材料科学与工程基础知识重点

材料科学与工程基础知识重点
材料科学与工程基础知识重点

第一章

弹性比功:弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。金属拉伸时的弹性比应力-应变曲线上弹性变形阶段下的面积表示,等于最大弹性应力和最大弹性应变乘积之半。

滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

循环韧性(内耗):金属材料在交空载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗。

应力状态软性系数:

冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,常用标准

)。

试样的冲击吸收能量K表示(原标准为冲击吸收功A

k

疲劳:金属机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。

疲劳极限:当循环应力水平降低到某一临界值时,低应力段变为水平线段,表明试样可以经无限次应力循环也不发生疲劳断裂,故将对应的应力称为疲劳极限磨损:机件表面相接触并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象即为磨损。

热震断裂:由热震引起的瞬时断裂

热震损伤:在热冲击循环作用下,材料先出现开裂,随之裂纹扩展,导致材料强度降低、最终整体破坏,称为热震损伤。

退火低碳钢在拉伸力作用下的变形过程有哪几个阶段?

弹性变形、不均匀屈服塑性变形、均匀塑性变形、不均匀集中塑性变形和断裂

弹性模量主要取决于什么因素,为什么它是对组织不敏感的力学性能指标?

弹性模量主要取决于原子本性和晶格类型;因为合金化、热处理(纤维组织)、冷塑性变形等对金属材料的弹性模量的影响较小。

屈服现象及产生屈服现象的原因?

屈服现象:外力不增加(保持恒定),试样仍能继续伸长;或外力增加到一定数值时突然下降,随后,在外力不增加或上下波动情况下,试样继续伸长变形。产生原因:位错增殖和运动的结果

金属在发生变形前可动位错很少,为了满足一定的塑性变形应变速率,需提高位错的运动速率,则需提高应力的大小,这就是上屈服强度;随着塑性变形的发生,可动位错密度增大,则位错的运动速率下降,相应的应力就会降低,从而产生屈服现象。

影响金属屈服强度的因素(要详细分析)

内在因素:

金属本性及晶格类型:屈服强度值由位错运动所受的各种阻力决定。这些阻力有晶格阻力、位错间交互作用产生的阻力等。不同的金属及晶格类型,位错运动所受的各种阻力并不相同。晶格阻力与位错宽度及柏氏矢量有关,位错间交互作用产生的阻力:正比于(切变模量)G、b而反比于位错间距离L。

晶粒大小和亚结构:晶粒大小的影响是晶界影响的反映,因为晶界是位错运动的障碍,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,使屈服强度提高。

溶质元素:在纯金属中加入溶质原子(间隙型或置换型)形成固溶合金(或多相合金中的基体相),将显著提高屈服强度,此即为固溶强化。通常,间隙固溶体的强化效果大于置换固溶体。

第二相:除基体产生固溶强化外,第二相对屈服强度也有影响。第二相质点的强化效果与质点本身在屈服变形过程中能否变形有很大关系。第二相的强化效果还与其尺寸、形状和数量,以及第二相与基体的强度、塑性和应变硬化特性、两相之间的晶体学配合和界面能等因素有关。

金属材料的屈服强度是多种强化机理共同作用的结果,是一个对成分、组织极为敏感的力学性能指标。

外在因素:

一般,升高温度金属材料的屈服强度降低,应变速率增大,金属材料的屈服强度增加,且屈服强度随应变速率的变化较抗拉强度的变化要明显得多。应力状态也影响屈服强度,切应力分量越大,越有利于塑件变形,屈服强度则越低,所以扭转比拉伸的屈服强度低.拉伸要比弯曲的屈服强度低。

韧性断裂和脆性断裂的区别;韧性断裂宏观断口特征三要素;脆性断裂的宏观断口形貌;解理断裂的微观断口特征;微孔聚集断裂的微观断口特征。

区别:韧性断裂在发生前会发生宏观塑性变形,是一个缓慢撕裂的过程;脆性断裂是突然发生的断裂,断裂工作应力低于材料的屈服强度,不发生塑性变形。

特征三要素(韧性断裂宏观断口):纤维区、放射区、剪切唇

脆性断裂的宏观断口形貌:断裂面一般与正应力垂直,断口平直而光亮,常呈放射状或结晶状。许多情况会出现人字纹花样。人字纹花样的放射方向也与裂纹扩

展方向平行,但其尖顶指向裂纹源。

解理断裂微观断口特征:解理台阶、河流花样,还有舌状花样

微孔聚集断裂微观断口特性:有韧窝的存在。

疲劳宏观断口的特征

具有三个形貌不同的区域:疲劳源、疲劳区及瞬断区

疲劳源区的光亮度最大;疲劳区的宏观特征是断口比较光滑并分布有贝纹线;瞬断区是裂纹最后失稳快速扩展所形成的断口区域。

按磨损机理分类,通常有哪些磨损?对我们所讲述的磨损的摩擦面的形貌特征要知道。

黏着磨损、磨粒磨损、冲蚀磨损、腐蚀磨损、微动磨损、疲劳磨损。

黏着磨损:摩擦副一方表面常黏附一层很薄的转移膜,并伴有化学成分的变化。

磨粒磨损:摩擦面上有明显犁皱形成的沟槽。

冲蚀磨损:表面冲蚀坑(鱼鳞状)和短程沟槽变形层,有微小裂纹。

腐蚀磨损(氧化磨损):在摩擦面上沿滑动方向呈匀细磨痕,其磨损产物或为红

褐色的Fe

2O

3

,或为灰黑色Fe

3

O

4

聚合物的主要物理和力学性能特点;线型非晶态聚合物力学行为随温度不同而变化,分别可处于哪几种力学状态?在不同力学状态下的变形有什么特点?

特征:与金属材料相比,聚合物在外力或能量载荷作用下强烈地受温度和载荷作用时间的影响,因此其力学性能变化幅度较大。其力学性能的特点是:高弹性、弹性模量小、黏弹性明显。

力学状态:玻璃态、高弹态和黏流态

玻璃态链段运动被冻结,形变小,可逆,模量高;高弹态链段运动被激活,形变大,可逆,模量低;黏流态分子整链运动被激活,形变很大且不可逆,模量很小,处于黏性流动状态。

陶瓷材料的弹性变形与金属材料相比有什么特点?抗热震断裂参数及抗热震损伤参数。

弹性模量大;陶瓷材料的弹性模量不仅与结合键有关,还与其组成相的种类、分布比例及气孔率有关;陶瓷材料的压缩弹性模量高于拉伸弹性模量。

抗热震断裂参数:表征材料承受温度骤变而不瞬时断裂的能力

抗热震损伤参数:

各种力学性能指标的符号分别表示什么? 如ReL (表示下屈服强度);Rr0.2;A ;

Z ;Rm ;σbb ;K 等等,同学自己总结W:最大弯矩 M:抗弯截面系数

第二章

了解各种磁学参量及意义

磁化(Magnetize ):物质在磁场中,受磁场作用而呈现一定宏观磁性的现象。

磁矩(Moment ):磁矩是表征磁性物体磁性大小的物理量,磁矩愈大.磁性愈强,

即物体在磁场中所受的力也大。磁矩只与物体本身有关,与外磁场无关。其大小

由闭合环形回路中电流强度与该回路所包围的面积的乘积,即 m=IS ,单位为A·m 2

磁化强度(Magnetization ):单位体积物质内所具有的磁矩的矢量和,表示一物

质在外磁场中被磁化的程度,描述宏观物质磁性强弱。单位为A/m

磁场与磁场强度(H ): 磁场是导体中的电流或永磁体在其周围所产生的作用,

磁场强度H 是描述磁极周围空间或电流周围空间任一点磁场作用大小的物理量,

单位是A /m 。

磁感应强度(B ): 是指物质内垂直于磁场方向单位面积中通过的磁力线数,是

描述磁极周围任一点磁场力大小.或磁极周围磁场效应的物理量;反应外加磁场

H 和磁介质磁化后M 的综合作用效应。单位T 或Wb/m 2。

磁化率和磁导率(H/m )及M 、H 、B 之间关系: 磁化率是指单位磁场强度H

所感生出的磁化强度M 大小的物理量.

它是表明物质被磁化能力的大小和性质的

物理量(磁化难易程度,可取正,可取负)。磁导率是指单位磁场强度H在物质中所感生出的磁感应强度B大小的物理量。

磁力和力矩:将磁矩m放入磁感应强度为B的磁场中,将受磁场力的作用而产生力矩T=m×B,此力矩力图使磁矩处于位能最低的方向。处于磁场中某方向的磁矩,所具静磁能为U=-m·B。磁矩m在不均匀磁场中还要受到一净力,在一维情况下,Fx=mdB/dx

造成畴壁可逆与不可逆壁移的临界磁场强度即为矫顽力。Hc

磁晶各向异性:沿铁磁晶体(单晶体)的各个晶向磁化的难易程度不同(磁化功不同)

铁磁体的形状各向异性:实际应用的铁磁体由于形状不同,表现出不同的磁化行为,这一现象称为形状各向异性。

磁致伸缩:铁磁体在磁场中磁化,其形状和尺寸都会发生变化(伸长或缩短),这种现象称为磁致伸缩

自发磁化:在未加外磁场时,铁磁金属内部的自旋磁矩已经自发地排向了同一方向。

技术磁化:铁磁金属在外加磁场作用下产生的磁化(畴壁的迁移与磁畴的旋转)

材料磁性的来源及材料磁性分类

物质的磁性来源于原子磁矩。原子磁矩包括电子轨道磁矩、电子自旋磁矩、原子核磁矩。

抗磁性,顺磁性,反铁磁性, 铁磁性,亚铁磁性

产生铁磁性的条件?

1.原子固有磁矩不为零,即要求原子中必须有未填满电子的内层。

2.自旋磁矩

与未填满的内壳层半径r之自发地排列在一个方向:点阵常数(原子间距)R

ab

比值>3,但不能太大。

铁磁性材料在技术磁化过程中的三个不同阶段的描述

起始磁化阶段:磁化强度M随外加磁场的增大缓慢增大,宏观上表现为较弱的磁化强度,锐角磁畴扩大,钝角磁畴减小,畴壁的位移不大,为可逆壁移。

急剧磁化阶段:所有钝角磁畴瞬时转变为锐角磁畴,磁化强度随外磁场的增加急剧上升,磁畴发生了不可逆壁移及磁矩不可逆转向。

缓慢磁化并趋于磁饱和阶段:磁化强度随外加磁场的增加而缓慢增加并趋于磁饱和,对应的为锐角磁畴进一步转向外磁场方向的过程。

磁性测量的应用(如淬火钢中残余奥氏体的含量;高合金钢;淬火钢回火中的相变情况等)

自己研究

第三章

热容:在一定的过程中,质量为m的物体,在没有相变、没有化学反应的条件下,温度升高一度所吸收的热量。

热焓:等压过程中,质量为m的物体从0K升高到T时所需的热量

热膨胀:物体的体积或长度随温度的变化而变化的现象称为热膨胀。

热传导:由于材料自身温度不均匀或不同温度的材料间互相接触,而发生的热量自高温区向低温区迁移与传播的现象。

一级相变:当系统发生相变时,化学势相等,而化学势的一级偏微商不相等,称为一级相变。

二级相变:当系统发生相变时,化学势相等,且化学势的一级偏微商也相等,而化学势的二级偏微商不相等称为二级相变。

Seeback(塞贝克)效应:在两种不同材料(导体或半导体)组成的回路中,当两个接触点处于不同温度时,回路中就有电流通过,产生这种电流的电动势称为热电势。

Peltier(珀耳帖)效应:当两种不同金属组成一回路并有电流在回路中通过时,将使两种金属的其中一接头处放热,另一接头处吸热(除了焦耳热外额外的热效应)

热容的物理意义

固体热容与晶格振动相关,反映了原子热振动能量改变时所需的热量。

一级相变和二级相变概念及它们在热学性质上的差异,对哪些属一级相变哪些属二级相变要清楚

热力学性质上的差异:一级相变时发生体积突变的同时还发生熵的突变、焓突变、热容无限大、相变潜热发生。二级相变在一个温度范围内逐步完成,热焓随温度的升高逐渐增大,即焓无突变,没有熵和体积的突变,热容在转变温度附近有剧烈变化,但值有限。

常见的一级相变:纯金属的三态变化、同素异构转变、共晶、包晶转变,固态的共析转变等;

常见的二级相变:有序—无序转变,铁磁—顺磁转变、超导转变等。

热膨胀的物理本质(双原子模型解释) 金属受热时体积膨胀与离子振动有关,温度升高,导致原子间距增大,产生膨胀,其根本原因在于原子热振动时原子间的作用力成非线性,形成的势能呈非对称性,由于势能曲线的非对称性导致原子中心右移,从而使原子间距增大,出现膨胀 影响热膨胀的因素

(一)、相变的影响

1、多晶型转变(同素异构):由于点阵结构重排,金属比容突变,导致膨胀系数不连续变化,具备一级相变的特征;

2、有序无序转变:二级相变,相变时体积无突变,但膨胀系数在相变温度区间有改变,从而在膨胀曲线上出现拐折。

3、磁性转变:居里点T θ处,随温度的升高,发生铁磁----顺磁转变,从而产生类似于磁致伸缩的逆效应,导致膨胀系数与温度的关系上,出现反常:Ni 、Co 的热膨胀峰向上,为正反常;Fe 热膨胀峰向下,为负反常。

(二)合金成分和组织的影响

1、固溶体:溶质元素及含量对热膨胀影响很大,绝大多数金属形成单相固溶体时,其膨胀系数介于组元的膨胀系数之间,溶剂中溶入低膨胀系数的溶质时,固溶体膨胀系数降低,反之升高。随溶质浓度的变化不满足加和性,成凹曲线。

2、多相合金:主要取决组成相的膨胀系数及其体积百分比。机械混合时,近似符合线性规律αalloy =α1 *V 1%+ α2 *V 2%。多相合金的热胀系数对各相大小、分布

及形状不敏感,主要取决于各相的性质与数量。

3、化合物:两元素形成化合物时,因原子间呈严格的规则排列,其元素间相互作用比固溶体原子间的作用大,故其膨胀系数较之固溶体,将较大幅度的下降。

(三)、晶体结构的影响

1、对称性(点阵类型):对立方、各向同性材料:对六方、正方晶系:

由于α11=α22≠α33

2、晶体缺陷:金属经(核)辐照或高温淬火后,在室温下可保留过饱和的点缺陷浓度,尤其是过饱和的空位浓度增大,使空位附近的原子间距增大,金属体积增大,膨胀系数上升。

(四)、钢的膨胀特性

钢的显微组织与热处理有关:常见的有M ,F+Fe 3C (构成P 、索氏体、屈氏体、B )、

A ,其密度依次增大;因此在淬火得到M 时,其体积增大;

l v αα3=

热导率与电导率的关系 在较高的温度下,金属热导率与电导率之比正比于温度,其比例常数不依赖于具体金属,满足Widemann —Franz 定律:

L 0为洛伦兹数,L 0=2.45×10-8 V 2/K 2(W Ω/K 2)当温度高于Debye 温度,且金属导

电率较高时。

在较低温度下,且金属导电率较低时,L 0为一变数,则对Widemann —Franz 定律

进行修正:

导温系数(热扩散率)的概念及物理意义

它标志温度变化的速度。在相同加热和冷却条件下α愈大,物体各处温差愈小。它的物理意义是与不稳定导热过程相联系的。不稳定导热过程是物体一方面有热量传导变化,同时又有温度变化,热扩散率正是把二者联系起来的物理量。 热分析及热膨胀分析的应用(重点是测定钢在加热或冷却过程中的组织转变及温度;研究淬火钢的回火等)

自己研究

第四讲

荧光:被激发到导带中的电子直接返回低能级的价带,并相应地释放出光子.当外界激发源去除,发光现象随即消失,这称为荧光。

磷光:在有微量杂质的材料中存在施主能级,被激发到导带中的电子先落入了施主能级并停留一段较长的时间,随后才返回低能级的价带中,这时也相应地释放出光子,这种发光能持续一段较长的时间,称为磷光。

电光效应:由于外加电场所引起的材料折射率的变化效应,称为电光效应。 光与固体发生相互作用时,有哪些现象?从微观上分析会出现什么结果? 透过介质、吸收、反射、散射

微观上分析得结果:

电子极化:电场分量与传播过程中的每一个原子发生作用,引起电子极化,其结T

L e 0/=σκT

L T T T ph ph e σκσκσκσκ+=+=0)/(

果是光的一部分能流被吸收,同时光的速度减小,导致折射产生。

电子能态转变:光子被吸收和发射,都可能涉及到固体材料中电子能态的转变。第一,原子中电子的能级是分立的,只有特定能量的光子才能被原子所吸收,导致电子的激发;第二,电子在激发状态保持一段时间之后,会衰变回到基态发射光子。

折射率及影响折射率的因素?

光在真空和在材料中的速度之比 , 称为材料的折射率 n

影响因素:

1)构成材料元素的离子半径:材料的折射率随介电常数增大而增大,大离子可以构成高折射率的材料 , 而小离子可以构成低折射率的材料

2)材料的结构、晶型

3)材料存在内应力:存在内应力的透明材料 , 垂直于受撞的主应力方向的 n 值大 ,平行于主应力方向的 n 值小。

4)同质异构体:在同质异构材料中 , 高温时的晶型折射率较低 ,低温时存在的晶型折射率较高。

5)入射光波长:大多数情况下,折射率随波长的增加而减小 , 这种性质称之为色散

光的透射率及公式

透射率,即透射光强度与入射光强度之比(R为反射系数,α为吸收系数,l为长度)

金属及非金属材料的基本光学性质

金属:金属的不透明性和高反射率表明α值和R值(0.9-0.95)很大。其原因是金属电子能带结构的特殊性。大部分被金属材料吸收的光又会从表面上以同样波长的光波发射出来,表现为反射光。反射过程效率与频率(波长)有关。

非金属:大多数非金属都对红外光线有一定程度的吸收,在可见光照射下,非金属材料是否具有颜色或透明取决于材料的能带结构(选择吸收与选择反射)以及光线在材料内部传播过程中的散射状况。

材料科学与工程基础300道选择题(答案)

第一组 材料的刚性越大,材料就越脆。F 按受力方式,材料的弹性模量分为三种类型,以下哪一种是错误的:D A. 正弹性模量(E) B. 切弹性模量(G) C. 体积弹性模量(G) D. 弯曲弹性模量(W) 滞弹性是无机固体和金属的与时间有关的弹性,它与下列哪个因素无关B A 温度; B 形状和大小; C 载荷频率 高弹性有机聚合物的弹性模量随温度的升高而A A. 上升; B. 降低; C. 不变。 金属材料的弹性模量随温度的升高而B A. 上升; B. 降低; C. 不变。 弹性模量和泊松比之间有一定的换算关系,以下换算关系中正确的是D A. K=E /[3(1+2)]; B. E=2G (1-); C. K=E /[3(1-)]; D. E=3K (1-2); E. E=2G (1-2)。 7.Viscoelasticity”的意义是B A 弹性;B粘弹性; C 粘性 8.均弹性摸量的表达式是A A、E=σ/ε B、G=τ/r C、K=σ。/(△V/V) 9.金属、无机非金属和高分子材料的弹性摸量一般在以下数量级范围内C GPa A.10-102、<10,10-102 B.<10、10-102、10-102 C.10-102、10-102、<10 10.体心立方晶胞的金属材料比面心立方晶胞的同类金属材料具有更高的摸量。T 11.虎克弹性体的力学特点是B A、小形变、不可回复 B、小形变、可回复 C、大形变、不可回复 D、大形变、可回复 13、金属晶体、离子晶体、共价晶体等材料的变形通常表现为,高分子材料则通常表现为和。A A 普弹行、高弹性、粘弹性 B 纯弹行、高弹性、粘弹性 C 普弹行、高弹性、滞弹性 14、泊松比为拉伸应力作用下,材料横向收缩应变与纵向伸长应变的比值υ=ey/ex F 第二组 1.对各向同性材料,以下哪一种应变不属于应变的三种基本类型C A. 简单拉伸; B. 简单剪切; C. 扭转; D. 均匀压缩 2.对各向同性材料,以下哪三种应变属于应变的基本类型ABD A. 简单拉伸; B. 简单剪切; C. 弯曲; D. 均匀压缩 3.“Tension”的意义是A A 拉伸; B 剪切; C 压缩 4.“Compress”的意义是C A 拉伸;B剪切; C 压缩 5.陶瓷、多数玻璃和结晶态聚合物的应力-应变曲线一般表现为纯弹性行为T 6.Stress”and “strain”的意义分别是A A 应力和应变;B应变和应力;C应力和变形

《材料科学基础》复习提纲剖析

《材料科学基础》复习提纲 一、(共20分)名词解释(每个名词2分) 简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系 底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生 二、(共30分)简要回答下列问题 1、计算面心立方晶体的八面体间隙尺寸。 2、简述固溶体与中间相的区别。 3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。 4、计算面心立方晶体{111}晶面的面密度。 5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错攀移的实质。 7、简述在外力的作用下,螺型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述单组元晶体材料凝固的一般过程。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。 1、计算体心立方晶体的八面体间隙尺寸。 2、简述决定组元形成固溶体与中间相的因素。 3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。· 4、计算体心立方晶体{110}晶面的面密度。 5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错滑移的实质。 7、简述在外力的作用下,刃型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述纯金属凝固的基本条件。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合 金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为 %、(A+B)%和(A+B+C)%的相对量。 50% A、10%B、40%C,试计算A 初

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案 第七章回复再结晶,还有相图的内容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/ 原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

823材料科学基础考试大纲

823 材料科学基础考试大纲 一、考试目的 材料科学基础考试是南开大学材料科学与工程学院招收材料物理与化学、材料学、材料工程硕士研究生的入学资格考试之专业基础课。根据考生参加本考试的成绩和其他三门考试的成绩总分来选择参加第二轮,即复试的考生。 二、考试的性质与范围 本考试是测试考生掌握材料化学、材料物理专业知识以及综合运用的能力。考试范围包括本大纲规定的内容。 三、考试基本要求 1. 具备材料化学、材料物理相关的基础专业知识。 2. 具有扎实的基本功。 3. 具备一定的运用基础知识分析、解决实际问题的能力。 四、考试形式 本考试采取客观试题与主观试题相结合,单项技能测试与综合技能测试相结合的方法,强调考生掌握材料化学基础知识以及综合运用的能力。 考试时间为180分钟,答题方式为闭卷考试(可以使用数学计算器)。 五、考试内容 本考试包括两个部分:材料化学、材料物理。

一、材料化学部分 1、化学热力学 热力学第一、二、三定律及其应用;各种变化过程(单纯pVT变化过程、相变化过程和化学变化过程)的方向和限度的判别;相平衡体系和化学平衡体系中的应用;二组分体系相图的绘制及解析。 2、化学动力学 具有简单级数的反应的特点;反应级数及速率方程的确定;各种因素对反应速率及速率常数的影响;复合反应的近似处理方法及其应用;根据反应机理推导速率方程;化学动力学基本原理在气相反应、多相反应、溶液中反应、催化反应和光化学反应体系中的应用。 3、电化学 电解质溶液的导电能力—电导、电导率、摩尔电导率及其应用;可逆电池、可逆电极的能斯特公式及其应用;可逆电池的热力学;电池电动势的测定及其应用;极化与超电势及其应用;分解与分解电压;金属电沉积;不可逆电极过程的基本原理及其应用。 4、界面化学 表面自由能和表面张力;润湿现象与接触角;毛细管现象;新相的生成和亚稳定状态;固体表面的吸附及非均相催化反应。 5、无机化学中的化学原理 (1)掌握化学反应中的质量和能量关系; (2)了解酸碱理论,熟悉溶液中的单相与多相离子平衡,掌握弱酸、弱碱溶液中离子浓度、盐类水解和沉淀平衡的计算;

《材料科学基础》期末考试试卷及参考答案,2019年6月

第1页(共11页) ########2018-2019学年第二学期 ########专业####级《材料科学基础》期末考试试卷 (后附参考答案及评分标准) 考试时间:120分钟 考试日期:2019年6月 题 号 一 二 三 四 五 六 总 分 得 分 评卷人 复查人 一、单项选择题(请将正确答案填入表中相应题号处,本题13小题,每小题2分,共26分) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 答案 1. 在形核-生长机制的液-固相变过程中,其形核过程有非均匀形核和均匀形核之分,其形核势垒有如下关系( )。 A. 非均匀形核势垒 ≤ 均匀形核势垒 B. 非均匀形核势垒 ≥ 均匀形核势垒 C. 非均匀形核势垒 = 均匀形核势垒 D. 视具体情况而定,以上都有可能 2. 按热力学方法分类,相变可以分为一级相变和二级相变,一级相变是在相变时两相自由焓相等,其一阶偏导数不相等,因此一级相变( )。 A. 有相变潜热改变,无体积改变 B. 有相变潜热改变,并伴随有体积改变 C. 无相变潜热改变,但伴随有体积改变 D. 无相变潜热改变,无体积改变 得分 专业 年级 姓名 学号 装订线

3. 以下不是材料变形的是()。 A. 弹性变形 B. 塑性变形 C. 粘性变形 D. 刚性变形 4. 在固溶度限度以内,固溶体是几相?() A. 2 B. 3 C. 1 D. 4 5. 下列不属于点缺陷的主要类型是()。 A. 肖特基缺陷 B. 弗伦克尔缺陷 C. 螺位错 D. 色心 6. 由熔融态向玻璃态转变的过程是()的过程。 A. 可逆与突变 B. 不可逆与渐变 C. 可逆与渐变 D. 不可逆与突变 7. 下列说法错误的是()。 A. 晶界上原子与晶体内部的原子是不同的 B. 晶界上原子的堆积较晶体内部疏松 C. 晶界是原子、空位快速扩散的主要通道 D. 晶界易受腐蚀 8. 表面微裂纹是由于晶体缺陷或外力作用而产生,微裂纹同样会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要,微裂纹长度,断裂强度。() A. 越长;越低 B. 越长;越高 C. 越短;越低 D. 越长;不变 9. 下列说法正确的是()。 A. 再结晶期间,位错密度下降导致硬度上升 B. 再结晶期间,位错密度下降导致硬度下降 C. 再结晶期间,位错密度上升导致硬度上升 D. 再结晶期间,位错密度上升导致硬度下降 10. 下列材料中最难形成非晶态结构的是()。 A. 陶瓷 B. 金属 C. 玻璃 D. 聚合物 第2页(共11页)

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案 第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。 2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。 2-3.试计算N壳层内的最大电子数。若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。 2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。 2-6.按照杂化轨道理论,说明下列的键合形式: (1)CO2的分子键合(2)甲烷CH4的分子键合 (3)乙烯C2H4的分子键合(4)水H2O的分子键合 (5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象? 2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少? 2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比? 2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子? 2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?

材料科学基础考试大纲

2018年硕士研究生招生考试大纲 考试科目名称:材料科学基础考试科目代码:875 一、考试要求 材料科学基础考试大纲适用于北京工业大学材料科学与工程学院(0805)材料科学与工程和(085204)材料工程(专业学位);激光工程研究院(0803)光学工程与(085202)光学工程(专业学位);以及固体微结构与性能研究所(0805)材料科学与工程学科的硕士研究生入学考试。此课程是材料科学与工程学科的重要基础理论课,是理解并学习各种材料其结构、加工工艺与性能之间联系的基础。材料科学基础的考试内容主要包括各类材料共性基础知识部分(原子结构与结合键、晶体结构、晶体缺陷、相图与相平衡、材料的凝固)、金属材料基础知识部分(金属晶体中位错、表面与界面、塑性变形与再结晶、金属晶体中扩散、固态相变、金属材料强韧化)和无机材料基础知识部分(无机材料化学键结构与晶体结构、无机材料的缺陷、无机材料的相图与相变过程、无机材料的基本制造加工原理、无机材料的机械性能、无机材料的光学和电学性能),要求考生对其中的基本概念和基础理论有深入的理解,系统掌握各类基本概念、理论及其计算和分析的方法,具有综合运用所学知识分析和解决材料科学与工程实际问题的能力。 二、考试内容 考试内容分为材料共性知识、金属材料基础知识和无机材料基础知识三大部分,总分150分。其中,材料共性知识部分所有学生均需作答,共105分;金属材料基础知识部分和无机材料基础知识部分考生需根据自己的专业背景二选一作答,不能混做,共45分。题型一般包括名词解释、填空、判断正误、问答、计算、分析题等。 (一)材料共性知识部分 1.原子结构与结合键 (1)熟练掌握电离能、电子亲和能、电负性、金属间化合物、电子化合物等概念,熟练掌握原子核外电子排布,理解光的波粒二象性、测不准原理、泡利不相容原理、洪特规则、能量最低原理、电子能带结构理论;

材料科学基础考研经典题目doc资料

材料科学基础考研经 典题目

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18.为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19.在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样 条件下,单相固溶体合金凝固的形貌又如何?分析原因

材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

材料科学基础期末考试

《材料科学基础》考试试卷(第一套) 课程号 6706601060 考试时间 120 分钟 一、 名词解释(简短解释,每题2分,共20分) 空间点阵 线缺陷 吸附 渗碳体组织 适用专业年级(方向): 材 料 科 学 与 工 程 专 业 2006 级 考试方式及要求: 闭 卷 考 试

固态相变 稳态扩散 形核率 调幅分解 霍尔-配奇方程 平衡凝固 二、选择题(只有一个正确答案,每题1分,共10分)

1、弯曲表面的附加压力△P 总是( ) 曲面的曲率中心。 A.指向 B.背向 C.平行 D.垂直 2、润湿的过程是体系吉布斯自由能( )的过程。 A.升高 B.降低 C.不变 D.变化无规律 3、一级相变的特点是,相变发生时,两平衡相的( )相等,但其一阶偏微分不相等。 A.熵 B.体积 C.化学势 D.热容 4、固溶体合金的凝固是在变温下完成的,形成于一定温度区间,所以在平衡凝固条件下所得到的固溶体晶粒( ) A.成分内外不均匀 B.不同温度下形成的各晶粒成分是不同的 C.晶粒内外,晶粒形成不分先后,同母液成分是一致的 5、强化金属材料的各种手段,考虑的出发点都在于( ) A.制造无缺陷的晶体或设置位错运动的障碍 B.使位错增殖 C.使位错适当的减少 6、既能提高金属的强度,又能降低其脆性的手段是( ) A.加工硬化 B. 固溶强化 C. 晶粒细化 7、根据显微观察,固液界面有两种形式,即粗糙界面与光滑界面,区分两种界面的依据是值大小( ) A. α<=2为光滑界面 B. α>=1为光滑界面 C. α>=5为光滑界面 8、渗碳处理常常在钢的奥氏体区域进行,这是因为( ) A. 碳在奥氏体中的扩散系数比在铁素体中大 B. 碳在奥氏体中的浓度梯度比在铁素体中大 C. 碳在奥氏体中的扩散激活能比在铁素体中小 9、界面能最低的相界面是( ) A. 共格界面 B. 孪晶界 C. 小角度晶界 10、铁碳合金组织中的三次渗碳体来自于( )

《材料科学与工程基础》.

《材料科学与工程基础》 课程讲授要点 3-5 复合材料组成与结构(45分钟,1学时) 3-5-1 复合材料的定义及分类 定义:组成、结构、制备、性能四方面特征 分类:重点介绍现代复合材料体系 3-5-2 复合材料的组成及特性 组成:基体、增强体(或功能体)、界面相 PMC、MMC、CMC、C/C及无机胶凝复合材料的基本组成 特性:一般特性和性能特点 3-5-3 复合材料的结构 常见结构、典型结构、“连通性”概念 3-5-4 复合材料的界面 界面的形成过程:三个阶段、界面的相互置换 界面结构及性能特点:相当体积分数的界面相、“梯度”性能、界面缺陷、残余应力界面相的功用:力的传递、力的分配、破坏过程中应力的再分配组合力学性能和复合 效应产生的根源所在。 界面破坏机制:5种基本破坏形式、组合破坏机制 界面理论:5种基本界面理论、界面设计与控制的概念 界面处理:玻纤、碳纤、有机纤维的一般表面处理方法、偶联剂处理的作用机理 4-1 复合材料的性能(90分钟、2学时) 4-7-1 复合材料性质的复合效应 1. 复合材料各组元(相)不同功用:基体、增强体、功能体、界面相 2. 复合效应 混合效应(组分效应):适合于材料固有性质,对材料界面、缺陷、结构局部挠动 等不敏感,表现为各种形式的混合律。 混合律公式:材料性能取决于材料组成(体积分数或重量 分数) 协同效应:包括界面效应、尺寸效应、量子尺寸效应、乘积效应、系统效应、混杂效应、诱导效应等。适合于材料的传递性质(力、声、光、电、磁)不 仅取决于材料的组成,更取决于材料的结构、界面性质、缺陷局部挠动、 工艺因素等,复合材料的本质特征

上海大学2018年硕士《材料科学基础》考试大纲

上海大学2018年硕士《材料科学基础》考试大纲复习要求: 要求考生掌握金属材料的结构、组织、性能方面的基本概念、基本原理;理解金属材料的结构、组织、性能之间的相互关系和基本变化规律。 二、主要复习内容: (一)晶体学基础 理解晶体与非晶体、晶体结构与空间点阵的差异;掌握晶面指数和晶向指数的标注方法和画法;掌握立方晶系晶面与晶向平行或垂直的判断;掌握立方晶系晶面族和晶向族的展开;掌握面心立方、体心立方、密排六方晶胞中原子数、配位数、紧密系数的计算方法;掌握面心立方和密排六方的堆垛方式的描述及其它们之间的差异。 重点:晶体中原子结构的空间概念及其解析描述(晶面和晶向指数)。 (二)固体材料的结构 掌握波尔理论和波动力学理论对原子核外电子的运动轨道的描述。掌握波粒两相性的基本方程。掌握离子键、共价键、金属键、分子键和氢键的结构差异。了解结合键与电子分布的关系和键合作用力的来源。掌握影响相结构的因素。了解不同固溶体的结构差异。 重点:一些重要类型固体材料的结构特点及其与性能的关系。 (三)晶体中的缺陷 掌握缺陷的类型;掌握点缺陷存在的必然性;掌握点缺陷对晶体性能的影响及其应用。理解位错的几何结构特点;掌握柏矢量的求法;掌握用位错的应变能进行位错运动趋势分析的方法。掌握位错与溶质原子的交互作用,掌握位错与位错的交互作用。掌握位错的运动形式。掌握位错反应的判断;了解弗兰克不全位错和肖克莱不全位错的形成。 重点:位错的基本概念和基本性质。 (四)固态中的扩散 理解固体中的扩散现象及其与原子运动的关系,掌握扩散第一定律和第二定律适用的场合及其对相应的扩散过程进行分析的方法。掌握几种重要的扩散机制适用的对象,了解柯肯达尔效应的意义。掌握温度和晶体结构对扩散的影响。 重点:扩散的基本知识及其在材料科学中的应用 (五)相图 掌握相律的描述和计算,及其对相平衡的解释;掌握二元合金中匀晶、共晶、包晶、共析、二次相析出等转变的图形、反应式;掌握二元典型合金的平衡结晶过程分析、冷却曲线;掌握二元合金中匀晶、共晶、共析、二次相析出的平衡相和平衡组织名称、相对量的计算;掌握铁-渗碳体相图及其典型合金的平衡冷却曲线分析、反应式、平衡相计算、平衡组织计算、组织示意图绘制;掌握简单三元合金的相平衡分析、冷却曲线分析、截面图分析;定性的掌握单相固溶体自由能的求解方法,掌握单相固溶体自由能表达式,掌握固溶体的自由能-成分曲线形式,掌握混合相自由能表达式,了解相平衡条件表达式,掌握相平衡的公切线法则。

材料科学基础考研经典题目教学内容

16.简述金属固态扩散的条件。 答:⑴扩散要有驱动力——热力学条件,化学势梯度、温度、应力、电场等。 ⑵扩散原子与基体有固溶性——前提条件;⑶足够高温度——动力学条件;⑷足够长的时间——宏观迁移的动力学条件 17. 何为成分过冷?它对固溶体合金凝固时的生长形貌有何影响? 答:成分过冷:在合金的凝固过程中,虽然实际温度分布一定,但由于液相中溶质分布发生了变化,改变了液相的凝固点,此时过冷由成分变化与实际温度分布这两个因素共同决定,这种过冷称为成分过冷。成分过冷区的形成在液固界面前沿产生了类似负温度梯度的区域,使液固界面变得不稳定。当成分过冷区较窄时,液固界面的不稳定程度较小,界面上偶然突出部分只能稍微超前生长,使固溶体的生长形态为不规则胞状、伸长胞状或规则胞状;当成分过冷区较宽时,液固界面的不稳定程度较大,界面上偶然突出部分较快超前生长,使固溶体的生长形态为胞状树枝或树枝状。所以成分过冷是造成固溶体合金在非平衡凝固时按胞状或树枝状生长的主要原因。 18. 为什么间隙固溶体只能是有限固溶体,而置换固溶体可能是无限固溶体? 答:这是因为当溶质原子溶入溶剂后,会使溶剂产生点阵畸变,引起点阵畸变能增加,体系能量升高。间隙固溶体中,溶质原子位于点阵的间隙中,产生的点阵畸变大,体系能量升高得多;随着溶质溶入量的增加,体系能量升高到一定程度后,溶剂点阵就会变得不稳定,于是溶质原子便不能再继续溶解,所以间隙固溶体只能是有限固溶体。而置换固溶体中,溶质原子位于溶剂点阵的阵点上,产生的点阵畸变较小;溶质和溶剂原子尺寸差别越小,点阵畸变越小,固溶度就越大;如果溶质与溶剂原子尺寸接近,同时晶体结构相同,电子浓度和电负性都有利的情况下,就有可能形成无限固溶体。 19. 在液固相界面前沿液体处于正温度梯度条件下,纯金属凝固时界面形貌如何?同样条件下,单相 固溶体合金凝固的形貌又如何?分析原因 答:正的温度梯度指的是随着离开液—固界面的距离Z 的增大,液相温度T 随之升高的情况,即0>dZ dT 。在这种条件下,纯金属晶体的生长以接近平面状向前推移,这是由于温度梯度是正的,当界面上偶尔有凸起部分而伸入温度较高的液体中时,它的生长速度就会减慢甚至停止,周围部分的过冷度较凸起部分大,从而赶上来,使凸起部分消失,这种过程使液—固界面保持稳定的平面形状。固溶体合金凝固时会产生成分过冷,在液体处于正的温度梯度下,相界面前沿的成分过冷区呈现月牙形,其大小与很多因素有关。此时,成分过冷区的特性与纯金属在负的温度梯度下的热过冷非常相似。可以按液固相界面前沿过冷区的大小分三种情况讨论:⑴当无成分过冷区或成分过冷区较小时,界面不可能出现较大的凸起,此时平界面是稳定的,合金以平面状生长,形成平面晶。⑵当成分过冷区稍大时,这时界面上凸起的尖部将获得一定的过冷度,从而促进了凸起进一步向液体深处生长,考虑到界面的力学平衡关系,平界面变得不稳定,合金以胞状生长,形成胞状晶或胞状组织。⑶当成分过冷区较大时,平界面变得更加不稳定,界面上的凸起将以较快速度向液体深处生长,形成一次轴,同时在一次轴的侧向形成二次轴,以此类推,因此合金以树枝状生长,最终形成树枝晶。 20. 纯金属晶体中主要的点缺陷类型是什么?试述它们可能产生的途径? 答:纯金属晶体中,点缺陷的主要类型是空位、间隙原子、空位对及空位与间隙原子对等。产生的途径:⑴依靠热振动使原子脱离正常点阵位置而产生。空位、间隙原子或空位与间隙原子对都可由热激活而形成。这种缺陷受热的控制,它的浓度依赖于温度,随温度升高,其平衡态的浓度亦增高。⑵冷加工时由于位错间有交互作用。在适当条件下,位错交互作用的结果能产生点缺陷,如带割阶的位错运动会放出空位。⑶辐照。高能粒子(中子、α粒子、高速电子)轰击金属晶体时,点阵中的原子由于粒子轰击而离开原来位置,产生空位或间隙原子。 21. 简述一次再结晶与二次再结晶的驱动力,并如何区分冷热加工?动态再结晶与静态再结晶后的组 织结构的主要区别是什么? 答:一次再结晶的驱动力是基体的弹性畸变能,而二次再结晶的驱动力是来自界面能的降低。再结晶温

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料 1、名词解释 (1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 (2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称 为共晶转变。 (3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。即HJB---包晶转变线,LB+δH→rJ (4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。 (5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析 (6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。 (7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。 (9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。 (10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线 通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。 (11)加工硬化:随着冷变形程度的增加,金属材料强度和硬 度指标都有所提高,但塑性、韧性有所下降。 (12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。 (13)能量起伏:能量起伏是指体系中每个微小体积所实际具 有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 (14)垂直长大:对于粗糙界面,由于界面上约有一半的原子 位置空着,故液相的原子可以进入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种长大方式为垂直生长。 (15)滑移临界分切应力:晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移

材料科学工程基础总结

材料科学工程基础总结 材料科学工程基础总结 1、材料科学与工程的四个基本要素:答:1)、使用性能是材料在使用状态下表现出的行为, 是材料研究的出发点和目标,主要决定于材料的力学、物理和化学等性质;2)、材料的 性质是材料对热、光、机械载荷等的反应,主要决定于材料的组成与结构;3)、化学成分和4)组织结构是影响其性质的直接因素;通过合成制备过程,可改变材料的组织结构而影响其性质; 2、材料科学与工程定义:答:关于材料组成、结构、制备工艺与其性能及使用过程间相互 关系的知识开发及应用的科学。3、按材料特性?材料分为哪几类?答:金属材料、无机非金属材料、高分子材料、半导 体材料。4、金属通常分哪两大类?答:黑色金属材料和有色金属材料。 5、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。答:简单金属完 全为金属键,过渡族金属为金属键和共价键的混合,但以金属键为主;陶瓷材料是由一种或多种金属同非金属(通常为氧)相结合的化合物,其主要为离子键,也有一定成分的共价键;高分子材料,大分子内的原子之间结合为共价键,而大分子与大分子之间的结合为物理键。复合材料是由二种或二种以上的材料组合而成的物质,因而其结合链非常复杂,不能一概而论。

6、在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上 到下元素结构有什么区别?性质如何递变?答:同一周期元素具有相同原子核外电子层数,从左到右,核电荷增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电 子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,从上向下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增强,非金属性降低。 7、原子中一个电子的空间位置和能量可用哪四个量子数来决定?答:主量子数n、轨道角 动量量子数li、磁量子数mi和自旋角动量量子数Si。 8、影响配位数的因素。答:共价键数,与结合键类型有关,影响材料的密度。原子的有效 堆积(离子和金属键合)异种离子接近放出能量,不引起离子间的强相互推斥力下,近邻异号离子尽可能多,离子晶体结构更稳定。离子化合物配位数较高,常为6。正、负离子的配位数主要取决于正、负离子的半径比,只有当正、负离子相互接触时,离子晶体的结构才稳定。配位数一定时,正、负离子的半径比有个下限值。 9、比较键能大小和各种结合键的主要特点。答:化学键能>物理键能,共价键能≥离子 键能>金属键能>氢键能>范氏键能;共价键中:叁键键能>双键键能>单键键能。特点:金属键,由金属正离子和自由电子,靠库仑引力结合,电子的共有化,无

材料科学基础精彩试题库(内附部分自己整理问题详解)

《材料科学基础》试题库 一、选择 1、在柯肯达尔效应中,标记漂移主要原因是扩散偶中 __C___。 A、两组元的原子尺寸不同 B、仅一组元的扩散 C、两组元的扩散速率不同 2、在二元系合金相图中,计算两相相对量的杠杆法则只能用于 __B___。 A、单相区中 B、两相区中 C、三相平平线上 3、铸铁与碳钢的区别在于有无 _A____。 A、莱氏体 B、珠光体 C、铁素体 4、原子扩散的驱动力是 _B____。 A、组元的浓度梯度 B、组元的化学势梯度 C、温度梯度 5、在置换型固溶体中,原子扩散的方式一般为 __C___。 A、原子互换机制 B、间隙机制 C、空位机制 6、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为 _B____。 A、肖脱基缺陷 B、弗兰克尔缺陷 C、线缺陷 7、理想密排六方结构金属的c/a为 __A___。 A、1.6 B、2×√(2/3) C、√(2/3) 8、在三元系相图中,三相区的等温截面都是一个连接的三角形,其顶点触及 __A___。 A、单相区 B、两相区 C、三相区 9、有效分配系数Ke表示液相的混合程度,其值围是 _____。(其中Ko是平衡分配系数) A、1

北京工业大学2017年《材料科学基础》硕士考试大纲_北京工业大学考研大纲

北京工业大学2017年《材料科学基础》硕士考试大纲一、考试要求 材料科学基础考试大纲适用于北京工业大学材料科学与工程学院(0805)材 料科学与工程和(085204)材料工程(专业学位);激光工程研究院(0803)光 学工程与(085202)光学工程(专业学位);以及固体微结构与性能研究所(0805) 材料科学与工程学科的硕士研究生入学考试。此课程是材料科学与工程学科的重 要基础理论课,是理解并学习各种材料其结构、加工工艺与性能之间联系的基础。 材料科学基础的考试内容主要包括各类材料共性基础知识部分(原子结构与结合 键、晶体结构、晶体缺陷、相图与相平衡、材料的凝固)、金属材料基础知识部 分(金属晶体中位错、表面与界面、塑性变形与再结晶、金属晶体中扩散、固态 相变、金属材料强韧化)和无机材料基础知识部分(无机材料化学键结构与晶体 结构、无机材料的缺陷、无机材料的相图与相变过程、无机材料的基本制造加工 原理、无机材料的机械性能、无机材料的光学和电学性能),要求考生对其中的 基本概念和基础理论有深入的理解,系统掌握各类基本概念、理论及其计算和分 析的方法,具有综合运用所学知识分析和解决材料科学与工程实际问题的能力。 二、考试内容 考试内容分为材料共性知识、金属材料基础知识和无机材料基础知识三大部 分,总分150分。其中,材料共性知识部分所有学生均需作答,共105分;金属 材料基础知识部分和无机材料基础知识部分考生需根据自己的专业背景二选一 作答,不能混做,共45分。题型一般包括名词解释、填空、判断正误、问答、 计算、分析题等。 (一)材料共性知识部分 1.原子结构与结合键 (1)熟练掌握电离能、电子亲和能、电负性、金属间化合物、电子化合物等 概念,熟练掌握原子核外电子排布,理解光的波粒二象性、测不准原理、泡利不 相容原理、洪特规则、能量最低原理、电子能带结构理论; (2)熟练掌握各种结合键的概念、特点、代表材料,通过结合键及原子间作 用力和键能分析材料的物理化学性质。 2.晶体结构 (1)掌握空间点阵、晶胞、空间群等晶体学基本概念,三大晶族与七大晶系 分类,理解晶体的宏观对称性; (2)熟练掌握简单立方、体心立方、面心立方、密排六方等结构的堆积方式、 配位数、致密度、晶胞原子数、点阵常数与原子半径之间的关系,熟练掌握各种 结构中晶向指数和晶面指数的表征,晶向族、晶面族的确定,晶面间距的计算, 晶带定律的应用。 3.晶体缺陷 (1)熟练掌握晶体缺陷的分类,点缺陷的平衡浓度计算,固溶体的分类、概 念、特点、形成条件及影响因素,缺陷反应方程计算; (2)熟练掌握各类位错的定义及相关的基本概念,如滑移、滑移面、滑移方 向、滑移系、临界分切应力、全位错、不全位错、位错密度等;掌握刃位错、螺 位错的特点及其柏氏矢量的概念、确定与表征方法,掌握发生位错反应的条件及 其产物;

材料科学基础经典复习题与答案

第七章回复再结晶,还有相图的容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][ ][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体移动, 而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。 11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。 1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD 平行于晶体的上、下底面。晶体中有一条位错线de fed ,段在滑移面上并平行AB ,ef 段与滑

相关文档
最新文档