第九章时变电磁场与电磁波解答

第九章时变电磁场与电磁波解答
第九章时变电磁场与电磁波解答

9.1.1 (1)D D j t ?=? D D

j t

?=?

空气中0D E ε= ()500

720sin10t D E

jD t t t

πεε???∴===??? 55072010cos10t πεπ=?(安/米2)

(2)由环路定理 ()D s

H dl j j ds ?=+???

而电容中0j =

传,在电容中过P 作以r 为半径的圆,圆上H 大小相等

2

2,

D D H dl H r j ds j r ππ∴?=??=??

52507201010cos102

D P t

j r

H εππα

-???=

=

5503.610cos10(/)t A m πεπ=?

0t =时,

0t =时,503.610(/)H A m πε=? 5102

t π

=

?时,0H =

9.1.2 (1) 0sin m q q wt =

对平行板电容器 00s i n m

q q D wt A A

σ=== c o s m D q D j w t t A

ω

?∴=

=? (2)以两极板中心轴上,平板电容器,以轴为心,依半径r 为圆,则其上H 大小相同

cos 22m D q wr j r H wt A ∴=

= 2D D j ds j r π?=? cos 22m D q wr

j r H wt A

∴==

0c o s 2m

q w r B H w t A

μμ== 9.1.3 0

D dq du j C dt dt

== 000q cu

q cu s s σ===

而0D D C U

D j t S t

σ??=∴==??

D D U

j j s C t

?=?=? , 0,q u t 是的函数

又0q u C =

D dq dU i C dt dt ∴==

9.14 001

dq R q dt C

ε+=

01t

Rc q C e ε-??∴=- ???6

106

61210t e --=?-

6

106

6061012106

t D dq j e dt --==??6

1062t e -=

(1)0t =时,2()D i A =

(2)6

610t -=?秒时,66

106

161022()D i e

e A -?-==

(3)0,D j →在10t τ=时,可认为电流忽略不计 6

5101010610

610t RC τ--===??=?(秒)

9.3.1 (1)螺线管内磁场强度 0H ni

B ni μ==

B E dl ds t ??=-????

2202B B di E dl E r ds r r n t t dt

πππμ??∴?==-?=-=-???? 02nr di

E dt μ=

?

,E

方向如图。

(2)S E H =? ,而E H ⊥

20n r di S EH i dt

μα∴==,S

方向指向轴线。 9.3.2 (1) H I ??=?

传,即2H r I π?=传

22

25.1

410(/)210

I H A m r ππ-∴===??传2 (2)导体电阻公式:l

s R R s

l

σ=

=

电流密度 I j I RS R

j E I lS l

σ

=∴=

=

=传

传传传S

3

325.1310

75.310(/)V m --=??=?

(3)S E H E H =?⊥

3

2275.31041030.1(/

)

S E H -==???=

瓦米 9.3.3 (1) 002I I

j S a

π=

=传 02j I

E j E a

σπ===

传方向与电流一致

(2)2H dl j r π?=?

传 22r H j r ππ∴=传 0222j r I r H H a

π=

=

传方向在过该点与轴线垂直平面内,且与电流方向右手螺旋。

(3) S E H =? E H ⊥ 20002224

922I I r I r

S EH a a a

πππ∴==?= S 满足E H ?

方向。

(4)长为L ,半径r 的导体电阴为 29

9L L R S r

π== 22

02I r I j r a π'==传 222

2

400424

99I I r L L W I R r a r a ππ'∴==?=

2024

9222I r

rL S rL a

πππ=?=? 故体内消耗能量,等于从表面所流进的能量。 9.3.4 00

00

2D

q i E H S a σεεπ=

==

又9.1.3可知 00

12D dq dq i H dt

a dt

π=

=

00

0000122q dq q dq S EH S a dt aS dt

εππε∴==

?=

流入能量速率:

00

0222s q dq S ar ar aS dt

ωπππε==

00

0q dq r dq q S dt C dt

ε=?= 静电能增加速率

2

20000

1122E C E q dq q dq W W W C t C dt C dt

?=

===??

s E W W ∴=,流入电容能量速率等于静电能增加速率。

9.3.5 1526

2105

C

f πωππλ===? 15

7862104510(2)3105

E H xw x m C π

π????==-=-=-?=? 2210105

44168W S r ππ?ππ

=

===

? 又

E H ==

212m m m S E H ∴=

=

1/2

1/2

58m E ααπ??==? ?

? 150(/)V

m =

()1500.4/m m H A m ===

15764150sin 1010(/)55E t V m ππ??

=?-? ?

??

()157640.4sin 1010/55H t A m ππ??

=?-? ?

??

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终 端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?g g B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角速 度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 平行双线传输线与一矩形回路共面,如题图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答 第1章习题 习题1.1 给定三个矢量A 、B 和C 如下: 23 x y z =+-A e e e . 4y z =-+B e e , 52x z =-C e e , 解: (1 )22323) 12(3)A x y z e e e A a e e e A +-= = = +-++- (2 )2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e ?=+-?-+=- (4)arccos 135.5A B AB θ?===? (5)1711 cos -=?=??==B B A A B B A A A A AB B θ (6)1 2341310502 x y z x Y Z e e e A C e e e ?=-=---- (7)0 4185205 02 x y z x Y Z e e e B C e e e ?=-=++- ()(23)(8520)42x Y Z x Y Z A B C e e e e e e ??=+-?++=- 1 23104041 x y z x Y Z e e e A B e e e ?=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ??=---?-=- (8)()10142405502 x y z x Y Z e e e A B C e e e ??=---=-+-

()1 235544118520 x y z x Y Z e e e A B C e e e ??=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。 解: 29)4(32222=-++=A 776)5(4222=+-+=B 31)654()432(-=+-?-+=?z y x z y x e e e e e e B A 则A 与B 之间的夹角为 131772931cos =???? ???-=???? ? ? ???=ar B A B A arcis AB θ A 在B 上的分量为 532.37731cos -=-=?=???==B B A B A B A A A A AB B θ 习题1.9用球坐标表示的场2 25r r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5) --处E 与矢量2 2x y z = -+B e e e 构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, r ===2 2525 0.550 E r = == 2 105 43252532z y x r e e e r r r e E -+-===

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

《电磁场与电磁波》(第四版)习题集:第8章 电磁辐射

第8章 电磁辐射 前面讨论了电磁波的传播问题,本章讨论电磁波的辐射问题。时变的电荷和电流是激发电磁波的源。为了有效地使电磁波能量按所要求的方向辐射出去,时变的电荷和电流必须按某种特殊的方式分布,天线就是设计成按规定方式有效地辐射电磁波能量的装置。 本章先讨论电磁辐射原理,再介绍一些常见的基本天线的辐射特性。 8.1滞后位 在洛仑兹条件下,电磁矢量位A 和标量位?满足的方程具有相同的形式 22 2t ?ρ ?μεε??-=-? (8.1.1) J A A μμε-=??-?222 t (8.1.2) 我们先来求标量位?满足的方程式(8.1.1)。该式为线性方程,其解满足叠加原理。设标量位?是由体积元'V ?内的电荷元'q V ρ?=?产生的,'V ?之外不存在电荷,则由式(8.1.1)'V ?之外的标量位?满足的方程 22 20t ? ?με??-=? (8.1.3) 可将q ?视为点电荷,它所产生的场具有球对称性,此时标量位?仅与r 、t 有关,与θ和φ无关,故在球坐标下,上式可简化为 222 210r r r r t ?? με?????-= ?????? (8.1.4) 设其解()() ,,U r t r t r ?= ,代入式(8.1.4)可得 012 2222=??-??t U v r U (8.1.5) 其中,με 1 = v 。该方程的通解为 (),()()r r U r t f t g t v v =-++ (8.1.6) 式中的()r f t v -和()r g t v +分别表示以()r t v -和()r t v +为变量的任意函数。所以q ?周围的 场为 ()11,()()r r r t f t g t r v r v ?= -++ (8.1.7) 式(8.1.7)中第一项代表向外辐射出去的波,第二项代表向内汇聚的波。在讨论发射天线的 电磁波辐射问题时,第二项没有实际意义,取0=g ,而f 的具体函数形式需由定解条件来确定。此时 ()1,()r r t f t r v ?= - (8.1.8)

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

电磁场与电磁波刘岚课后习题解答(第八章)

第8章习题解答 【8.1】 已知:原子质量=107.9,密度=10.53×3 3 10/kg m , 阿佛加德罗常数 =6.02×26 10 /kg 原子质量 ,电荷量 q =1.6×C 1910- 电子质量m =9.11×kg 31 10 -,绝对介电系数(真空中) 0ε=8.85×1210/F m - 银是单价元素,由于价电子被认为是自由电子,因而单位体积内的电子数目等于单位体积内的原子数目。 9 .1071002.61053.10263)()(每立方米的原子数目???= 即 每立方米的自由电子数目:28 1088.5?=N 可得 s Nq m 142 1074.3/-?==στ(对于银) 将上述σ、τ和0 ε的值代入r k =+-)1(/12 20 τωεστ和l k =+ω τωε σ)1(2/2 20 中可得 52251061.2)1/(1061.21?-=+?-=τωr k 7 1055.5?=l k 则 7461242 /122=?? ? ? ????++-=l r r i k k k n 故 7 2 104.6-?==i n c ωδ 【8.4】 解:良导体 αβ== 场衰减因子 2z x z e e e π αβλ - --==

当传播距离 z λ=时, 220.002z e e e π λ απλ - --=== 用分贝表示即为 55dB 。 【8.2】 已知:电导率σ=4.6m s /,原子质量=63.5,海水平均密度=1.025×3 3 10/kg m , 阿佛加德罗常数 =6.02 ×26 10/kg 原子质量 ,电荷量q =1.6×C 19 10 - ,m 2=δ,电子质 量m =9.11×kg 31 10 -,绝对介电系数(真空中)0 ε=8.85 ×12 10 /F m - 解:(1)与8.1题一样,可以求出每立方米的自由电子数目:28 1034.3?=N s Nq m 212 1089.4/-?==στ 910545.2-?=r k f k l 10 10 14.4?= 则 f k k k k n l l r r i 10 2 /1221014.424?= ≈?? ? ? ????++-= 而 δω c n i = 所以: kHz f 8.13= (2)依题意,满足 %0001.0)exp(2 =??? ?? ?-δz 可以求出 m z 8.13=

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

电磁场与电磁波试题 (2)

. '. 《电磁场与电磁波》测验试卷﹙一﹚ 一、 填空题(每题8分,共40分) 1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单位是____________;磁感应强度的单位 是___________;真空中介电常数的单位是____________。 2、静电场 →E 和电位Ψ的关系是→E =_____________。→ E 的方向是从电位_______处指向电位______处。 3、位移电流与传导电流不同,它与电荷___________无关。只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。位移电流存在于____________和一切___________中。 4、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =________;而磁场 → B 的法向分量B 1n -B 2n =_________;电流密度→ J 的法向分 量J 1n -J 2n =___________。 5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→ E , ____________________=→ H 。 二、计算题(题,共60分) 1、(15分)在真空中,有一均 匀带电的长度为L 的细杆, 其电荷线密度为τ。 求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。 2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c , 在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。 3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。 4、(10分)某回路由两个半径分别为R 和r 的 半圆形导体与两段直导体组成,其中通有电流I 。 求中心点O 处的磁感应强度→ B 。 5、电场强度为)2106(7.378 Z t COS E Y a ππ+?=→ → 伏/米的电磁波在自由空间传播。问:该波是不是均匀平面波?并请说明 其传播方向。 求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5) → H 的大小和方向; (6)坡印廷矢量。 《电磁场与电磁波》测验试卷﹙二﹚ (一)、问答题(共50分) 1、(10分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。 2、(10分)在两种媒质的交界面上,当自由电荷面密度为ρs 、面电流密度为J s 时,请写出→ →→→H B D ,,,E 的边界条件的矢量表达式。 3、(10分)什么叫TEM 波,TE 波,TM 波,TE 10波? 4、(10分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关? 5、什么是滞后位?请简述其意义。 (二)、计算题(共60分) 1、(10分)在真空里,电偶极子电场中的任意点M (r 、θ、φ)的电位为2 cos 41r P θ πε= Φ (式中,P 为电偶极矩,l q P =) , 而 → →→?Φ?+?Φ?+?Φ?=Φ000sin 11φφ θθθr r r r 。 试求M 点的电场强度 → E 。 2、(15分)半径为R 的无限长圆柱体均匀带电,电荷 体密度为ρ。请以其轴线为参考电位点, 求该圆柱体内外电位的分布。 3、(10分)一个位于Z 轴上的直线电流I =3安培,在其旁 边放置一个矩形导线框,a =5米,b =8米,h =5米。 最初,导线框截面的法线与I 垂直(如图),然后将该 截面旋转900,保持a 、b 不变,让其法线与I 平行。 求:①两种情况下,载流导线与矩形线框的互感系数M 。 ②设线框中有I ′=4安培的电流,求两者间的互感磁能。 4、(10分)P 为介质(2)中离介质边界极近的一点。 已知电介质外的真空中电场强度为→ 1E ,其方向与 电介质分界面的夹角为θ。在电介质界面无自由电 荷存在。求:①P 点电场强度 → 2E 的大小和方向; 5、(15分)在半径为R、电荷体密度为ρ的球形 均匀带电体内部有一个不带电的球形空腔,其半径为r, 两球心的距离为a(r<a<R)。介电常数都按ε0计算。 求空腔内的电场强度E。 《电磁场与电磁波》测验试卷﹙三﹚ 二、 填空题(每题8分,共40分) R O r a x

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βωλν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λππ2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

北邮电磁场与电磁波演示试验

. 频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行: '. .

GSM900下行: '. . CDMA下行:

3G下行: '. . 7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G

电磁场与电磁波习题答案8

第八章 8-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。 解 非均匀的各向同性线性媒质中,正弦电磁场应该满足的麦克斯韦方程如下: ??? ? ?? ?? ? =??=????-=????+=??)(),()(0),()() ,()(),(),()(),(),(r r E r r H r r H r r E r E r r J r H ρεμμεt t t t t t t t t , 分别对上面两式的两边再取旋度,利用矢量公式A A A 2)(?-???=????,得 ??? ? ????-?+??+????=??-?)()(),(),() ,()(),()() ,() ()(),(2 22 r r r E r r J r r H r r E r r r E εερμμμεt t t t t t t t t ??? ? ?????-????-?-?=??-?μμεμε)(),() ,()(),() ,() ()(),(2 22 r r H r E r r J r H r r r H t t t t t t t 则相应的亥姆霍兹方程为 ???? ????-?++??=+?)()()()()()(j )()(j ) ()()()(22r r r E r r J r r H r r E r r r E εερωμμωμεω??? ? ?????-??-?-?=+?μμεωμεω)()()()(j )() ()()()(22r r H r E r r J r H r r r H 8-2 设真空中0=z 平面上分布的表面电流t J s x s sin 0ωe J =,试求空间电场强度、磁场强度及能流密度。 解 0=z 平面上分布的表面电流将产生向z +和z -方向传播的两个平面波,

相关文档
最新文档