新版量子力学教程(很多老师用过)(免费)-新版-精选.pdf

新版量子力学教程(很多老师用过)(免费)-新版-精选.pdf
新版量子力学教程(很多老师用过)(免费)-新版-精选.pdf

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学知识精要与真题详解

量子力学知识精要与真题详解,益星学习网可免费下载题库 目录 第一章量子力学的诞生 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第二章波函数与Schr?dinger方程 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第三章一维定态问题 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第四章力学量用算符表达与表象变换 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第五章力学量随时间的演化与对称性 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第六章中心力场 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第七章粒子在电磁场中的运动 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第八章自旋 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第九章力学量本征值问题的代数解法 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十章定态问题的常用近似方法 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十一章量子跃迁

第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十二章散射 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 附录 1.南京大学2008年《量子力学》考研试题与答案2.浙江大学2009年《量子力学》考研试题与答案3.武汉大学2007年《量子力学》考研试题与答案4.吉林大学2009年《量子力学》考研试题与答案5.北京师范大学2009年《量子力学》考研试题与答案6.西安交通大学2006年《量子力学》考研试题与答案

第一讲 量子力学

第二章波函数与Schr?dinger 方程微观粒子具有波粒二象性,经典牛顿力学及波动理论不再适用,必须从全新的观点和理念来认识微观世界,建立新的理论(既容许波动性)也容许粒子性)。内容概要:物质波概念1.1 物质波概念1.2 波函数及量子态叠加原理波动力学形式E.Schr?dinger 1.3 Schr?dinger方程 E. Schr?dinger 1887—1961

1.1 物质波的提出 11 Planck,Einstein 光量子论: λ/ E= hv = ,h p Bohr 量子论: 1. 原子具有能量不连续的定态; 1原子具有能量不连续的定态; 2. 两个定态间量子跃迁及频率条件 贡献:原子辐射能级和原子两个定态能级差联系起来,打开了人类认识原子结构的大门。1922年,Bohr诺贝尔奖。缺点:人为性太强,并未从根本上解决不连续本质。 人为性太强并未从根本上解决不连续本质。

1924年法国大学生1924年,法国大学生德布罗意在他向巴黎 大学理学院提交的博士论文中建议,既然, 知道光有波动和粒子双重性质,那么,物质粒子——特别是电子——或许也有波动和粒 子双重性质。这种建议是出于高度的推测, 因为当时并没有任何实验证据。德布罗意根据光子满足的方程用类比的方式提出物质粒德布罗意根据光子满足的方程,用类比的方式提出物质粒子也具有波粒二象性(物质波), de Broglie 关系

de Broglie把原子中的定态与驻波的频率及波长不连续性联系起来。 性联系起来 意义:1. 物质存在的两种形式,光和实物粒子统一起来。 2. 更深刻地理解微观粒子能量不连续性,克服 Bohr理论人为性质的缺陷。 Bohr理论人为性质的缺陷

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

量子力学教程-周世勋-课程教案(轻松学量子力学)

量子力学讲义

一、量子力学是什么? 量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。 研究对象:微观粒子,大致分子数量级,如分子、原子、原子核、基本粒子等。 二、量子力学的基础与逻辑框架 1.实验基础 ——微观粒子的波粒二象性: 光原本是波 ——现在发现它有粒子性; 电子等等原本是粒子 ——现在发现它有波动性。 2.(由实验得出的)基本图象 —— de Broglie 关系与波粒二象性 Einstein 关系(对波动):E h ν=,h p λ = de Broglie 关系(对粒子): E =ω, p k = 总之,),(),(k p E ω? 3.(派生出的)三大基本特征: 几率幅描述 ——(,)r t ψ 量子化现象 —— ,,,321E E E E = 不确定性关系 ——2 ≥ ???p x 4.(归纳为)逻辑结构 ——五大公设 (1)、第一公设 ——波函数公设:状态由波函数表示;波函数的概率诠释;对波函数性质的要求。 (2)、第二公设 ——算符公设 (3)、第三公设 ——测量公设 ?=r d r A r A )(?)(* ψψ (4)、第四公设 ——微观体系动力学演化公设,或薛定谔方程公设 (5)、第五公设 ——微观粒子全同性原理公设 三、作用 四、课程教学的基本要求 教 材:《量子力学教程》周世勋, 高等教育出版社 参考书:1. 《量子力学》,曾谨言,2. 《量子力学》苏汝铿, 复旦大学出版社 3. 《量子力学习题精选与剖析》钱伯初,曾谨言, 科学出版社

第一章 绪论 §1.1 辐射的微粒性 1.黑体辐射 所有落到(或照射到)某物体上的辐射完全被吸收,则称该物体为黑体。G. Kirchhoff (基尔霍夫)证明,对任何一个物体,辐射本领)T ,(E ν与吸收率)T ,(A ν之比是一个与组成物体的物质无关的普适函数,即 )T ,(f )T ,(A )T ,(E ν=νν (f 与物质无关)。 辐射本领:单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,以)T ,(E ν表示。在t ?时间,从s ?面积上发射出频率在 ν?+ν-ν 范围内的能量为: ν???νs t )T ,(E )T ,(E ν的单位为2 /米焦耳;可以证明,辐射本领与辐射体的能量密度分布的关系为 )T ,(u 4 c )T ,(E ν=ν ()T ,(u ν单位为秒米 焦耳3 ) 吸收率:照到物体上的辐射能量分布被吸收的份额。由于黑体的吸收率为1,所以它的辐射本领 )T ,(f )T ,(E ν=ν 就等于普适函数(与物质无关)。所以黑体辐射本领研究清楚了,就把普适函数(对物质而言)弄清楚了。我们也可以以)T ,(E λ来描述。 ????λ λ ν=λλλν=λλ νν=ννd c )T ,(E d d c d ) T ,(E d d d ) T ,(E d )T ,(E 2 )T ,(E c )T ,(E 2 νν = λ (秒米焦耳?3 ) A. 黑体的辐射本领 实验测得黑体辐射本领 T ,(E λ与λ的变化关系在理论上, ① 维恩(Wein )根据热力学第二定律及用一模型可得出辐射本领 h 32 e c h 2)T ,(E ν-νπ= ν ?? ?=π=k h c c h 2c 22 1(k 为Boltzmann 常数:K 1038.123 焦耳-?)

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.360docs.net/doc/c510629863.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

量子力学教程(周世勋)课后答案详解-第一二章

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(| |5 2-?=?===kT hc v v e hc c d c d d dv λνλ λ πλλρλ λλρλ ρρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学知识精要与真题详解

量子力学知识精要与真 题详解 Document number:BGCG-0857-BTDO-0089-2022

量子力学知识精要与真题详解,益星学习网可免费下载题库目录 第一章量子力学的诞生 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第二章波函数与Schr?dinger方程 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第三章一维定态问题 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第四章力学量用算符表达与表象变换 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第五章力学量随时间的演化与对称性 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解

第六章中心力场 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第七章粒子在电磁场中的运动 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第八章自旋 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第九章力学量本征值问题的代数解法第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十章定态问题的常用近似方法 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十一章量子跃迁 第一节重点与难点解析

第二节名校考研真题详解 第三节名校期末考试真题详解 第十二章散射 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 附录 1.南京大学2008年《量子力学》考研试题与答案2.浙江大学2009年《量子力学》考研试题与答案3.武汉大学2007年《量子力学》考研试题与答案4.吉林大学2009年《量子力学》考研试题与答案5.北京师范大学2009年《量子力学》考研试题与答案6.西安交通大学2006年《量子力学》考研试题与答案

量子力学第一章总结

第一章 1.量子力学:量子力学 是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论 2.黑体辐射:如果一个物体能够吸收投射在它上面的全部辐射而无反射,这种物体就成为绝对黑体,简称黑体。一个空腔可以看做是黑体。由这样的空腔小孔发出的辐射就是黑体辐射 3.光电效应/光电子/临界 频率 (1)光电效应:当光照射到 金属上时,有电子从金属中溢出.这种电子称为光电子 (2)实验证明,当光的频率大于一定值时,才有光电子发射出来;如果光的频率低于这个值,则不论光强多大,照射时间多长,都没有光电子产生。这个频率称为 临界频率 4.脱出功:电子克服原子核 的束缚,从材料表面逸出所需的最小能量,称为脱出功 5.光量子:电磁辐射不仅在被发射和吸收时以能量h ν形式出现,而且以这种形式以光速C 在空间中运动,这种粒子叫做光量子 或光子 6.光子动量:光子不仅具有确定的能量E = hv ,而且具有动量。光子的能量动量关系式: 7.氢原子谱线线系/里德伯 常数: 氢原子光谱有许多分立谱线组成,这是很早就发现了的。巴尔末发现紫外光附近 的一个线系,并得出氢原子谱线 的经验公式是: 其中R H =1.09677576×107m -1 是氢的Rydberg 常数 8.波尔的量子论: (1)波尔假定 (2)氢原子线光谱的解释 (3)量子化条件的推广 (4)波尔量子论的局限性 9.波尔假定: 电子在原子中不能沿着经典理论所允许的每一个轨道运动,而只能沿着其中一组特殊的轨道运动,波尔假设沿这一组特殊的轨道运动的电子处于稳定状态(简称定态),当电子保持在这种状态时,它们不吸收也不发出辐射,只有当电子 由一个定态跃迁到另一个 定态时,才会产生辐射的吸收和发射现象。电子由能量为Em 的定态跃迁到能量为En 的定态时所吸收或发射的辐射频率v 满足下面关系: V nm =[E n -E m ]/h 为了确定电子运动的可能轨道,波尔提出量子化条件:在量子理论中,角动量必须是h 的整数倍 10.波尔半径:氢原子核外电子基态轨道的半径就是波尔半径 即为波尔轨道半径 11.角动量:物体绕轴的线速度与其距轴线的垂直距离的乘积,即 L=r ×p 12,索末菲量子化条件: 索末菲将Bohr 量子化条件推广为推广后的量子化条件可用于多自由度情况, ∮p i dq i =n i h 其中p i 是广义动量,q i 是 相应的一个广义坐标, 这样索末菲量子化条件不仅能解释氢原子光谱,而且对于只有一个电子(Li ,Na ,K 等)的一些原子光谱也能很好的解释。 13.束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态。(一般地说束缚态所属的能级是分立的) 14.康普顿散射:X 射线被轻元素如白蜡、石墨中的电子散射后,除了出现与入射波同样波长的散射外,还出现波长向长波方向移动的散射现象。 15.电子的康普顿波长 Δλ=2λ0sin 2 (θ/2) 其中 λ0=2πh/(m 0C)=2.4×10-10 cm 称为电子的康普顿波长 16.普朗克假定/普朗克辐射定律/普朗克常数 普朗克假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E = hv 为能量单位不连续的发射和吸收辐射能量,而不是像经典理论所要求的那样可以连续的发射和吸收辐射能量。 普朗克辐射定律: 普朗克常数为: h=6.62606896(33)×10-34 J ·s 通常使用h=6.63×10-34J ·s 17.德布罗意关系 假定与一定能量E 和动量P 的实物粒子相联系的波(物质波)的频率波长为: E=hv v=E/h P=h/λ λ=h/p 该关系称为德布罗意关系

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

福师《结构化学》第一章 量子力学基础和原子结构 课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

量子力学知识精要与真题详解

量子力学知识精要与真题 详解 Final revision on November 26, 2020

量子力学知识精要与真题详解,益星学习网可免费下载题库 目录 第一章量子力学的诞生 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第二章波函数与Schrdinger方程 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第三章一维定态问题 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第四章力学量用算符表达与表象变换 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第五章力学量随时间的演化与对称性 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第六章中心力场 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第七章粒子在电磁场中的运动 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第八章自旋 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第九章力学量本征值问题的代数解法 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十章定态问题的常用近似方法 第一节重点与难点解析

第二节名校考研真题详解 第三节名校期末考试真题详解 第十一章量子跃迁 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 第十二章散射 第一节重点与难点解析 第二节名校考研真题详解 第三节名校期末考试真题详解 附录 1.南京大学2008年《量子力学》考研试题与答案2.浙江大学2009年《量子力学》考研试题与答案3.武汉大学2007年《量子力学》考研试题与答案4.吉林大学2009年《量子力学》考研试题与答案5.北京师范大学2009年《量子力学》考研试题与答案6.西安交通大学2006年《量子力学》考研试题与答案

-第1章-量子力学基础详细讲解

第1章、 量子力学基础 1.1 量子力学和量子光学发展简史 1900,Planck (普朗克),黑体辐射,能量量子化: h εν= 1905,Einstein (爱因斯坦), 光电效应,光量子–光子: E h ν=, h p λ= (h h E p c c νλ===) 1913,Bohr (玻尔), 原子光谱和原子结构,定态、量子跃迁及跃迁频率: ()/mn m n E E h ν=- 1923, de Broglie (德布罗意), 物质粒子的波动性,物质波: E h ν=,h p λ= 1925, Heisenberg (海森堡), 矩阵力学 1926, Schr?dinger (薛定谔), 波函数(),r t ψ ,波动方程- Schr?dinger 方程,波动力学: ()(),,i r t H r t t ψψ?=? 1926, Born (波恩), 波函数的统计诠释:()2 ,r t ψ 为概率密度, ()2,1dr r t ψ=? 1926, Dirac (狄拉克),狄拉克符号、态矢量ψ、量子力学的表象理论 1927, Dirac ,电磁场的量子化 1928, Dirac ,相对论性波动方程 至此,量子力学的基本架构已建立,起初主要用其处理原子、分子、固体等实物粒子问题。尽管量子力学在处理实际问题中获得了巨大成功,但是关于量子力学的基本解释和适用范围一直存在争论,最著名的有: 1935, Schr?dinger 猫态 1935, EPR 佯谬 1960 前后,量子理论用于电磁场:量子光学 1956, Hanbury Brown 和Twiss ,强度关联实验 1963, Glauber (2005年诺奖得主),光的量子相干性 1963, Jaynes & Cummings, J-C 模型:量子单模电磁场与二能级原子的相互作用 1962-1964, 激光理论(Lamb, Haken, Lax 三个主要学派) 1970’s, 光学瞬态、共振荧光、超荧光、超辐射 1980’s ,光学双稳态 1990’s ,光场的非经典性质(反群聚效应、亚泊松分布、压缩态)、

第一章 量子力学基础知识 (1)

第一章量子力学基础知识 1.填空题 (1) Ψ是描述的波函数(北京大学1993年考研试题) (2) 实物粒子波动性假设由首先提出来的,实物粒子的波是波。 (3) 德布罗意假设首先由戴维逊和革末用实验证实的。 (4) 在一维无限深势阱中,粒子的活动范围宽度增大,能引起体系的能量。 (5)Planck提出,标志着量子理论的诞生。(中山大学1998年考研试题) (6) 一维无限深势阱中的粒子,已知处于基态,在处概率密度最大。 (7) 边长为l的立方势箱中粒子的零点能为。(北京大学1993年考研试题) (8) 边长为l的一维势箱中粒子的零点能为。 (9) 有一质量为m的粒子在一维势箱中运动,其Schr?dinger方程为。(中山大学1998年考研试题) (10) 一维势箱的长度增加,其粒子量子效应(填增强、不变或减弱)。 2. 选择题 (1)粒子处于定态意味着:( ) A、粒子处于静止状态 B、粒子处于势能为0的状态 C、粒子处于概率最大的状态 D、粒子的力学量平均值及概率密度分布都与时间无关的状态 (2)波恩对波函数提出统计解释:在某一时刻t在空间某处发现粒子的概率与下面哪种形式的波函数成正比。( ) A、|Ψ| B、|Ψ |2 C、|Ψ |1..5 D、xy| Ψ| (3)指出下列条件,哪一个不是态函数的标准化条件?( ) A、单值 B、正交归一 C、有限 D、连续 (4)微观粒子的不确定关系式,如下哪种表述正确?( ) A、坐标和能量无确定值 B、坐标和能量不可能同时有确定值 C、若坐标准确量很小,则动量有确定值 D、动量值越不正确,坐标值也越不正确 (5)波长为662.6 pm 的光子和自由电子,光子的能量与自由电子的动能比为何值?( )

第一章 量子力学基础课后习题

第一章量子力学基础 第八组: 070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云 070601350陈辉辉 070601351唐枋北 【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论? [解]:困难:(1)黑体辐射问题。黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。这一结果用经典理论无法解释。(2)光电效应。光照射到金属上时,有电子从金属中逸出。实验得出的光电效应的有关规律同样用经典理论无法解释。(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。经典物理学不能解释原子的稳定性问题。原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。 定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。这种在量子力学建立以前形成的量子理论称为旧量子论。 评价:旧量子论冲破了经典物理学能量连续变化的框框。对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典

相关文档
最新文档