实验 硅热氧化工艺

实验 硅热氧化工艺
实验 硅热氧化工艺

实验硅热氧化工艺

在硅片表面生长一层优质的氧化层对整个半导体集成电路制造过程具有极为重要的意义。它不仅作为离子注入或热扩散的掩蔽层,而且也是保证器件表面不受周围气氛影响的钝化层,它不光是器件与器件之间电学隔离的绝缘层,而且也是MOS工艺以及多层金属化系统中保证电隔离的主要组成部分。因此了解硅氧化层的生长机理,控制并重复生长优质的硅氧化层方法对保证高质量的集成电路可靠性是至关重要的。

在硅片表面形成SiO2的技术有很多种:热氧化生长,热分解淀积(即VCD 法),外延生长,真空蒸发,反应溅射及阳极氧化法等。其中热生长氧化在集成电路工艺中用得最多,其操作简便,且氧化层致密,足以用作为扩散掩蔽层,通过光刻易形成定域扩散图形等其它应用。

一、实验目的

1、掌握热生长SiO2的工艺方法(干氧、湿氧、水汽)。

2、熟悉SiO2层在半导体集成电路制造中的重要作用。

3、了解影响氧化层质量有哪些因素。

4、能建立起厚度d和时间t的函数关系。

5、了解形成SiO2层的几种方法及它们之间的不同之处。

二、实验原理

热生长二氧化硅法是将硅片放在高温炉内,在以水汽、湿氧或干氧作为氧化剂的氧化气氛中,使氧与硅反应来形成一薄层二氧化硅。图1和图2分别给出了干氧和水汽氧化装置的示意图。

图1、干氧氧化装置示意图

图2、水汽氧化装置示意图

将经过严格清洗的硅片表面处于高温的氧化气氛(干氧、湿氧、水汽)中时,由于硅片表面对氧原子具有很高的亲和力,所以硅表面与氧迅速形成SiO2层。

硅的常压干氧和水汽氧化的化学反应式分别为:

Si+O 2—→SiO 2 (2—1) Si+2H 2O —→SiO 2+2H 2↑ (2—2) 如果生长的二氧化硅厚度为χ0(μm),所消耗的硅厚度为χi ,则由定量分析可知:

46.00

==

χχαi

(2—3) 即生长1μm 的SiO 2,要消耗掉0.46μm 的Si 。由于不同热氧化法所得二氧化硅的密度不同,故α值亦不同。图3示出了硅片氧化前后表面位置的变化。

图3、SiO 2生长对应硅片表面位置的变化

当硅片表面生长一薄层SiO 2以后,它阻挡了O 2或H 2O 直接与硅表面接触,此时氧原子和水分子必须穿过SiO 2薄膜到达Si —SiO 2界面才能与硅继续反应生长SiO 2。显然,随着氧化层厚度的增长,氧原子和水分子穿过氧化膜进一步氧化就越困难,所以氧化膜的增厚率将越来越小。Deal —Grove 的模型描述了硅氧化的动力学过程。他们的模型对氧化温度700℃至1300℃,压强0.2至1个大气压(也许更高些),生长厚度300?至20000?的干氧和湿氧氧化证明是合适的。

通过多种实验已经证明,硅片在热氧化过程中是氧化剂穿透氧化层向Si —SiO 2界面运动并与硅进行反应,而不是硅向外运动到氧化膜的外表面进行反应,其氧化模型如图4所示。氧化剂要到达硅表面并发生反应,必须经历下列三个连续的步骤:

图4、Deal —Grove 热氧化模型

① 从气体内部输运到气体——氧化物界面,其流密度用F 1表示。 ② 扩散穿透已生成的氧化层,到达SiO 2—Si 界面,其流密度用F 2表示。 ③ 在Si 表面发生反应生成SiO 2,其流密度用F 3表示。

在氧化过程中,由于SiO 2层不断生长,所以SiO 2—Si 界面也就不断向Si 内移动,因此,这里所碰到的是边界随时间变化的扩散问题。我们可以采用准静态近似,即假定所有反应实际上都立即达到稳定条件,这样变动的边界对扩散过程的影响可以忽略。在准静态近似下,上述三个流密度应该相等,则有

F 1=F 2=F 3 (2—4)

附面层中的流密度取线性近似,即从气体内部到气体——氧化物界面处的氧化剂流密度F 1正比于气体内部氧化剂浓度Cg 与贴近SiO 2表面上的氧化剂浓度Cs 的差,数学表达式为

)(1s g g C C h F -= (2—5) 其中g h 是气相质量输运(转移)系数。

假定在我们所讨论的热氧化过程中,亨利定律是成立的:即认为在平衡条件下,固体中某种物质的浓度正比于该物质在固体周围的气体中的分压。于是SiO 2表面的氧化剂浓度Co 正比于贴近SiO 2表面的氧化剂分压Ps ,则有

S O HP C = (2—6)

H 为亨利定律常数。在平衡情况下,SiO 2中氧化剂的浓度C *应与气体(主气流区)中的氧化剂分压Pg 成正比,即有

C * = HPg (2—7) 由理想气体定律可以得到 KT

P C g g = (2—8)

KT

P C S

S =

(2—9) 把式(2—6)~(2—9)代入式(2—5)中,则有

)(*1O C C h F -= (2—10) H K T

h h g

=

(2—11) 其中h 是用固体中的浓度表示的气相质量输运(转移)系数,而式(2—10)是用固体中的浓度表示的附面层中的流密度。

通过SiO 2层的流密度F 2就是扩散流密度,数学表达式为 O

i

O X C C D

F --=2 (2—12)

D 为氧化剂在SiO 2中的扩散系数,Co 和C i 分别表示SiO 2表面和SiO 2—Si 界面处的氧化剂浓度,X O 为SiO 2的厚度。

如果假定在SiO 2—Si 界面处,氧化剂与Si 反应的速率正比于界面处氧化剂的浓度C i ,于是有

i S C K F =3 (2—13) K S 为氧化剂与Si 反应的化学反应常数。

根据稳态条件F 1=F 2=F 3,再经过一定的数学运算,可得到C i 和C o 的具体表达式

D

X K h K C C O

S S i ++=

1*

(2—14)

D

X K h K C D X K C O S S O S O +

+??? ?

?

+=11*

(2—15)

当上面两式中扩散系数D 极大或极小时,硅的热氧化存在两种极限情况。当D 非常小时,C i →0,C o →C *,这种情况称为扩散控制态。它导致通过氧化层的氧化输运流量比在Si —SiO 2界面处反应的相应流量来得小(因为D 小),因此氧化速率取决于界面处提供的氧。

第二种极限情况是D 非常大时,

h

K C C C S o i +

==1*

(2—16)

此时称为反应控制态。因为在Si —SiO 2界面处提供足够的氧,氧化速率是由反应速率常数K S 和C i (等于C 0)所控制。

为了计算氧化层生长的速率,我们定义N 1为进入单位体积氧化层中氧化的分子数,由于每立方厘米氧化层中SiO 2分子密度为2.2×1022个,每生成一个SiO 2分子需要一个氧分子,或者两个水分子,这样对氧气氧化来说N 1为2.2×1022/cm 3,对水汽氧化来说N 1为4.4×1022/cm 3。

随着SiO 2不断生长,界面处的Si 也就不断转化为SiO 2中的成份,因此Si 表面处的流密度也可表示为

dt

dX N F O

1

3= (2—17) 把(2—14)式代入到(2—13)式中,并与上式联立,则得到SiO 2层的生长厚度与生长时间的微分方程

D

X K h K C K F dt

dX N O S S S O

+

+==1*

31

(2—18)

这个微分方程的初始条件是X 0(0)=X i ,X i 代表氧化前硅片上原有的SiO 2厚度。这样的初始条件适合两次或多次连续氧化的实际情况。微分方程(2—18)的解给出了SiO 2的生长厚度与时间的普遍关系式。

)(2

τ+=+t B AX X O O

(2—19) 其中

)1

1(

2h

K D A S += (2—20) 1

*

2N DC B = (2—21)

B

AX X i

i +=2τ (2—22)

A 和

B 都是速率常数。方程(2—19)的解为

?

????

??-++=14122B A t A X O τ

(2—23)

在氧化过程中,首先是氧化剂由气体内部扩散到二氧化硅界面处。因为在汽相中扩散速度要比在固相中大得多,所以扩散到二氧化硅与气体界面处的氧化剂是充足的,也就是说SiO 2的生长速率不会受到氧化剂在汽相中输运(转移)速度的影响。因此,SiO 2生长的快慢将由氧化剂在SiO 2种的扩散速度以及与Si 反应速度中较慢的一个因素所决定,。即存在上面叙述过的扩散控制和表面化学反应控制两种极限情况。

从SiO 2厚度与生长时间的普遍关系式(2—23)中也可以得到上述两种极限情况。当氧化时间很长,即t >>τ和t>>B A 42时,则SiO 2生长厚度与时间的关系式可简化为

)(2

τ+=t B X O

(2—24) 这种情况下的氧化规律称抛物型规律,B 为抛物型速率常数。由(2—21)式可以看到,B 与D 成正比,所以SiO 2的生长速率主要由氧化剂在SiO 2中的扩散快慢所决定,即为扩散控制。

当氧化时间很短,即(t +τ)<

)(τ+=

t A

B

X O (2—25) 这种极限情况下的氧化规律称线性规律,B/A 为线性速率常数,具体表达式为

1*N C h K h K A B

S S ?

+= (2—26) 表1:硅的湿氧氧化速率

表2:硅的干氧氧化速率

表1和表2分别为硅湿氧氧化和干氧氧化的速率常数。图5和图6分别为干氧氧化层厚度与时间的关系和湿氧氧化层厚度与时间的关系。

图5、(111)硅干氧氧化层厚度与时间的关系

图6、(111)硅湿氧氧化层厚度与时间的关系

由表1和表2以及图5和图6可见,湿氧氧化速率比干氧氧化速率快得多。虽然干氧方法的生长速度很慢,但生长的SiO2薄膜结构致密,干燥,均匀性和重复性好,且由于SiO2表面与光刻胶接触良好,光刻时不易浮胶。而湿氧氧化速率虽然快,但在氧化后的Si片表面存在较多的位错和腐蚀坑,而且还存在着一层使SiO2表面与光刻胶接触差的硅烷醇(Si—OH),因此在生产实践中,普遍采用干氧→湿氧→干氧交替的氧化方式。这种干、湿氧的交替氧化方式解决了生长速率和质量之间的矛盾,使生长的SiO2薄膜更好地满足实际生产的要求。

氧化层质量的检测包括:测量膜厚、折射率、氧化层中可动正电荷密度、Si—SiO2界面态密度、氧化层的漏电及介质击穿等。

三、实验装置

1、扩散氧化炉

2、椭偏仪

3、高频C—V测试仪

四、实验步骤

1、取5片清洗的Si样片,用镊子夹到石英舟上。将炉温控制在1150℃,并通入干O2,流量为500ml / 分钟。将石英舟缓慢推入炉中恒温区,分别以5分钟、10分钟、20分钟、40分钟、60分钟五种不同时间生长厚度不同的SiO2层。

2、另外取一片清洁Si片,再同样温度下,通湿O2进行氧化,水温控制在95℃,时间为20分钟。

3、用椭偏仪并结合干涉法分别测量上述各氧化层的厚度,并作图求出1150℃下干氧氧化速率常数。

4、比较同样时间,同样温度下干、湿氧化薄膜厚度的差别。

5、用B—T、C—V法测量1150℃,60分钟干氧生长的氧化层中的可动正

离子密度。

五、实验报告

1、明确实验目的,简述氧化的基本原理。

2、简述氧化的操作步骤,指出干、湿氧化的不同。

3、为什么同样温度,同样时间下生长的氧化层,干氧化薄膜的厚度小于湿氧化膜层的厚度?

4、实验数据列表并作d2—t图,从图中求出生长速率常数C。

5、试分析SiO2层中可动正电荷的来源。

实验 硅热氧化工艺分析

实验硅热氧化工艺 在硅片表面生长一层优质的氧化层对整个半导体集成电路制造过程具有极为重要的意义。它不仅作为离子注入或热扩散的掩蔽层,而且也是保证器件表面不受周围气氛影响的钝化层,它不光是器件与器件之间电学隔离的绝缘层,而且也是MOS工艺以及多层金属化系统中保证电隔离的主要组成部分。因此了解硅氧化层的生长机理,控制并重复生长优质的硅氧化层方法对保证高质量的集成电路可靠性是至关重要的。 在硅片表面形成SiO2的技术有很多种:热氧化生长,热分解淀积(即VCD 法),外延生长,真空蒸发,反应溅射及阳极氧化法等。其中热生长氧化在集成电路工艺中用得最多,其操作简便,且氧化层致密,足以用作为扩散掩蔽层,通过光刻易形成定域扩散图形等其它应用。 一、实验目的 1、掌握热生长SiO2的工艺方法(干氧、湿氧、水汽)。 2、熟悉SiO2层在半导体集成电路制造中的重要作用。 3、了解影响氧化层质量有哪些因素。 4、能建立起厚度d和时间t的函数关系。 5、了解形成SiO2层的几种方法及它们之间的不同之处。 二、实验原理 热生长二氧化硅法是将硅片放在高温炉内,在以水汽、湿氧或干氧作为氧化剂的氧化气氛中,使氧与硅反应来形成一薄层二氧化硅。图1和图2分别给出了干氧和水汽氧化装置的示意图。 图1、干氧氧化装置示意图 图2、水汽氧化装置示意图 将经过严格清洗的硅片表面处于高温的氧化气氛(干氧、湿氧、水汽)中时,由于硅片表面对氧原子具有很高的亲和力,所以硅表面与氧迅速形成SiO2层。

硅的常压干氧和水汽氧化的化学反应式分别为: Si+O 2—→SiO 2 (2—1) Si+2H 2O —→SiO 2+2H 2↑ (2—2) 如果生长的二氧化硅厚度为χ0(μm),所消耗的硅厚度为χi ,则由定量分析可知: 46.00 == χχαi (2—3) 即生长1μm 的SiO 2,要消耗掉0.46μm 的Si 。由于不同热氧化法所得二氧化硅的密度不同,故α值亦不同。图3示出了硅片氧化前后表面位置的变化。 图3、SiO 2生长对应硅片表面位置的变化 当硅片表面生长一薄层SiO 2以后,它阻挡了O 2或H 2O 直接与硅表面接触,此时氧原子和水分子必须穿过SiO 2薄膜到达Si —SiO 2界面才能与硅继续反应生长SiO 2。显然,随着氧化层厚度的增长,氧原子和水分子穿过氧化膜进一步氧化就越困难,所以氧化膜的增厚率将越来越小。Deal —Grove 的模型描述了硅氧化的动力学过程。他们的模型对氧化温度700℃至1300℃,压强0.2至1个大气压(也许更高些),生长厚度300?至20000?的干氧和湿氧氧化证明是合适的。 通过多种实验已经证明,硅片在热氧化过程中是氧化剂穿透氧化层向Si —SiO 2界面运动并与硅进行反应,而不是硅向外运动到氧化膜的外表面进行反应,其氧化模型如图4所示。氧化剂要到达硅表面并发生反应,必须经历下列三个连续的步骤:

机械加工常见热处理工艺

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。 气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。

热循环试验不确定度09[1][1].8.20

热循环试验测试结果不确定度的评定 一、概述 1、测量方法:NES M0132 [2007-N] 2、使用仪器:恒温恒湿试验箱13-401-0002 3、环境条件:(20±5)℃(65±20)%RH 4、被测对象:汽车塑料零件 二、建立数学模型:N/A 三、不确定度来源的分析 不确定度评定的来源主要有以下几方面: 1、温湿度对试验结果的影响; 2、温变速率对试验结果的影响; 3、取样位置的影响; 4、样品间差异的影响; 5、样品试验前状态调节时间对试验结果的影响; 6、样品在试验箱中的放置状态对试验结果的影响; 7、实验室环境条件对试验结果的影响; 8、人员评价对检测结果的影响。 四、不确定度分量的评定 1、温湿度对检测结果有着直接影响,所以标准要求温度控制±2℃以内,湿度控制:±5%RH 以内。13-401-0002试验箱性能参数为:温度波动±0.5℃,温度均匀度±2.0℃,湿度波动度±2.5%RH,湿度均匀度±5%RH;13-401-0002试验箱2009年5月校准结果为:温度最大偏差 0.5℃,湿度最大偏差0.02%RH,扩展不确定度U=0.4℃,满足标准要求。试验时需要注意试 验温度要求、温湿度设定和温湿度显示是否一致。 2、温变速率对试验结果会有一定的影响,NES M0132上规定在30分以内可将槽内温度加热、冷 却到各设定温度,但实际恒温恒湿试验箱(13-401-0002)从23度降到-40度要在60分钟左右,达不到标准要求,此影响程度尚未得出明确答案,从与桥本等实验室的交流来看,认为有影响,但不明显。 3、选择成品中哪一段作为试验样品进行试验对试验结果有直接影响。NES M0132对样品选择要 求使用成品或成品切割件。成品切割样品时,需要注意应截取有外观要求的部分进行试验,并从不同成品上分别截取样品,使样品更具有代表性。

常见的热氧化工艺

二.常见的各种氧化工艺 1. 热氧化工艺 热生长氧化法- 将硅片置于高温下,通以氧化的气氛,使硅表面一薄层的硅转变为二氧化硅的方法。 ①常见的热氧化工艺类别及特点: a 干氧氧化:干氧氧化法- 氧化气氛为干燥、纯净的氧气。氧化膜质量最好,但氧化速度最慢。 b 水汽氧化: 水汽氧化法- 氧化气氛为纯净的水汽。氧化速度最快,但氧化膜质量最差。 c 湿氧氧化: 湿氧氧化法- 氧化气氛为纯净的氧气+纯净的水汽。氧化膜质量和氧化速度均介于干氧氧化和水汽氧化之间。 ②常见的热氧化工艺: a 方法:常采用干氧- 湿氧- 干氧交替氧化法。 b 工艺条件: 温度:高温(常见的为1000C-1200 C)。 时间:一般总氧化时间超过30 分钟。 ② 氧化生长规律: 一般热氧化生长的二氧化硅层厚度与氧化时间符合抛物线规律。原因是:在氧化时存在氧化剂穿透衬底表面已生成的二氧化硅层的事实。 2. 热分解淀积法:(工艺中也常称为低温淀积法或低温氧化法) 热分解淀积法-在分解温度下,利用化合物的分解和重新组合生成二氧化硅,然后将生成的二氧化硅淀积在衬底(可为任何衬底)表面上,形成二氧化硅层的方法。 ①可见的低温氧化工艺类别及特点: a. 含氧硅化物热分解淀积法:多采用烷氧基硅烷进行热分解,分解物中有二氧化硅,在衬底上淀积形成二氧化硅层。 b. 硅烷(不含氧硅化物)热分解氧化淀积法:硅烷热分解析出硅原子,与氧化剂(氧气)作用生成二氧化硅,在衬底上淀积形成二氧化硅层。 ②常见的低温氧化工艺: a. 设备:采用低真空氧化淀积炉。 b. 条件: I含氧硅化物热分解淀积法: 对常用的正硅酸乙酯: T=750 C;真空度为托。 H硅烷热分解氧化淀积法: T>300 C (实际采用420 C ),淀积时系统中通入氧气,真空度同上。 ③低温氧化生长规律: 低温氧化(热分解淀积)生长的二氧化硅层厚度与氧化时间符合线性规律。原因是:在氧化时是在衬底表面上淀积二氧化硅,不存在氧化剂穿透衬底表面已生成的二氧化硅层的问题。 SiO2 的制备方法: 热氧化法 干氧氧化 水蒸汽氧化

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

各种热处理工艺介绍

第4章热处理工艺 热处理工艺种类很多,大体上可分为普通热处理(或叫整体热处理),表面热处理,化学热处理,特殊热处理等。 4.1钢的普通热处理 4.1.1退火 将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。 退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。 退火的目的: z降低钢的硬度,提高塑性,便于机加工和冷变形加工; z均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备; z消除内应力和加工硬化,以防变形和开裂。 退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。 一、退火方法的分类 常用的退火方法,按加热温度分为: 临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火 临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火 碳钢各种退火和正火工艺规范示意图: 1、完全退火 工艺:将钢加热到Ac3以上20~30 ℃℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全A化)。 完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。低碳钢完全退火后硬度偏 低,不利于切削加工;过共析钢加热至Ac cm以上A状态缓慢冷却退火时,Fe3C Ⅱ

会以网状沿A晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。 目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。 亚共析钢完全退火后的组织为F+P。 实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。 2、等温退火 完全退火需要的时间长,尤其是过冷A比较稳定的合金钢。如将A化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。 工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使A?P然后空冷至室温的热处理工艺。 目的:与完全退火相同,转变较易控制。 适用于A较稳定的钢:高碳钢(w(c)>0.6%)、合金工具钢、高合金钢(合金元素的总量>10%)。等温退火还有利于获得均匀的组织和性能。但不适用于大截面钢件和大批量炉料,因为等温退火不易使工件内部或批量工件都达到等温温度。 3、不完全退火 工艺:将钢加热到Ac1~Ac3(亚共析钢)或Ac1~Ac cm(过共析钢)经保温后缓慢冷却以获得近于平衡组织的热处理工艺。 主要用于过共析钢获得球状珠光体组织,以消除内应力,降低硬度,改善切削加工性。球化退火是不完全退火的一种 4、球化退火 使钢中碳化物球状化,获得粒状珠光体的一种热处理工艺。 ℃℃温度,保温时间不宜太长,一般以2~4h 工艺:加热至Ac1以上20~30 为宜,冷却方式通常采用炉冷,或在Ar1以下20℃左右进行较长时间等温。 主要用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。过共析钢经轧制、锻造后空冷的组织是片层状的珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,在以后的淬火过程中也容易变形和开裂。球化退火得到球状珠光体,在球状珠光体中,渗碳体呈球状的细小颗粒,弥散分布在铁素体基体上。球状珠光体与片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易粗大,冷却时变形和开裂倾向小。如果过共析钢有网状渗碳体存在时,必须在球化退火前采用正火工艺消除,才能保证球化退火正常进行。 目的:降低硬度、均匀组织、改善切削加工性为淬火作组织准备。 球化退火工艺方法很多,主要有: a)一次球化退火工艺:将钢加热到Ac1以上20~30 ℃℃,保温适当时间,然后随炉缓慢冷却。要求退火前原始组织为细片状珠光体,不允许有渗碳体网存在。

热氧化生长动力学的研究

热氧化生长动力学的研究 摘要在分立器件与集成电路制造过程中,需要很多类型的薄膜,这些薄膜主要分为四类:热氧化薄膜、介质、多晶硅以及金属膜等。半导体可采用多种氧化方法,包括热氧化法、电化学阳极氧化法以及等离子体反应法。对于硅来说,热 的生长原理和影响因氧化法是最重要的。本文主要讲述了在热氧化过程中SIO 2 素。 一引言 在分立器件与集成电路制造过程中,需要很多类型的薄膜,这些薄膜主要分为四类:热氧化薄膜、介质、多晶硅以及金属膜等。半导体可采用多种氧化方法,包括热氧化法、电化学阳极氧化法以及等离子体反应法。对于硅来说,热氧化法是最重要的。在热氧化薄膜中,有两种膜最重要:一种是在漏/源极的导通沟道覆盖的栅极氧化膜(gate oxide);一种是用来隔离其他器件的场氧化膜(field oxide)。这些膜只有通过热氧化才能获得最低界面陷阱密度的高质量氧化膜。二氧化硅SiO2和氮化硅Si3N4的介电薄膜作用:隔离导电层;作为扩散及离子注入的掩蔽膜;防止薄膜下掺杂物的损失;保护器件使器件免受杂质、水气或刮伤的损害。由于多晶硅电极的可靠性由于铝电极,常用来制作MOS器件的栅极;多晶硅可以作为杂质扩散的浅结接触材料;作为多层金属的导通材料或高电阻值的电阻。金属薄膜有铝或金属硅化物,用来形成具有低电阻值的金属连线、欧姆接触及整流金属-半导体接触势垒器件。 二二氧化硅简介 2.1 SiO2的结构

S iO2 分为结晶形和无定形两类。结晶形 SiO2 由 Si-O 四面体在空间规则排列而成,如水晶;无定形 SiO2 是 Si-O 四面体在空间无规则排列而成,为透明的玻璃体、非晶体,其密度低于前者,如热氧化的 SiO2 、CVD 淀积的 SiO2 等。Si-O 四面体的结构是,4 个氧原子位于四面体的 4 个角上,1 个硅原子位于四面体的中心。每个氧原子为两个相邻四面体所共有。 2.2 SiO2的性质 1)、二氧化硅的绝缘特性 二氧化硅具有电阻率高、禁带宽度大、介电强度高等特点。而且二氧化硅最小击穿电场(非本征击穿):由缺陷、杂质引起,最大击穿电场(本征击穿):由SiO2厚度、导热性、界面态电荷等决定。实验证明二氧化硅氧化层越薄、氧化温度越低,击穿电场越低。 2)、二氧化硅的掩蔽性质 B、P、As 等常见杂质在SiO2中的扩散系数远小于其在Si中的扩散系数。SiO2做掩蔽膜要有足够的厚度:对特定的杂质、扩散时间、扩散温度等条件,有一最小掩蔽厚度。 3)、二氧化硅的化学稳定性 二氧化硅是硅的最稳定化合物,属于酸性氧化物,不溶于水。耐多种强酸腐蚀,但极易与氢氟酸反应。在一定温度下,能和强碱(如NaOH,KOH等)反应,也有可能被铝、氢等还原。 2.3二氧化硅在IC中的主要用途 二氧化硅可用做杂质选择扩散的掩蔽膜、IC的隔离介质和绝缘介质、

湿热循环试验方法

试验方法 试验名称:温湿循环试验 一、目的 确定电池包或系统在高温高湿与低温加速环境下之退化效应。 二、范围 本试验适合所有电池包或系统。 三、试验条件 1.极值温度、循环次数及时间。 四、对试验设备的要求 1.高温箱、低温箱应能提供第三节表中规定的极值温度条件。 2.高温箱、低温箱应符合以下要求: ——温度测量装置:±0.5℃; ——时间测量装置:±0.1%; 3.测试过程中,控制值(实际值)和目标值之间的误差要求: ——温度:±2℃。 五、数据记录和记录间隔 记录间隔小于时间的1%记录一次。 六、实验步骤 1.初始检测 在试验的标准大气条件下,按有关标准的规定对试验样品进行外观检查和性能检测。 2.试验样品按放 试验样品安装在试验箱内,应使气流畅通无阻的穿过及绕过试验样品,并且可以排除多余的水分。 3.试验 A.将试验样品置于恒温恒湿试验箱内为步骤1的条件。 B.初始保持阶段,从表1中步骤1至步骤3。 C.升温保湿阶段,从表1中步骤3至步骤4。 D.保温阶段,从表1中步骤4至步骤6。 E.降温阶段,从表1中步骤6至步骤7。 F.按照表1中循环循环方式及循环次数进行试验。 4.中间检测 由有关标准规定。

5.恢复 最后循环结束,试验样品置于(试验的标准大气条件)常温下观察2小时。 6.最后检测 在观察期间,试验样品的要求:应无泄漏、外壳破裂、着火或爆炸等现象。试验后30分钟内绝缘电阻值不小于100Ω/V。 七、原始数据或实验现象记录 八、引用 根据GB/T31467.3-2015电动汽车用锂离子动力蓄电池包和系统第三部分安全性要求与测试及其相关标准引用。 【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

氧化工艺

薄膜淀积 一、介绍 在分立器件与集成电路制造过程中,需要很多类型的薄膜,这些薄膜主要分为四类:热氧化薄膜、介质、多晶硅以及金属膜等: 半导体可采用多种氧化方法,包括热氧化法、电化学阳极氧化法以及等离子体反应法。对于硅来说,热氧化法是最重要的。在热氧化薄膜中,有两种膜最重要:一种是在漏/源极的导通沟道覆盖的栅极氧化膜(gate oxide);一种是用来隔离其他器件的场氧化膜(field oxide)。这些膜只有通过热氧化才能获得最低界面陷阱密度的高质量氧化膜。 二氧化硅SiO2和氮化硅Si3N4的介电薄膜作用:隔离导电层;作为扩散及离子注入的掩蔽膜;防止薄膜下掺杂物的损失;保护器件使器件免受杂质、水气或刮伤的损害。 由于多晶硅电极的可靠性由于铝电极,常用来制作MOS器件的栅极;多晶硅可以作为杂质扩散的浅结接触材料;作为多层金属的导通材料或高电阻值的电阻。 金属薄膜有铝或金属硅化物,用来形成具有低电阻值的金属连线、欧姆接触及整流金属-半导体接触势垒器件。 二、原理与工艺 A、热氧化工艺 热氧化工艺的原理就是在硅衬底上生成高质量的二氧化硅薄膜。热氧化工艺分为干氧氧化和湿氧氧化。反应方程式如下: Si+2H2O→SiO2+2H2湿氧氧化 Si+O2→SiO2干氧氧化 热氧化是高温工艺。在高温下,一开始是氧原子与硅原子结合,二氧化硅的生长是一个线性过程。大约长了500?之后,线性阶段达到极限。为了保持氧化层的生长,氧原子与硅原子必须相互接触。在二氧化硅的热生长过程中,氧气扩散通过氧化层进入到硅表面,因此,二氧化硅从硅表面消耗硅原子,氧化层长入硅表面。随着氧化层厚度的增加,氧原子只有扩散通过更长的一段距离才可以到达硅表面。因此从时间上来看,氧化层的生长变慢,氧化层厚度、生长率及时间之间的关系成抛物线形。 高质量的二氧化硅都是在800℃~1200℃的高温下生成,而且其生成速率极其缓慢。其中湿氧氧化速率要高于干氧氧化。在氧化过程中,硅与二氧化硅的界面会向硅内部迁移,这将使得Si表面原有的污染物移到氧化膜表面而形成一个崭新的界面。 热氧化法生长二氧化 常用的热氧化装置(图一),由电阻式加热的炉身、圆柱形熔凝石英管、石英舟以及气体源组成。将硅片置于用石英玻璃制成的反应管中,反应管用电阻丝加热

热处理工艺方法

典型零件热处理工艺方法 发布时间: 2007-5-05 21:36 作者: 网络转载来源: 字体: 小中大 | 上一篇下一篇 | 打印 a、紧固件的热处理 1)螺栓、螺钉和螺柱的力学性能。 2)螺母力学性能。 3)不同强度级别、不同之境的螺栓所对应的钢号。 4)钢材球化退火工艺。 5)螺栓和螺母用部分合金钢热处理规范。 6) 35、45钢螺栓和螺母热处理规范。 7)螺栓和螺母低碳合金钢的热处理和力学性能。 8)几种不锈钢热处理规范及力学性能。 9)几种钢材的高温力学性能。 10)几种钢材低温冲击值。 11)弹性垫圈及弹性挡圈的技术要求。 12)销的材料选用及热处理。 13)铆钉用材料、热处理机表面处理。 b、大型铸件的热处理 1)大型铸件的热处理。 c、模具的热处理内增加。 1)塑料模的热处理 塑料模具的工作条件和分类。 塑料模具的主要失效形式。 塑料模具材料的选用。 塑料模具的热处理工艺。 2)提高模具性能和寿命的途径 高强韧模具材料的应用及效果实例。 模具强韧化处理应用实例。 常用模具钢真空淬火工艺参数。 模具表面强化技术及应用实例。 d、轴类零件的热处理内增加 1)连杆 连杆材料。 常用碳素钢和合金结构钢连杆的调质工艺。 经不同工艺处理的40Cr和45钢连杆的力学性能。 连杆的常见热处理缺陷及预防补救措施。 2)活塞销 活塞销的服役条件和失效方式。 活塞销材料。

活塞销的渗碳热处理工艺。 活塞销常见热处理缺陷及预防补救措施。 3)挺杆 挺杆的服役条件和失效方式。 挺杆的材料。 各种挺杆的热处理工艺及技术要求。 冷镦合金铸铁挺杆的热处理工艺。 e、机床零件的热处理 1)机床导轨的热处理 导轨服役条件及失效形式。 机床导轨材料。 铸铁导轨的感应淬火。 灰铸铁导轨感应淬火常见缺陷及解决办法。 铸铁导轨的火焰淬火。 铸铁导轨的接触电阻加热淬火。 2)机床主轴的热处理 机床主轴的服役条件和失效方式。 机床主轴材料。 机床主轴的热处理工艺。 3)机床丝杠的热处理 机床丝杠的服役条件和失效方式。 机床丝杠材料。 机床普通丝杠的热处理工艺。 机床滚珠丝杠的热处理工艺。 4)机床离合器零件的热处理。 f、液压元件的热处理 1)齿轮泵零件的热处理。 2)叶片泵零件的热处理。 3)柱塞泵零件的热处理。 4)液压阀零件的热处理。 g、化工机械零件的热处理 1)压力容器的热处理。 压力容器的失效。 压力容器用碳钢和低合金钢的力学性能。 压力容器用低温钢和不锈钢的力学性能。 压力容器用耐热钢和抗氢钢的力学性能。 压力容器用不锈钢铸件的力学性能。 压力容器用钢的正火工艺。 各种压力容器用钢最佳回火温度。 各种压力容器用钢的去应力退火温度及保温时间。

常见的热处理方法

常见的热处理方法、目的和工序位置的安排 由于热处理工序安排对车削类工艺影响较大,更重要的是往往由于热处理工序安排颠倒,使工件无法继续加工,而且所产生的废品往往是无法挽回的。为此对热处理工序的安排要加以了解,并引起重视。 下面将常见的热处理方法、目的和工序位置的安排分别介绍如下: 一、预备热处理 预备热处理包括退火、正火、调质和时效等。这类热处理的目的是改善加工性能,消除内应力和为最终热处理做好组织准备。退火、正火、调质工序多数在粗加工前后,时效处理一般安排在粗加工、半精加工以后,精加工之前。 1.退火和正火 目的是改善切削性能,消除毛坯内应力,细化晶粒,均匀组织;为以后热处理作准备。 例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理; 含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。 一般用于锻件、铸件和焊接件。退火一般安排在毛坯制造之后,粗加工之前进行。2.调质 目的是使材料获得较好的强度、塑性和韧性等方面的综合机械性能,并为以后热处理作准备。 用于各种中碳结构钢和中碳合金钢。调质一般安排在粗加工之后,半精加工之前。 调质是最常用的热处理工艺。大部分的零件都是通过调质处理来提高材料的综合机械性能,即提高拉伸强度、屈服强度、断面收缩率、延伸率、冲击功。调质处理能大大提高材料的拉伸和屈服强度,提高屈强比和冲击功,使材料具有强度和塑韧性的良好配合。由于屈服强度、疲劳强度、冲击强度的提高,在零件设计时就可以采用更小的材料截面,从而减少机械设备的整体重量,节省零件占用空问和能量消耗。因此在某些场合为了减少机械空间和机械重量在设计过程中要有意识地利用调质工艺。 需要强调的是,一般来讲调质钢应该为中碳钢( C = 0.3%~0.6%);碳钢中像30、 35、40、45、50等钢种则既可以调质处理又可以正回火使用;而对高碳钢和低碳钢则 不宜采用调质工艺 调质过程是淬火加高温回火。首先需要将零件加热到材料的Acl点以上30~50℃ (800.950℃),保温一定时间,然后在油中或水中冷却。冷却后立即入炉进行回火(500~650℃),以降低淬火应力、调整组织成份,进而达到机械性能要求。而回火温度的制定是根据硬度或性能高低而定的,硬度和强度越高,回火温度越低。调质工序后的任何高于回火温度的加热,都将降低已达到的强度。 选择调质处理时应特别注意以下几点: (1)图纸中应明确要求 应明确写明“调质”。若只写“热处理…H B”外协厂家可能采用其他热处理工艺,比如正回火达到所要求的硬度。而正回火所达到的同样硬度的材料其屈服强度和冲击功会非常低。实际工作中曾发生过地脚螺栓使用时发生早期断裂的事故就是由此导致的。 (2)调质的硬度和硬度范围 要按材料标准选择调质的硬度和硬度范围。这一方面有利于工厂配炉生产,另一方面过窄的硬度范围要求在实际生产中根本无法满足。

高一化学《化学实验基本方法》教案

第一章从实验学化学 第一节化学实验基本方法 一、教材分析 1.教学内容分析 “化学实验基本方法”在强调化学实验安全性的基础上,通过“粗盐的提纯”实验,复习过滤和蒸发等操作。蒸馏则是在初中简易操作的基础上引入使用冷凝管这一较正规的操作。在复习拓宽的基础上又介绍一种新的分离和提纯方法——萃取。本节还结合实际操作引入物质检验的知识,这样由已知到未知,由简单到复杂,逐步深入。 2.教学重点的分析与确定: 化学是以实验为基础的科学,通过让学生讨论一些实验问题来初步体会化学研究的方法。初中化学已经介绍了药品的取用、物质的加热、仪器的洗涤、天平的使用等基本操作,也介绍了过滤、蒸发等分离操作。本节选择粗盐提纯这一涉及基本操作较多的典型实验,复习实验原理和步骤,使学生掌握溶解、过滤、蒸发、离子检验等基本操作。进而继续学习蒸馏和萃取等新的分离方法,使学生的实验技能进一步提高。基于以上观点: 教学重点:混合物的分离与离子的检验,分离与提纯过程的简单设计。 3.教学难点的分析与确定: 从三维目标的层面上来看,掌握化学实验方法是学习化学的重要途径。能根据物质的性质设计分离和提纯的方案,并在初步掌握溶解、过滤的基础上学习蒸馏、萃取的操作,可以由已知到未知,由简单到复杂,逐步深入,并可为选修课《实验化学》中相关知识的学习打下良好的基础。基于以上观点: 教学难点:物质检验试剂的选择,蒸馏、萃取的操作,分离与提纯过程的简单设计。 二、学生分析 1.学生有一定知识基础,学习较为主动,有学习动机和兴趣,能与教师和同学进行良好的交流与合作,能够达到预定的学习目标与要求,积极关注教师创设的问题情景,积极主动参与到学习活动中去,学生在学习活动中能提出有意义的问题或能发表个人见解,能按要求正确操作,能够倾听、协作、分享。 2.学生在初中的学习过程中已经接触到一些实验知识,本章第一节的内容是对初中已有的有关实验知识的拓宽和提升。初中学生实验过程中已经涉及一些实验安全问题、分离的方法。已经初步了解了粗盐提纯的方法,蒸馏的简易装置。在本章中要在初中学习的基础上巩固粗盐提纯的操作,掌握蒸馏的实验室正规的装置和规范的操作,学习新的分离提纯的方法——萃取,还要了解有关离子的验检。可以看到第一节中学生学习的重点是混合物的分离与离子的检验。在分离提纯的学习过程中纯盐提纯有关的操作学生比较熟悉,其学习的难度不大。但对于课本中提到的提纯后溶液依然存在的杂质如何设计简单的实验进行分离提纯,对

冷热循环测试

一、检验项目:冷热循环 二、定 义:针对待测物(以下简称为试片)做-30℃~80℃之温度循环24次测试。 三、适用范围:本标准检验方法适用于公司所有须做信赖度测试之试片。 四、目 的:本实验的目的在仿真原料储存、运输及生产制造时所碰到的最恶劣情况。 五、样品准备: 1、制备FILM 试片的规格为150mm*150mm 。 2、制备GLASS 试片的规格为300mm*300mm 以上。 3、成品 六、使用装置:环境测试机*1。 七、操作步骤: 1、将试片测得线性,并制作表(一)。(请参考线性标准检验方法RY-STD-01-004)。 2、打开环境测试机扣环,将试片立于放置架上,扣上门环。 3、确认冷水塔及空压机有无运作,打开其开关。 4、按下POWER(红色),显示MENU 选单。 5、先按SHIFT + MONI 或直接按(1)进入MONITOR 1。 6、确认MODE = P. STOP(在停止状态中)。 7、进入MENU/SUB SET MENU 画面确认在OPERATE MODE 选择PRG 。 8、进入MONI 1,按R/S 键即可测试。 9、测试完毕后,仪器会自动停止,取出试片于室温下静置24小时。 10、进行线性后测。(请参考线性标准检验方法RY-STD-01-004) 11、进行外观测试,并制作表(二)。(请参考外观检测标准检验方法RY-STD-02全项) 12、进行透过率测试,并制作表(三)。(请参考透过率标准检验方法RY-STD-03-008) 冷 热 循 环 Figure4-2: 温度循环示意图 八、检验数据处理: 1、表(一):线性测试记录(《产品测试记录表》)。 2、表(二):外观检测记录。 3、表(三):透过率检测记录。

高一化学必修1 化学实验基本方法(2)

高一化学必修1 化学实验基本方法(2) 【学习目标】 1.初步了解根据混合物的性质,选择不同的分离方法对物质进行分离。 2.掌握过滤、蒸发等实验操作。 【学习重点】根据混合物的性质,选择不同的分离方法对物质进行分离。 【预备知识】 1.过滤是分离___________________________混合物的方法。 仪器: 操作要点: 2.蒸发是用__________________________的方法较少溶液中的__________,使_________从溶液中析出的方法,该方法又称为蒸发结晶。 仪器: 操作要点:液体的量不得超过蒸发皿容量的__________;加热过程中,用玻璃棒__________ ______________,以免_______________________________________________;当_____________ ____________________________时,停止加热。 3.常见离子的检验

【基础知识】 自然界中的物质绝大多数以_______________的形式存在。 根据组成混合物的物质状态不同,可分为: 一、粗盐提纯 粗盐属于____________________混合物。 如果要除去粗盐中含有的可溶性杂质CaCl2、MgCl2及一些硫酸盐,按下表所示顺序,应加入什么试剂?

在实际操作中,能否做到适量即加入试剂与杂质恰好完全反应呢? 加入你选择的试剂除掉杂质后,有没有引入其他离子?想一想可用什么方法再把它们除去? 调换以上三种试剂的顺序,对结果会有影响吗? 除杂质的原则是____________________________________________________________。 在实际进行方案设计时,除要考虑所加试剂外,还要考虑加入试剂的__________________、____________、以及_________________________________等。 思考:KNO3中若含有K2SO4和KOH等杂质,想一想,应加入什么试剂除去? 【过关训练】 A组 1.实验室里进行过滤和蒸发操作时,都要用到的仪器是()

热氧化工艺的双面率的研究

热氧化工艺的双面率的研究 发表时间:2019-03-28T11:00:54.287Z 来源:《电力设备》2018年第28期作者:李跃恒杨爱静陈璐 [导读] 摘要:二氧化硅(SiO2)薄膜是一种良好的表面钝化膜和介质膜, 广泛应用于太阳电池和微电子工艺。(中电投西安太阳能电力有限公司陕西西安 710100) 摘要:二氧化硅(SiO2)薄膜是一种良好的表面钝化膜和介质膜, 广泛应用于太阳电池和微电子工艺。二氧化硅薄膜的制备方法主要有热氧化法和化学气相沉积法。热氧化工艺是指在高温(600 -1000 ℃)下氧化硅片表面形成SiO2 薄膜, 包括干氧氧化、湿氧氧化以及水汽氧化。 使用氧化炉在高温有氧条件下生成致密性较好的二氧化硅层在PERC电池上会引起对杂质的再分布,对电池的电性能提升,有一定的效果。 关键词:热氧化;双面率;电池转化效率 0引言 目前常规电池的生产中主要是利用PECVD沉积SiNx膜作为钝化减反射膜,SiNx膜具有优良的氢钝化和减反射作用,但是SiNx膜与Si 的晶格匹配性较差,导致SiNx/Si界面缺陷密度较高,而SiO2/Si具有良好的界面性能,因此硅片在刻蚀工序后,先在其表面热生长一层SiO2层,再镀SiNx膜,形成SiO2/SiNx双层减反钝化膜可以有效改善硅片的表面钝化。 1实验部分 1.1实验原理 热氧化生长SiO2膜的方法即是在高温条件下,用干燥的纯氧直接与硅片表面的不饱和硅原子结合形成SiO2,其化学反应方程式为: Si+O2 SiO2 1.2实验方法 采用P型硅多晶薄片作为衬底,面积为156.75 mm*156.75 mm,厚度为200±20nm,使用设备为热氧化扩散炉。工艺流程: 2结果和讨论 2.1热氧化对电池正面的电性能影响 通过以上的电性能可以看出,经过热氧化生成的二氧化硅的钝化和退火作用,开压、填充有了极大地提高,转化效率有0.3%的提高。 2.2目前,在行业内大部分制作的是双面PERC电池,大家对双面率都有一定的要求,通过热氧化退火工艺虽然增加了电池正面的转化效率,但是否满足双面率的要求,有待进一步验证。以下实验是对双面PERC电池的双面率验证的电性能参数: 通过上述实验验证,可以看出,热氧化的双面率较非热氧化电池的双面率高出2%,热氧化工艺对背面的电池效率也有0.5%左右的提高。 3结论 经过热氧化生成的二氧化硅的钝化和退火作用,开压、填充有了极大地提高,转化效率有0.3%的提高;热氧化的双面率较非热氧化电池的双面率高出2%,热氧化工艺对背面的电池效率也有0.5%左右的提高。

常见零件的热处理方式

一、齿轮 1.渗碳及碳氮共渗齿轮的工艺流程 毛坯成型→预备热处理→切削加工→渗碳(碳、氮共渗)、淬火及回火→(喷丸)→精加工2.感应加热和火焰加热淬火齿轮用钢及制造工艺流程 配料→锻造→正火→粗加工→精加工→感应或火焰加热淬火→回火→珩磨或直接使用调质 3.高频预热和随后的高频淬火工艺流程 锻坯→正火→粗车→高频预热→精车(内孔、端面、外圆)滚齿、剃齿→高频淬火→回火→珩齿 二、滚动轴承 1.套圈工艺流程 棒料→锻制→正火→球化退火 棒料→钢管退火磨→补加回火→精磨→成品 2.滚动体工艺流程 (1)冷冲及半热冲钢球 钢丝或条钢退火→冷冲或半热冲→低温退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (2)热冲及模锻钢球 棒料→热冲或模锻→球化退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (3)滚子滚针 钢丝或条钢(退火)→冷冲、冷轧或车削→淬火→冷处理→低温回火→粗磨→附加回火→精磨→成品 三、弹簧 1.板簧的工艺流程

切割→弯制主片卷耳→加热→弯曲→余热淬火→回火→喷丸→检查→装配→试验验收 2.热卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→淬火→回火→喷丸→磨端面→试验验收 3.冷卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→去应力回火→淬火→回火→喷丸→磨端面→试验验收 四、汽车、拖拉机零件的热处理 1.铸铁活塞环的工艺流程 (1)单体铸造→机加工→消除应力退火→半精加工→表面处理→精加工→成品 (2)简体铸造→机加工→热定型→内外圆加工→表面处理→精加工→成品 2.活塞销的工艺流程 棒料→粗车外圆→渗碳→钻内孔→淬火、回火→精加工→成品 棒料→退火→冷挤压→渗碳→淬火、回火→精加工→成品 热轧管→粗车外圆→渗碳→淬火、回火→精加工→成品 冷拔管→下料→渗碳→淬火、回火→精加工→成品 3.连杆的工艺流程 锻造→调质→酸洗→硬度和表面检验→探伤→校正→精压→机加工→成品 4.渗碳钢气门挺杆的工艺流程 棒料→热镦→机加工成型→渗碳→淬火、回火→精加工→磷化→成品 5.合金铸铁气门挺杆的工艺流程 合金铸铁整体铸造(间接端部冷激)→机械加工→淬火、回火→精加工→表面处理→成品合金铸铁整体铸造(端部冷激)→机械加工→消除应力退火→精加工→表面处理→成品钢制杆体→堆焊端部(冷激)→回火→精加工→成品 钢制杆体→对焊→热处理→精加工→表面处理→成品 6.马氏体型耐热钢排气阀的工艺流程 马氏体耐热钢棒料→锻造成型→调质→校直→机加工→尾部淬火→抛光→成品 7.半马氏体半奥氏体型耐热钢(Gr13Ni7Si2)排气阀的工艺流程

热循环试验

浙江环球光伏科技有限公司 文件编号:GP/JS-SY-10 拟制杨天峰作业指导书版本B 审核 热循环试验页次1/2 批准颁发日期 目的: 确定组件承受由于温度重复变化而引起的热失配、疲劳和其它应力的能力。 器具及材料: 器具材料 名称数量名称数量可编程高低温湿热试验箱1台试验组件若干高纯水设备1台 温湿度计1支 制定依据: IEC 61215-2005 《Crystalline silicon terrestrial photovoltaic (PV) modules–Design qualification and type approval》 作业过程: 1 准备工作 1.1 检查可编程高低温试验箱能否正常工作; 1.2 测试试验组件的功率、红外测试并保存相片; 1.3 对试验组件进行绝缘测试。 2 测试 2.1 在室温下将试验组件放入气候室里;如组件的边框导电不好,将其安装在一金属框架上来模拟敞开式支承架。 2.2 将温度传感器接到温度监测仪,将组件的正极引出端接到提供电流仪的正极,负极连接到其负极。在200次热循化试验中,对组件施加等于标准测试条件下最大功率点电流±2%。仅在组件温度超过25℃时保持流过的电流。50次的热循环试验不要求施加电流。 2.3关闭气候室,按下图的分布,使组件的温度在-40℃±2℃和+85℃±2℃之间循环。最高和最低温度之间温度变化的速率不超过100℃/h,在每个极端温度下,应保持稳定至少10min,除组件的热容量很大需要更长的循环时间外,一次循环时间不超过6h; 2.4在整个试验过程中,记录组件的温度,并监测通过组件的电流。

浙江环球光伏科技有限公司 文件编号:GP/JS-SY-10 拟制杨天峰作业指导书版本B 审核 热循环试验页次2/2 批准颁发日期 2.5组件经过至少1h恢复期后,重复外观检验,绝缘试验以及最大功率确定试验。 3通过标准 3.1在试验过程中无电流中断现象; 3.2 无严重外观缺陷; 3.3最大输出功率衰减不超过试验前测试值的5%; 3.4绝缘电阻满足初始试验同样要求。 3.4.1 对于面积小于0.1㎡的组件绝缘电阻不小于400MΩ; 3.4.2 对于面积大于0.1㎡的组件,测试绝缘电阻乘以组件面积应不小于40MΩ·㎡。 4注意事项 4.1每次试验前均应检修设备,清洗擦拭设备表面及内部的灰尘,气候室内用酒精擦拭; 4.2绝缘耐压测试仪开机后预热20-30分钟后再进行操作; 4.3 每次绝缘测试结束后将正负极短接放电。