工具钢性能与热处理牌号及用途 教学难点: 低合金钢、合金钢、工具钢和高速工具钢的牌号及工艺曲线图 授课形式: 讲练结合,传授法

常用金属材料及热处理

常用金属材料及热处理 以下是为大家整理的常用金属材料及热处理的相关范文,本文关键词为常用,金属,材料及,热处理,模块,常用,金属,材料及,热处理,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教师教学中查看更多范文。 模块一常用金属材料及热处理项目二钢的热处理任务一:钢的普通热处理一、实验目的1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。2、研究冷却条件对碳钢性能的影响。3、分析淬火及回火温度对碳钢性能的影响。二、实验原理1、钢的淬火所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中(V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。(1)淬火温度的选择选定正确的加热温度是保证淬火质量的重要环节。淬火时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图4所示)。对亚共析钢,其加热温度为+30~50℃,若加热温度不足(低于),则淬火组织中将出现

铁素体而造成强度及硬度的降低。对过共析钢,加热温度为+30~50℃,淬火后可得到细小的马氏体与粒状渗碳体。后者的存在可提高钢的硬度和耐磨性。(2)保温时间的确定淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。表1碳钢在箱式电炉中加热时间的确定加热圆柱形工件形状方形板形温度(℃)分钟/每毫米直径70080090010001.51.00.80.4保温时间分钟/每毫米厚度2.21.51.20.6分钟/每毫米厚度321.60.8(3)冷却速度的影响冷却是淬火的关键工序,它直接影响到钢淬火后的组织和性能。冷却时应使冷却速度大于临界冷却速度,以保证获得马氏体组织;在这个前提下又应尽量缓慢冷却,以减少钢中的内应力,防止变形和开裂。为此,可根据c曲线图(如图2所示),使淬火工作在过冷奥氏体最不稳定的温度范围(650~550℃)进行快冷(即与c曲线的“鼻尖”相切),而在较低温度(300~100℃)时冷却速度则尽可能小些。为了保证淬火效果,应选用合适的冷却方法(如双液淬火、分级淬火等).不同的冷却介质在不同的温度范围内的冷却速度有所差别。各种冷却介质的特性见表2.表2几种常用淬火介质的冷却能力在下列温度范围内的冷却速度(℃/秒)冷却介质650~550℃18℃的水50℃的水10%nacl 水溶液(18℃)10%naoh水溶液(18℃)10%naoh水溶液(18℃)蒸馏水(50℃)硝酸盐(200℃)菜籽油(50℃)矿务机油(50℃)6001001100120XX0025035020XX50300~

金属材料与热处理试题及答案

金属材料与热处理 一、填空题(30分,每空1分) 1、常见的金属晶体类型有_体心立方_晶格、__面心立方__晶格和密排六方晶格三种。 2、金属的整个结晶过程包括形核_____、___长大_______两个基本过程组成。 3、根据溶质原子在溶剂晶格中所处的位置不同,固溶体分为_间隙固溶体_与_置换固溶体_两种。 4、工程中常用的特殊性能钢有_不锈钢__、_耐热钢_、耐磨钢。 5、常用的常规热处理方法有___回火___、正火和淬火、__退火__。 6、随着回火加热温度的升高,钢的__强度__和硬度下降,而_塑性___和韧性提高。 7、根据工作条件不同,磨具钢又可分为_冷作模具钢_、__热作模具钢__和塑料磨具用钢等。 8、合金按照用途可分为_合金渗碳体_、_特殊碳化物_和特殊性能钢三类。 9、合金常见的相图有__匀晶相图__、_共晶相图__、包晶相图和具有稳定化合物的二元相图。 10、硬质合金是指将一种或多种难熔金属_碳化物__和金属粘结剂,通过_粉末冶金__工艺生产的一类合金材料。 11、铸铁的力学挺能主要取决于_基体的组织_的组织和石墨的基体、形态、_数量_以及分布状态。 12、根据铸铁在结晶过程中的石墨化程度不同,铸铁可分为_灰口铸铁__、_白口铸铁_和麻口铸铁三类。 13、常用铜合金中,_青铜_是以锌为主加合金元素,_白铜_是以镍为主加合金元素。 14、铁碳合金的基本组织中属于固溶体的有_铁素体_和_奥氏体_,属于金属化合物的有_渗碳体_,属于混合物的有_珠光体_和莱氏体。 二、选择题(30分,每题2分) 1、铜只有通过冷加工并经随后加热才能使晶粒细化,而铁则不需冷加工,只需加热到一定温度即使晶粒细化,其原因是( C ) A 铁总是存在加工硬化,而铜没有 B 铜有加工硬化现象,而铁没有 C 铁在固态下有同素异构转变,而铜没有 D 铁和铜的再结晶温度不同 α-是具有(A )晶格的铁。 2、Fe A 体心立方 B 面心立方 C密排六方 D 无规则几何形状 3、以下哪种铸铁的断口呈灰黑色?( D ) A 马口铁 B 白口铸铁 C 麻口铸铁D灰铸铁 4、用于制造渗碳零件的钢称为(C )。 A 结构钢 B 合金钢 C 渗碳钢 D 工具钢 5、合金发生固溶强化的主要原因( C )。 A晶格类型发生了变化B 晶粒细化 C 晶格发生畸形 D 晶界面积发生变化 6、调质处理就是( A )的热处理。 A 淬火+高温火 B 淬火+中温回火 C 淬火+低温回火 D 淬火+低温退火 7、零件渗碳后,一般需经过( A )才能达到表面硬度高而且耐磨的目的。 A 淬火+低温回火 B 正火 C 调质 D 淬火+高温回火 8、钢在加热时,判断过热现象的依据是(B )。 A 表面氧化 B 奥氏体晶界发生氧化或融化 C 奥氏体晶粒粗大D、晶格发生畸形 9、火焰加热表面淬火和感应加热表面淬火相比( D )。 A 效率更高 B 淬硬层深度更容易控制C工艺过程简单D设备简单

金属材料与热处理习题答案

第一章金属的结构与结晶 $1-1 金属的晶体结构 一.填空题 1.非晶体晶体晶体 2.体心立方面心立方密排六方体心立方面心立方密排六 方 3.晶体缺陷点缺陷线缺陷面缺陷 二.判断题 1.对 2.对 3.错 4.错 三.选择 1.A 2.C 3.C 四.名词解释 1.答:晶格是假想的反映原子排列规律的空间格架.晶胞是能够完整地反映晶体晶格特征的最小几何单元。 2.答:只由一个晶粒组成的晶体称为单晶体。由很多大小、外形和晶格排列方向均不相同的晶粒所组成的晶体称为多晶体。 五.简答题

体心立方晶格面心立方晶格密排六方晶格$1-2 纯金属的结晶 一、填空题 1.液体状态固体状态 2.过冷度

3.冷却速度冷却速度低 4.形核长大 5.强度硬度塑性 二、判断题 l.X. 2.X 3.X 4.对 5.X 6.对 三、选择题 l.C B A 2.B 3.A 4.A 四、名词解释 答:结晶指金属从高温液体状态冷却凝固为原子有序排列的固体状态的过程。在结晶的过程中放出的热量称为结晶潜热。 2.答:在固态下,金属随温度的改变由一种晶格转变为另一种晶格的现象称为金属的同素异构转变。 五、简答题 1.答:冷却曲线上有一段水平线,是说明在这一时间段中温度是恒定的。结晶实际上是原子由一个高能量级向一个较低能量级转化的过程,所以在结晶时会放出一定的结晶潜热,结晶潜热使正在结晶的金属处于一种动态的热平衡状态,所以纯金属结晶是在恒温下进行的。 2.答:金属结晶后,一般晶粒越细,强度、硬度越高,塑性、韧性也越好,所以控制材料的晶粒大小具

有重要的实际意义。生产中常用的细化晶粒的方法有增加过冷度、采用变质处理和采用振动处理等。 3.答: (1)铸成薄件的晶粒小于铸成厚件的晶粒。 (2)浇铸时采用振动措施的晶粒小于不采用振动措施的晶粒。 (3)金属模浇铸的晶粒小于砂型浇铸的晶粒。 $1-3观察结晶过程(实验) 1.答:由于液态金属的结晶过程难以直接观察,而盐类也是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。 2·答:

(完整版)金属材料及热处理基础习题精选(带答案)

金属材料及热处理复习题 一、判断题(填在题后的括号内。对的“√”,错的“×”) 1、弹性变形和塑性变形都能引起零件和工具的外形和尺寸的改变,都是工程技术上所不允许的。(×) 2、碳素钢随含碳量的增加,其塑性、韧性将升高。(×) 3、硬度愈低,金属的切削加工性能愈好。(×) 4、钢中含碳量的多少不仅会影响到钢的机械性能,而且会影响到钢的工艺性能。(√) 5、表面热处理都是通过改变钢材表面的化学成分而改变表面性能的。 (×) 6、高速钢由于具有极高的硬度而可以进行高速切削。(×) 7、由于铸铁含碳量比钢高,所以硬度都比钢高。(×) 8、低碳钢为了改善组织结构和机械性能,改善切削加工性,常用正火代替退火。(√) 9、工具钢的硬度、耐磨性高,则红硬性也一定很好。(×) 10、发蓝的主要目的是提高零件表面的强度和硬度,其次还能提高抗蚀能力。(×) 二、填空题 1、金属材料的性能,主要可分为使用性能和工艺性能两个方面。 2、高碳钢、中碳钢、低碳钢是按含碳量的高低划分,其含碳量>0.60% 为高碳钢,含碳量为0.25~0.60%为中碳钢,含碳量<0.25%为低碳钢。 3、淬火的主要目的是提高钢的硬度和耐磨性。 4、按用途,合金钢可以分为合金结构钢、合金工具钢和特殊合金钢。 5、调质处理就是将钢淬火后,再经高温回火的一种工艺方法。 6、铸铁是含碳量大于2.11%的铁碳合金。

7、合金结构钢的编号原则是采用“二位数字+化学元素符号+数字”的方法。 8、金属铸造性能的好坏主要取决于金属的流动性和收缩性的大小。 9、常用的化学热处理方法有渗碳和氮化。 10、常用的硬质合金分类牌号中“YG”表示钨钴类硬质合金,“YT”表示钨钴钛类硬质合金。 11、根据加入元素量的不同。钢合金分为低合金钢、中合金钢和高合金钢三大类。在机械制造业中,应用较广的是中合金钢。 12、铝合金按加入元素的含量多少和工艺特点不同,可分为形变铝合金和铸造铝合金两类。 13、以下牌号是表示什么材料: 45表示平均C%为0.45%的优质碳素结构钢, T8表示平均C%≈0.8%的优质碳素工具钢, QT42-10表示最低抗拉强度为42N/mm2,最低延伸率为10%的球墨铸铁, H62表示Cu%≈62%的普通黄铜, W18Cr4V表示含W约为18%,含Cr约为4%,含V小于1.5%的高速钢。三、选择题(在每组答案里面只有一个正确的,请将正确答案的序号填在 题内的空格处) 1、金属的使用性能常包括 b 性能 c 性能和 d 性能等。 a.加工性 b.物理 c.化学 d.机械 2、形状复杂、机械性能要求较高,而且难以用压力加工方法成形的机架、箱体等零件,应采用 d 来制造。 a.碳素工具钢 b.碳素结构钢 c.易切削钢 d.工程用铸钢 3、工件在回火时,回火温度愈高,其回火后的硬度 b a.愈高 b.愈低 c.不变 d.不确定 4、9SiCr是合金 b 钢。C%约为 c %

金属材料与热处理教案

金属材料与热处理教案 金属材料与热处理 ?2-2金属的力学性能学习目的:? 理解金属材料性能(工艺性能、使用性能)的概念、分类。?掌握强度的概念及其种类、应力的概念及符号。?掌握拉伸试验的测定方法;力——伸长曲线的几? 个阶段;屈服点的概念。教学重点与难点1、理解力——伸长曲线是教学重点;2、强度、塑性是教学难点。教学过程:复习载荷可分为:静载荷、冲击载荷、交变载荷。内力、应力的概念。新课:?力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。力学性能包括:强度、硬度、塑性、硬度、冲击韧性。一、强度: ? 概念:金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。强度的大小用应力来表示。根据载荷作用方式不同,强度可分为:抗拉强度、抗压 ? 根据载荷作用方式不同强度可分为:抗拉强度抗压强度、抗弯强度、抗剪强度和抗扭强度等。一般情况下多以抗拉强度作为判别金属强度高低的指标。 1、拉伸试样:拉伸试样的形状一般有圆形和矩形。 Do:直径 Lo:标距长度长试样:Lo10do 短试样:Lo5do力-伸长曲线: 如下图,以低碳钢为例纵坐标表示力F,单位N;横坐标表示伸长量?L,单位为mm。 (1)oe:弹性变形阶段: 试样变形完全是弹性的,这种随载荷的存在而产生,随载荷的去除而消失的变形称为弹性变形。Fe为试样能恢复到原始形状和尺寸的最大拉伸力。 (2)es:屈服阶段: 不能随载荷的去除而消失的变形称为。在载荷不增加或略有减小的情况下,试样还继续伸长的现象叫做屈服。屈服后,材料开始出现明显的塑性变形。Fs称为屈服载荷(3)sb:强化阶段: 随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称加工硬化)。Fb:试样拉伸的最大载荷。 (4)bz:缩颈阶段(局部塑性变形阶段) 当载荷达到最大值Fb后,试样的直径发生局部收缩,称为“缩颈”。工程上使用的金属材料,多数没有明显的屈服现象,有些脆性材料,不但没有屈服现象,而且也不产生“缩颈”。如铸铁

金属材料与热处理试题(低倍含答案)

金属材料与热处理(低倍) 一.填空(每空0.5分共15分) 1.纯铁在室温下具有体心立方晶体结构,马氏体是碳在α-Fe 中的过饱 和固溶体 2.钢的基本组织(相)包括铁素体、渗碳体、奥氏体。 3.通常钢按化学成分碳素钢、合金钢。 4.铁碳合金中的共析线指PSK ,A3线指GS 。 5.一种物质均匀地分布(溶解)于另一种固体物质中所形成的溶合体叫做固 溶体。可分为间隙固溶体和置换固溶体两种基本类型。 6.金属晶体中最常见的晶格类型有面心立方、体心立方、密排六方。 7.一般钢中硫(S)元素的有害作用是使钢产生热脆性,而磷(P)元素的 有害作用为使钢产生冷脆性。 8.40Cr钢中碳的平均质量分数为0.40% 。 9.金属的性能一般分为使用性能和工艺性能。 10.表征钢试样淬硬层深度和硬度分布的特性就钢的淬透性。 11.湘钢常用的检验钢的宏观组织的检验方法有酸浸试验、硫印试验、 塔形发纹试验三种。 12.典型的铸锭结晶的宏观组织由表面细晶区,次表面柱状晶区和中心 等轴晶区三部分组成。 13.硫印试样受检面的表面粗糙度要求为0.8μ。 14.在物质内部,凡原子作有序、有规则排列的称为晶体,凡原子呈无序堆 积状况的,称为非晶体。 二.选择(每题1分共20分) 1.下列哪种组织不属于铁碳合金的基本组成相(C) A.铁素体 B.奥氏体 C.珠光体 D.渗碳体 2.马氏体的硬度主要取决于(B)

A.淬火加热温度 B.碳含量 C.淬火冷却速度 3.下列几种钢中,(B)是合金结构钢 A.Q235 A.F B.40Cr C.T10 D.W18Cr4V 4.调质处理就是(A)的热处理工艺。 A.淬火+高温回火 B.淬火+中温回火 C.淬火+低温回火 5.下列性能中属于金属使用性能的是(B) A.热处理性能 B.物理性能 C.锻造性能 6.下列各纯铁的素异构体中,具有相同晶体结构的一组为(C) A.δ-Fe γ-Fe B.γ-Fe α-Fe C.δ-Fe α-Fe 7.晶粒细化对强度和塑韧性的影响分别是(B) A.晶粒越细,强度越高,塑韧性越差 B.晶粒越细,强度越高,塑韧性越好 C.晶粒越细,强度越低,塑韧性越差 D.晶粒越细,强度越低,塑韧性越好 8.下列属于钢的常存元素的为(A) A.Si Mn P S B.Si Mn Cr Nb C.Si Cr P S D.Si P C S 9.钢的热处理过程中,临界温度的关系为(A) A.A c1﹥A1﹥A r1 B.A r1﹥A1﹥A c1 C.A c1﹥A r1﹥A1 D.A r1﹥A c1﹥A1

常用金属材料热处理硬度

常用金属材料热处理规范 ┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 880- 930 ┃空冷┃HB≤156 ┃┃20┃Ac3 855 ┃渗碳┃ 920- 950 ┃┃┃┃┃Ar3 835 ┃渗碳淬火┃ 860- 880 ┃水或油冷┃HRC>56 ┃┃┃Ar1 680 ┃高温回火┃ 650- 680 ┃空冷┃芯部HB150 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃正火┃ 850- 890 ┃空冷┃HB≤185 ┃┃35┃Ac3 802 ┃退火┃ 840- 890 ┃炉冷┃┃┃┃Ar3 774 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 680 ┃淬火┃ 850- 890 ┃水冷┃HRC≥47 ┃┃┃┃回火┃ 500- 540 ┃空冷┃HB241-286 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃退火┃ 820- 840 ┃炉冷┃HB≤207 ┃┃45┃Ac3 780 ┃正火┃ 830- 870 ┃空冷┃HB≤229 ┃┃┃Ar3 751 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 682 ┃淬火┃ 820- 860 ┃水冷┃HRC50-60 ┃┃┃┃回火┃ 520- 560 ┃空冷┃HB228-286 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 900- 930 ┃空冷┃HB≤179 ┃┃┃Ac3 854 ┃高温回火┃ 659- 680 ┃空冷┃┃┃20Mn ┃Ar3 835 ┃┃┃┃┃┃┃Ar1 682 ┃┃┃┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 734 ┃退火┃ 830- 880 ┃炉冷┃┃┃35Mn ┃AC3 812 ┃正火┃ 850- 880 ┃空冷┃HB≤187 ┃┃┃Ar3 796 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 675 ┃淬火┃ 850- 880 ┃水或油冷┃HRC50-55 ┃┃┃┃回火┃ 400- 500 ┃空冷┃HB302-332 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 726 ┃退火┃ 820- 850 ┃炉冷┃HB≤217 ┃┃45Mn ┃Ac3 790 ┃正火┃ 830- 860 ┃空冷┃┃┃┃Ar3 768 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 689 ┃淬火┃ 810- 840 ┃水或油冷┃HRC54-60 ┃┃┃┃回火┃根据需要回火┃水或空冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛

相关文档
最新文档