多源图像融合关键技术及应用研究

多源图像融合关键技术及应用研究
多源图像融合关键技术及应用研究

多源图像融合关键技术及应用研究

摘要:人类生存环境的日趋复杂,使得无论性能多么优越的单一传感器都无法获得对目标精确全面的描述,多源图像融合是指根据各波段传感器获得信息的互补性和冗余性,综合多个传感器的信息,获取对同一目标或场景全面而详尽的表述,从而得出更为准确、可靠的结论。本文首先分析了多源图像融合主要研究内容,进而探讨了发展现状和存在的问题,在此基础上,笔者总结了图像融合中常用的传感器和应用方向,相信对从事相关研究的同行能有所裨益。

关键词:多源图像融合传感器冗余

1 引言

近30年来,由于计算机技术的发展和传感器性能的提高,面向各种重要应用的多传感器系统大量涌现,多源图像融合技术受到人们越来越广泛的关注。所谓多源图像融合就是指根据各波段传感器获得信息的互补性和冗余性,综合多个传感器的信息,获取对同一目标或场景全面而详尽的表述,从而得出更为准确、可靠的结论。图像融合的方式可以分为多传感器不同时获取的图像的融合、多传感器同时获取的图像的融合和单一传感器不同时间、或者不同环境条件下获取的图像的融合三种。图像融合能充分利用这些时间或空间上冗余或互补的图像信息,依据一定的融合算法合成一幅满足某种需要的新图像,从而获得对场景的进一步分析、理解以及目标的检测、识别或跟踪。

基于多尺度变换的多源图像融合技术研究

基于多尺度变换的多源图像融合技术研究 多源图像融合是指综合两个或者多个源图像信息,获得对同一场景更为准确、更为全面和更为可靠描述的图像。目前,由于多尺度变换具有良好的时频域局部特性,因此它被广泛的应用于图像融合领域,当源图像采用多尺度变换进行分解后,所得到的分解系数会处于不同的尺度上,因此可以更有针对性的选择融合准则,实现系数最优化的融合,从而最终改善融合图像的质量。 在基于多尺度变换的图像融合算法中,比较成熟和应用较为广泛的当属基于拉普拉斯金字塔的图像融合算法和基于小波变换的图像融合算法。但这两种方法都有其局限性,在基于拉普拉金字塔的图像融合算法中,源图像经拉普拉斯金字 塔分解后不仅会产生大量的冗余信息,致使融合过程中数据量增大,而且分解后 产生的信息不具备方向性,在基于小波变换的图像融合算法中,虽然小波分解后 不会造成数据量增大,且有一定的方向性,从而在一定程度上弥补了拉普拉斯金 字塔分解的不足,但小波分解只能对低频信号进行,不能对高频信号进行,同时分解后如何选择一个具有优良特性的融合准则也是一个问题,最重要的是,由于小 波基不具备各向异性,因此往往不能实现对图像最为稀疏的表达,这些都会对最 终的融合图像质量产生不利影响。 因此,针对这些问题,本论文开展了以下几方面工作:(1)针对小波变换只能 对低频信号进行分解,不能对高频信号进行分解这一局限性,选用既能对低频信 号进行分解,又能对高频信号进行分解的小波包变换来对源图像进行分解和重构,并对融合准则进行了改进以实现红外图像与可见光图像融合。(2)针对融合准则的问题,特别介绍了脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN),并将PCNN进行了有效的改进使之作为融合准则使用;同时为了解决小波变换过

多源信息融合软件的设计与实现精编WORD版

多源信息融合软件的设计与实现精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

多源信息融合软件的设计与实现 摘要:针对多源信息类型不一致影响信息利用效率的问题,文章在分析传统多源数据融合模型的基础上,研究了多源信息融合软件的架构及相关技术,设计并开发的软件具有较高的实用价值。 关键词:多源信息;信息融合;软件开发 多源信息融合是通过将多种信源在空间上和时间上的互补与冗余信息依据某种优化准则组合起来,产生对特点对象的一致性解释与描述。数据融合技术是指利用计算机对获得的信息,在一定准则下加以自动分析、综合,以完成所需决策和评估任务而进行的信息处理技术。主要包括对各类信息源给出有用信息的采集、传输、综合、过滤、相关及合成,以便辅助人们进行态势/环境判定、规划、探测、验证。 数据格式统一是进行数据处理的前提。由于信息的来源多,数据格式类别差异较大,对于数据处理带来不便。多源信息融合软件能够实现多源异构数据信息整合,对于充分利用信息资源、提高数据处理系统性能具有实用价值。 1 多源数据融合模型 根据对输入信息的抽象或融合输出结果的不同,可以将信息融合分为不同的3级,包括数据级融合、特征级融合及决策级融合。 作为数据级的多源数据融合模型的结构如图1所示。多源数据经过数据清理、数据集成、数据变换,形成有效数据,通过数据处理形成数据挖掘分析等处理工作的有效数据。

数据清理是指去除源数据集中的噪声数据和无关数据,处理遗留数据和清洗脏数据,去除数据域的知识背景上的白噪声,考虑时间顺序和数据变化等。主要包括处理噪声数据,处理空值,纠正不一致数据等。 数据集成就是将多文件或多数据库运行环境中的异构数据进行合并处理,将多个数据源中的数据结合起来存放在一个一致的数据存储中。 数据变换就是将数据变换成统一的适合处理的形式。数据变换主要包括平滑、聚集、属性构造、数据泛化和规范化等内容。 2 多源信息融合软件设计 2.1 软件架构 多源信息融合软件的技术要求是实现多源异构数据向指定关系数据库进行可靠转换。就是按照指定关系数据库的表结构要求,实现多源异构数据的数据导入及格式转换问题。软件的组成框图如图2所示。软件主要包括2个主要模块,多源数据预处理模块和数据导入模块。数据预处理模块主要进行数据清理及格式转换,实现常用的数据(txt、xls、关系数据库等数据)转换为目标数据库支持的数据格式。数据导入实现指定类型数据转换为指定结构数据。 2.2 关键技术 为了保证多源信息软件的可靠运行,需解决数据类型的适应性和扩展性问题,以及数据转换的可靠性、可预制性、数据转换过程的可监督性问题。 2.2.1 基于模块化设计的类型转换

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

浅谈多源遥感影像融合在图像分类中的应用

浅谈多源遥感影像融合在图像分类中的应用 武汉大学遥感信息工程学院201130259XXXX XX 【摘要】笔者结合SPOT影像与TM影像数据融合这一常用方法,简要阐述了多源遥感影像融合技术出现的现实要求、基本原理和主要步骤,从而体现了増维问题在遥感图像分类中的应用。 【关键词】多源遥感影像融合増维图像分类 1、技术背景 现代遥感技术正在向高光谱分辨率、高空间分辨率和高时间分辨率方向发展, 新型卫星传感器不断涌现, 已从单一传感器发展到多传感器, 在同一地区形成多级分辨率的影像金字塔。在遥感图像分类中,为了达到更好的效果,有时需要增加辅助数据即增加维度,其中常用的一种方法是将SPOT影像与TM影像进行数据融合,将SPOT的较高空间分辨率与TM的较高光谱分辨率等优势综合起来,弥补单一图像上信息的不足,不仅扩大了各自信息的应用范围,而且大大提高了遥感影像分类的精度。 2、技术流程 2.1 多源遥感数据的预处理 由于太阳位置、角度条件、大气条件等因素的影响,遥感图像常表现为一定程度的失真和畸变,因此在多源遥感数据融合之前必须进行预处理。 首先应该选取适当的波段,对于TM影像,通常选用5、4、3(短波红外、近红外、红色)波段合成,这样有利于植被分类和水体判别。SPOT图像具有多光谱和全色两种模式,为了能跟TM图像的光谱特征更接近,通常采用多光谱的三个波段作为信息源。同时为避免不同时段地物的差异,TM和SPOT图像应采用近似同一时段的数据。 遥感图像有一定的几何误差,这就需要进行几何纠正。对于TM数据,纠正方法大致包括按影像获取时的姿态参数和投影系统参数按地图投影参数的变换纠正(粗纠正)和以影像和地形图选择若干同名点对,通过求解多项逼近式纠正参数(精纠正)两种。对于SPOT影像,可以从其磁带“头”文件中读出星历参数和姿态角变化率,进而计算影像中心行的外方位元素近似值,然后结合6个以上控制点采用间接校正法对原始图像进行几何和灰度重采样。 由于多源影像数据的几何、光谱、分辨率等特性有所不同,为了将多源信息有效融合,提取更多信息,必须进行有效的配准。比如对10m分辨率SPOT影像与30m分辨率的TM影像之间融合,就需要将TM数据放大至与SPOT单色波段空间分辨率一致,再分别寻找两幅图中的同名控制点,以SPOT影像为参考图,将TM影像对应到SPOT 影像上。 此外,多源遥感数据的预处理还包括辐射校正、去噪、边缘提取等。

浅谈多源图像融合方法研究

浅谈多源图像融合方法研究 图像融合已成为图像理解和计算机视觉领域中的一项重要而有用的新技术,多源遥感图像数据融合更是成为遥感领域的研究热点,其目的是将来自多信息源的图像数据加以智能化合成,产生比单一传感器数据更精确、更可靠的描述和判决,使融合图像更符合人和机器的视觉特性,更有利于诸如目标检测与识别等进一步的图像理解与分析。遥感图像融合的目的就在于集成或整合多个源图像中的冗余信息和互补信息,利用优势互补的数据来提高图像的信息可用程度,同时增加对研究对象解译(辨识)的可靠性。 标签:遥感图像图像融合几何纠正空间配准图像去噪 1前言 多源遥感图像融合就是将多个传感器获得的同一场景的遥感图像或同一传感器在不同时刻获得的同一场景的遥感图像数据或图像序列数据进行空间和时间配准,然后采用一定的算法将各图像数据或序列数据中所含的信息优势互补性的有机结合起来产生新图像数据或场景解释的技术。 2多源图像融合的预处理 预处理的主要目的是纠正原始图像中的几何与辐射变形,即通过对图像获取过程中产生的变形、扭曲和噪音的纠正,以得到一个尽可能在几何和辐射上真实的图像。 2.1图像的几何纠正 图像几何校正一般包括两个方面,一是图像像素空间位置互换,另一个是像素灰度值的内插。故遥感图像几何校正分为两步,第一步是做空间几何变换,这样做的目的是使像素落在正确的位置上;第二步是作像素灰度值内插,重新确定新像素的灰度值,重采样的方法有最临近法、双线性内插法和三次卷积内插法。数字图像几何校正的主要处理过程如图1所示。 2.2图像的空间配准 图像数据配准定义为对从不同传感器、不同时相、不同角度所获得的两幅或多幅影像進行最佳匹配的处理过程。其中的一幅影像是参考影像数据,其它图像则作为输入影像与参考影像进行相关匹配。图像配准的一般过程是在对多传感器数据经过严密的几何纠正处理、改正了系统误差之后,将影像投影到同一地面坐标系统上,然后在各传感器影像上选取少量的控制点,通过特征点的自动选取或是计算其各自间的相似性、配准点的粗略位置估计、配准点的精确确定以及配准变换参数估计等的处理,从而实现影像的精确配准。

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

图像融合开题报告2

齐鲁工业大学 毕业设计(论文)开题报告题目:图像拼接技术研究—图像融合 院(系)电气工程与自动化学院 专业电子信息工程 班级电子12-1 姓名泳麟 学号 201202031022 导师玉淑 2016年 4月 20 日

5.主要参考文献: [5] Blinn J F.Light reflection functions for simulation of clouds and dusty surfaces[C]//Proceedings of SIGGRAPH,1982:21-29. [6] Max N.Optical models for direct volume rendering[J].IEEE Transactions on Visualization and Computer Graphics,1995,1: 99-108. [7] Max N.Light diffusion through clouds and haze[C]//Computer Vision,Graphics,and Image Processing,1986:280-292. [8] 尤赛,福民.基于纹理映射与光照模型的体绘制加速算法[J]. 中国图象图形学报,2003,8(9). [3] Chao R,Zhang K,Li Y J.An image fusion algorithm using wavelet transform[J].Area Electronical Sinica,2004,32:750-753. [4] Hill P,Canagarajah N,Bull D.Image fusion using complex wavelets[C]//British Machine Vision Conference,Cardif,2002. [5] 梁栋,瑶,敏,等.一种基于小波-Contourlet 变换的多聚焦图像 融合算法[J].电子学报,2007,35(2):320-322. [6] 杰,龚声蓉,纯平.一种新的基于小波变换的多聚焦图像融合 算法[J].计算机工程与应用,2007,43(24):47-49. [7] 福生.小波变换的工程分析与应用[M].:科学,1999. [8] 敏,小英,毛捷.基于邻域方差加权平均的小波图像融合[J].国 外电子测量技术,2008,27(1):5-7. [9] 楚恒,杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J]. 光电工程,2005,32(8):59-63. [10] 王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合 方法[J].中国图象图形学报,2008,13(1):145-150. (上接196页) 康健超,康宝生,筠,等:一种改进的基于 GPU 编程的光线投射算法 201

多信息融合技术概述

本次讲座主要讲了多源数据融合的定义、应用领域、所具有的优势、信息融合的级别、通用处理结构、主要技术方法、要解决的几个关键问题和未来的主要研究方向。下面就围绕这几个方面进行阐述。 多源信息融合是一种多层次,多方面的处理过程,包括对多源数据进行检测、相关、组合和估计,从而提高状态和身份估计的精度,以及对战场态势和威胁的重要程度进行实时完整的评估。简单说,多源信息融合就是对多源信息进行综合处理,从而得出更为准确、可靠的结论。例如我们感知天气,通过我们的体表感觉温度的高低,通过眼睛观察天气的晴朗或阴雨,通过耳朵听风的大小,然后将这些信息通过大脑的综合处理,对天气有一个总体的感知定位。 多源信息融合在各个领域都有着广泛的应用。如军事上进行战场监视、图像融合,包含医学图像融合等、工业智能机器人(对图像、声音、电磁等数据进行融合,以进行推理,从而完成任务)、空中交通管制(由导航设备、监事和控制设备、通信设备和人员四部分组成)、工业过程监控(过程诊断)、刑侦(将人的生物特征如指纹、虹膜、人脸、声音等信息进行融合,可提高对人身份识别的能力)、遥感等。 信息融合技术越来越受到人们的重视,这时因为它在信息处理方面具有一定的优势。增强系统的生存能力,也就是防破坏能力,改善系统的可靠性;可以在时间、空间上扩展覆盖范围;提高可信度,降低信息的模糊度,如可以使多传感器对同一目标或时间加以确定;提高空间分辨率,多传感器信息的合成可以获得比任一单传感器更高的分辨率;增加了测量空间的维数,从而使系统不易受到破坏。 信息融合的级别有多种分类方法,若按数据抽象的层次来分,可分为数据级融合、特征级融合和决策级融合。数据级融合是直接对传感器的观测数据进行融合处理,然后基于融合后的结果进行特征提取和判断决策。数据级融合的精度高,但由于数据量大,故处理的时间长,代价高,数据通信量大,抗干扰能力差,并且要求传感器是同类的。多应用在多源图像复合、同类雷达波形的直接合成等。特征级融合是先由每个传感器抽象出自己的特征向量(比如目标的边缘、方向、速度等信息),融合中心完成的是特征向量的融合处理。这种融合级别实现了可观的数据压缩,降低了通信带宽的要求,有利于实现实时处理,但却损失了一部分有用信息,使融合性能有所降低。决策级融合是先由每个传感器基于自己的数据作出决策,然后融合中心完成的使局部决策的融合处理。这种级别的融合数据损失量大,相对来讲精度低,但却抗干扰能力强,通信量小,对传感器依赖小,不要求同质传感器,融合中心处理代价低。 图1、集中式结构 多源数据融合的通用结构有集中式结构、分布式结构和混合式结构。集中式结构是所有传感器的数据直接送给融合中心进行处理,结构如图1所示。 分布式结构是融合中心收到的是经过局部处理的数据,结构如图2所示。混合式结构是

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

浅析多源遥感数据融合原理及应用

浅析多源遥感数据融合原理 摘要: 本文介绍了遥感影像融合技术, 系统阐述了几种常见的遥感影像融合方法及其优缺点。首先,阐述了多源遥感影像数据融合的目的、意义以及多源遥感影像数据融合的基本理论;然后介绍了多源遥感影像数据融合的层次和常用方法,在分析和探讨多源遥感影像数据融合原理、层次、结构及特点的基础上,归纳了多源遥感影像数据融合方法,然后通过实验,对不同方法融合后的成果图进行比较,每种方法都有其自身的优点和不足之处,这就决定了它们在应用方面的不同,采用乘积方法变换、Brovey比值变换和PCA变换融合方法融合后的图像,其光谱保真程度逐渐降低.Muhiplieative(乘积)变换融合较好地保留了多光谱波段的光谱分辨率和空间信息,融合图像的光谱保真能力较好,详细程度较高;PCA变换融合和Brovey变换;融合和影像质量一般.与PCA变换融合比较,Brovey变换融合的空间信息的详细程度较低,但相对好的保留了多光谱波段的光谱分辨率。 关键词: 遥感影像融合融合层次融合方法优缺点对比

目录 1、绪论 (1) 2、多源遥感数据融合的基本理论 (1) 2.1 多源遥感数据融合的概念 (3) 2.2多源遥感数据融合的原理 (4) 2.3多源遥感数据融合层次 (4) 2.3.1 像元级融合 (4) 2.3.2 特征级融合 (4) 2.3.3 决策级融合 (5) 3、多源遥感数据融合常用方法 (5) 3.1 主成分变换(PCT) (5) 3.2 乘积变换 (5) 3.3 Brovey比值变换融合 (5) 4、实验与分析 (6) 5、结语 (8) 参考文献 (9) 致谢 (10)

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

实验五 遥感图像的融合

实验五遥感图像的融合 一、实验目的和要求 1.理解遥感图像的融合处理方法和原理; 2.掌握遥感图像的融合处理,即分辨率融合处理。 二、设备与数据 设备:影像处理系统软件 数据:TM SPOT 数据 三、实验内容 多光谱数据与高分辨率全色数据的融合。 分辨率融合是遥感信息复合的一个主要方法,它使得融合后的遥感图象既具有较好的空间分辨率,又具有多光谱特征,从而达到增强图象质量的目的。 注意:在调出了分辨率融合对话框后,关键是选择融合方法,定义重采样的方法。 四、方法与步骤 融合方法有很多,典型的有HSV、Brovey、PC、CN、SFIM、Gram-Schmidt 等。ENVI 里除了SFIM 以外,上面列举的都有。 HSV 可进行RGB 图像到HSV 色度空间的变换,用高分辨率的图像代替颜色亮度值波段,自动用最近邻、双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB 色度空间。输出的RGB 图像的像元将与高分辨率数据的像元大小相同。 打开ENVI,在主菜单中打开数据文件LC81200362016120LGN00_MTL 选择File>data manage,任意选择3个波段组合,查看效果

打开分辨率为30和15的图像

下图分别是分辨率为30、15的,可以看到图像清晰度明显发生改变,分辨率越高,图像越清晰

下面进行融合 点击工具栏中的Image Sharpening>Gram-Schmidt Pan Sharpening,在对话框中点击Spectral Subset…改变其波段 选择如下图所示的三个波段

多源图像信息融合的理论与技术

文章编号:100420366(2002)0120041205 收稿日期:2001-04-21 基金项目:中国科学院知识创新工程项目(KZCX 2220824) 多源图像信息融合的理论与技术 江 东1,王 钰2,王建华3,兰朝利4 (11中国科学院地理科学与资源研究所资源环境国家数据中心,北京 100101; 21中国科学院数学与系统科学研究所,北京 100083; 31中国水利水电科学研究院水资源研究所,北京 100044; 41中国科学院地质与地球物理研究所,北京 100101) 摘 要: 对不同空间分辨率、时间分辨率和波谱分辨率的遥感图像进行综合、高效的利用,是当前学术界的焦点问题之一。回顾图像融合的源起与发展,对融合的概念与基础理论做了界定与阐述,将目前存在的各种融合技术归纳为3种类型:像元级融合、特征级融合和分类级融合,剖析了其优缺点和适用领域,并对今后的发展方向做了展望。关键词: 多源图像;信息;融合;小波变换 中图分类号: P 40718 文献标识码: A 随着现代遥感技术的发展,各种对地观测卫星源源不断地提供不同空间分辨率、时间分辨率、波谱分辨率的遥感图像,为了对观测目标有一个更加全面、清晰、准确的理解与认知,人们迫切希望寻求一种综合利用各类影像数据的技术方法。从最初简单的“图像数据内插(I m age data interp retati on )”、“复合分析(Com bined analysis )”,发展到“图像综合(I m age integrating )” ,1990年在美国航空航天局(NA SA )的一个研讨会上,Shen 系统地提出了信息融合(data infor 2 m ati on fusi on )的概念[1]。 信息融合是一种信息处理技术,即对多源信息进行处理,以获得改善了的新信息,服务于决策[1,2]。图像融合(I m age fusi on )是一种通过高级影像处理来复合多源遥感影像的技术,是用特定的算法将2个或多个不同影像合并起来,生成新的图像[3]。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,以增强影像中信息透明度,改善解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述[4]。图像融合不是简单的叠加,它产生新的蕴含更多有价值信息的图像,即达到1+1>2,甚至是远大于2的效果。 1 图像融合的意义与原则 单一传感器影像的数据通常不能提取足够的信息来完成某一应用任务,通过多传感器影像的融合,可以得到更多的信息,减少理解的模糊性,提高遥感数据的利用效率。前人将图像融合的优点概括为以下几点:①图像增强,质量的改善;②提高几何配准的精度;③生成三维立体效果;④实现实时、准实时动态观测;⑤替代缺损的影像,克服目标提取与识别中数据不完整第14卷 第1期2002年3月 甘肃科学学报Journal of Gansu Sciences V ol .14 N o.1M ar .2002

遥感图像的假彩色合成

北京化工大学 学士学位论文 遥感图像的假彩色合成 姓名:刘晓璐 班级:信息与计算科学0304班 学号:200362102

遥感图像的假彩色合成 摘要:遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内及其我国的许多政府部门,科研单位和公司得到了广泛的应用。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理技术也更加成熟;在应用上,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化方向发展,使遥感数据的应用更加广泛和深入。 假彩色增强是将一幅彩色图像映射为另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。 本文的主要目的就是大遥感的多光谱图像用自然彩色显示。在遥感的多光谱图像中,有些是不可见光波段的图像,如近红外,红外,甚至是远红外波段。因为这些波段不仅具有夜视能力,而且通过与其他波段的配合,易于区分地物。 用假彩色技术处理多光谱图像,目的不在于使景物恢复自然的彩色,而是从中获得更多的信息。为了实现这样的目的,本文采用了MATLAB数学软件编程的方法以及运用Envi4.2 软件直接编辑图像这两种方法,并对其进行对比,得出最优的合成图像。 关键词:图像融合,假彩色合成,彩色增强,灰度级,RGB图像,

False color mapping for image fusion Abstract: A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the component of two original input images is determined. Second, the common component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous(an important consideration when it has to fit in an airplane, for instance). Key words: image fusion, false color mapping, color enhances, gray-level, RGB images

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

图像融合开题报告2

毕业设计(论文)开题报告题目:图像拼接技术研究—图像融合 院(系)电子信息工程 专业电子信息科学与技术 班级070405 姓名闫夏 学号070405137 导师高俊钗 2011年3 月3 日

1.毕业设计(论文)题目背景、研究意义及国内外相关研究情况 1.1题目背景: 图像融合是二十世纪七十年代后期提出的新概念,他是一门综合了传感器、图像处理、信号处理、显示、计算机和人工智能等技术的现代高新技术[1]。由于图像融合系统具有突出的探测优越性(时空覆盖宽、目标分辨力与测量维数高、重构能力好、冗余性、互补性、时间优越性以及相对低成本等),在国际上技术先进的国家受到高度重视并已取得了相当的发展,并在许多领域得到了广泛的应用[2]。 1.2研究意义: 图像融合是指综合两个或多个多源图像的信息,图像融合的目的是综合同一个场景中的多个图像的信息,其结果是更适合人的视觉和计算机视觉的一幅图像,或更适合进一步图像处理需要的图像。融合后的图像更符合人或机器的视觉特性,以利于对该图像进一步的分析、理解以及目标的检测、识别或跟踪。对图像融合来说,融合源图像可能是在同一个时间段,来自多个传感器的图像,也可能是单个传感器在不同时间提供的图像序列。一般来说,图像是对客观实际的一种反映,是一个不完全、不精确的描述[3]。图像融合充分利用多幅图像资源,通过对观测信息合理支配和使用,把多幅图像在空间或时间上的互补信息依据某种准则融合,获得对场景的一致性解释或描述,使融合后的图像具有比参加融合的任意一幅图像更优越的性质,更精确地反映客观实际[4]。 本文研究的重点——多聚焦图像的融合是图像融合研究中一类具有代表性的问题。由于光学镜头的聚焦有限,使得人们在摄影时很难得到一幅所有景物均被聚焦的图像。解决这个问题的有效方法是对同一场景拍摄几幅聚焦点不同的图像,然后,将其融合为一幅场景内所有景物均被聚焦的图像,这种图像融合被称为多聚焦图像融合。多聚焦图像融合的实现可以使多个不同距离的目标物体同时清晰地呈现,这为特征提取,图像识别奠定良好的基础,同时有效地提高图像信息的利用率和系统对目标探测识别的可靠性,广泛应用于机器视觉、数码相机、目标识别等领域。 本课题所研究的图像融合利用小波融合算法的优越性将多聚焦图像进行综合处理,从而提高图像的清晰度和目标的可识别程度,得到在一幅场景内所有场景均清晰的图像。利用Matlab软件仿真,通过融合效果评价准则来不断改进融合算法,以得到最佳的融合效果。 1.3国内外相关研究情况: 图像融合技术最早被应用于遥感图像的分析和处理中。美国陆地资源卫星(LAND-SAT)用多幅光谱图像进行简单的数据合成运算,取得了一定的噪声 抑制和区域增强效果[5];美国德克萨斯仪器公司(TI)研究将红外热像和微光 图像融合,来提高夜战能力;TI公司还进行了将通用组件红外系统与电视、采用焦平面阵列的前视红外系统和25mm三代微光电视系统、长波及短波红外视频信号的融合试验,取得了有益的结果[6];A.Toet等采用低通对比金字塔的图像融合方法,对野外背景坦克的可见光和红外图像进行了融合处理,提高

多源信息融合技术的起源发展与研究应用

1.多源信息融合技术的起源发展与研究应用 1.1多源信息融合的概念 多源信息融合(multi-source information fusion)亦称多传感器信息融合,是一门新兴边缘学科。多源的含义是广义的,包含多种信息源如传感器、环境信息匹配、数据库及人类掌握的信息等,信息融合最初的定义是数据融合,但随着信息技术的发展,系统信息的外延不断扩大,已经远远超出了数据的简单含义,包括了有形的数据、图像、音频、符号和无形的模型、估计、评价等,故学术界、技术界均认为使用信息融合更能代表其含义。多源信息融合的优势可以表现在密集性、有效性、互补性、冗余性、实时性、低成本性、高适应性等多个方面。 1.2多源信息融合技术的起源与发展 这一概念是在20世纪70年代提出的。当时新一代作战系统中依靠单一传感器提供信息已无法满足作战需要,必须运用多传感器集成来提供多种观测数据,通过优化综合处理提供相对准确的战场信息,从而更好地把握战场态势。在多传感器系统中,由于信息表现形式的多样性,信息数量的巨大性,信息关系的复杂性,以及要求信息处理的及时性,都已大大超出了人脑的信息综合处理能力,所以多传感器数据融合(Multi-sensor Data Fusion简称MSDF)便迅速发展起来。20多年来,MSDF技术在现代 C3I(指挥、控制、通信与情报Command, Control, Communication and Intelligence)系统中和各种武器平台得到了广泛的应用[3],在工业、农业、航空航天、目标跟踪和惯性导航等民用领域也得到了普遍关注。 国外对信息融合技术的研究起步较早。第二次世界大战末期,高炮火控系统开始同时使用了雷达和光学传感器,这有效地提高了高炮系统的瞄准精度,也大大提高了抗恶劣气象、抗干扰能力。现代信息融合概念 70 年代初开始萌芽。最初主要在多种雷达同时运用的条件下执行同类传感器信息融合处理,以后逐渐扩展。70 年代末期开始引入电子战、ESM 系统,引起人们高度重视。从80年代起,美国在研发,学术讨论,以及推广多源信息融合技术等方面始终走在前列。尤其在海湾战争结束后,美国更加重视信息自动综合处理技术的研究,并有效带动了其他北约国家在这方面的研究工作,如英国陆军开发了炮兵智能融合系统(AIDD)、机动和控制系统(WAVELL)等,德国准备在“豹2”坦克的改进中运用信息融合和人工智能等关键技术。

相关文档
最新文档