火力发电厂深度节水与废水零排放

火力发电厂深度节水与废水零排放
火力发电厂深度节水与废水零排放

火力发电厂汽水管道设计技术规定第一部分

火力发电厂深度节水与废水零排放综合系统

某电厂节水初步方案

各位领导:本文中的方案实例是针对某厂的具体情况,

各个厂会有不同状况

杭州凌浦环保科技有限公司

2015年

页脚内容1

1 现状和目标

1.1 现状

我国是一个水资源短缺的国家。虽然我国水资源的总量为28124亿立方米,居世界第六位,但人均占有量只有2300立方米,人均水资源占有量不足世界平均水平的四分之一。近年来随着水环境污染日益严重,水质污染型缺水越来越普遍,这更加剧了水资源的短缺。

电力工业是国民经济的支柱产业。改革开放以来,我国的电力得到了迅速发展。截至2014年底,全国发电装机容量13.6亿千瓦,其中,水电3亿千瓦,占全部装机容量的22.2%;火电9.16亿千瓦,占全部装机容量的67.4%;核电1988万千瓦,并网风电9581万千瓦,并网太阳能发电2652万千瓦。

火力发电厂是用水的大户,它的用水量约占工业用水的40%以上,仅次于农业用水。一个1000MW的火电厂耗水量相当于一个中小城市的用水量。与国外电厂先进的用水水平相比,我国火力发电厂用水量、排水量大的问题很严重。随着国家《节约能源法》、《环境保护法》和相应的用水、排水收费政策(水资源费、排水费、超标费)的颁布,以及《电力工业节水规划》等规定的逐步实施,对火电厂用、排水量和水质都有严格的指标限制。2012年,国务院颁布了《关于最严格水资源管理制度的意见》。我国火力发电厂装机平均水耗为国外的8-10倍,发电用水水平与国外相比有较大差距,节水潜力大,开展火力发电厂节水工作具有极大的现实意义,带来很大的经济效益和环境效益。同时火电厂也是排水大户。以国内现在常见的2台600MW机组为例,每天约有10000立方米的冷却塔排水需要外排;另外还有150立方米的工业废水、生活废水等需处理后外排或回用。

1.2 零排放

所谓零排放,是指不向外界排出对环境有任何不良影响的水,进入电厂的水最终只以蒸汽的形式蒸发到大气中,或以适当的形式封闭、填

页脚内容2

埋处置。实现废水零排放,电厂将实现最大程度的节水,同时由于不向外界水体排放废水,可以最大程度地保护水环境,是电厂用水的最高水平。随着节水技术的不断发展,实现全厂废水“零排放”是必然趋势。

零排放是电厂节水水平很高的用水模式,具有很好的社会环境效益,但是需要投入大量的资金和运行管理复杂等,这是目前废水零排放没有实现的真正原因。随着我国经济和电力的迅速发展,在我国北方多煤、少水的地区,水资源的可利用量日益减少,水价和排污费的不断上涨,电厂废水实现零排放是必然的。即使在水资源相对丰富的地区,随着环保要求的严格,实现废水的零排放也是电厂用水的必然趋势。真正实现电厂废水零排放是一项复杂的系统工程,由于各个电厂用水系统给水方式的不同,厂内用水分配不同和系统配置的不同,如采用水力除灰、干除灰或干法脱硫、湿法脱硫等,零排放实现的方案也不一样。由于零排放电厂中各个水系统的废水被完全的分级利用和处理后回用,因此应该选择合理的方式分配这些水量,以保证各个子系统用水的水量、水质、水温的要求;同时还要对各个用水子系统选择合适的给水方式,使其产生的废水量最少;还要把最后的末端废水处理掉才能达到真正零排放。

1.3 指标

火电厂设计耗水指标是电厂重要的经济评价指标(见下表),国内各项设计导则、规范、定额,对耗水指标有明确的规定。节水工作直接影响电厂的规划、生产运行水平和发展。

页脚内容3

1.4 目标

火力发电厂在节水工作上已经积极采取了一些有效措施,但是,对照我国严重缺水的形势和要求,仍然是不够的,发电厂还存在用水设计不合理、浪费严重、废水尚未全部回用的现状。电力公司可以建设深度节水及废水零排放的示范电厂。为达到目标,首先对全厂进行水平衡测试工作,摸清全厂用水现状,然后进行深度节水改造,在深度节水的基础上,逐步完成全厂废水“零排放”技改工程,实现全厂废水“零排放”。

1.4.1 系统目标

通过水质试验分析和水量平衡计算,合理提高循环冷却水浓缩倍率和优化系统、全厂废水综合利用,对主机和辅机系统采用有效的节水措施,可实现废水和循环冷却水排水全年零排放的节水目标,每百万千瓦容量设计耗水指标达到0.4~0.5m3/(s·GW),与设计规范和取水定额相比降低约45%,比全国同类电厂能效标杆机组先进值(排名前20名的电厂均值)降低约10%。

2 火力发电厂深度节水与废水零排放

2.1 火力发电厂全厂水平衡

要实现电厂全厂废水零排放,首先需要对电厂水源地来水和全厂各页脚内容4

系统水质、用水及排水流量情况监测,根据测试结果对各用水系统做出评价,绘制全厂水平衡图。分析用水状况存在的问题,提出解决办法,对各给水系统综合分析,统筹考虑,最终完成与电厂发展相结合的零排放。

2.1.1 全厂水平衡测试示例

某厂全厂水平衡测试后得到如下图的全厂水平衡图

根据水平衡图得出该厂水平衡测试结果

页脚内容5

全厂水平衡图和水平衡测试结果,是节水与废水零排放方案的基础。

2.2 火力发电厂给水系统

电厂用水单元一般可分为

循环冷却水系统

锅炉补给水系统(化学除盐水系统)

脱硫给水系统

灰渣给水系统

页脚内容6

工业冷却水系统

生活及消防水系统

杂用水系统等七个系统。

处理的方法

(1)对全厂用排水系统进行统筹考虑,对电厂整体进行水务治理。

(2)采用先进的节水技术及设备。

(3)加强水务管理。

(4)一水多用、梯级开发、废水零排放。

(5)采用中水,尽量不新增加采水。

2.2.1 循环冷却水系统

循环冷却型湿冷机组主要用水系统为循环冷却水补充用水、锅炉补给水系统用水、湿法脱硫系统工艺用水,上述系统用水占总用水量的60%~80%,

根据这一特点,循环冷却水系统水平衡优化确定为全厂水平衡优化工作的重要目标。

《中国节水技术政策大纲》规定:“在敞开式循环冷却水系统,推广浓缩倍率大于4倍的水处理运行技术;逐步淘汰浓缩倍率小于3倍的水处理运行技术”。《大中型火力发电厂设计规范》规定:“循环供水系统应根据环保要求全厂水量、水质平衡和补给水源确定排污量及浓缩倍率。当采用非海水水源时,浓缩倍率宜为3~5倍”。随着节水水平提高和零排放的要求,对浓缩倍率的要求也越来越高。因为提高循环冷却水浓缩倍率,能够从源头上直接减少补给水量和排污水量,降低废水处理量,但需要注意以下两个问题:

页脚内容7

(1)冷却水防结垢、控制微生物措施。

(2)凝汽器及辅机设备管材防腐蚀、抗冲刷措施。冷却水水质氯离子含量小于200mg/L,对水质要求较高的辅机冷却水采用原水处理系统供水;凝汽器管材选择SUS304不锈钢,管材预膜处理等。

2.2.1.1 循环冷却水系统的节水

循环冷却水系统的节水目标是在凝汽器及辅机设备管材能正常运行的前提下尽可能提高浓缩倍率。

①加酸处理

酸可以使水中的碳酸盐硬度转化为非碳酸盐硬度.因此向循环水中加入酸可以防止循环水浓缩时碳酸钙的析出。提高饱和钙离子浓度,在补充水水质基本不变的情况下提高浓缩倍率。另外,反应中生成的游离CO2也有利于抑制碳酸盐垢的析出。加酸量维持在循环水中碳酸盐硬度值低于极限碳酸盐硬度。单独加酸处理成本较低且简便有效。但对于水容量较大的系统,pH、碱度等指标的检测常滞后于加药时间。因此加酸量不容易控制。同时存在S042-对混凝土的腐蚀问题。

②硫酸-阻垢剂稳定处理

硫酸-阻垢剂处理是指在水体中先加入硫酸使补充水碱度降到一定程度后再加入阻垢剂如聚磷酸盐、有机阻垢剂等。从而达到阻垢和保证循环水稳定运行的目的。该法占地小、技术简单。但是需注意S042-浓度过高会侵蚀混凝土,同时用有机磷处理循环冷却水势必加强水生物的繁殖,加重腐蚀程度,所以药剂处理要同时考虑阻垢、缓蚀及杀菌等多方面的效果.一般可以考虑采用复合型阻垢剂。

③弱酸树脂交换处理

用弱酸离子交换树脂处理原水可降低水中的碳酸盐硬度及相应的碱度,再投加缓蚀剂可防止循环水系统的腐蚀。既可提高循环水浓缩倍率,又不会增加水中硫酸根离子。经弱酸树脂处理后加阻垢剂的水样中即使有CaCO3结晶产生,也不会马上从水中析出。该法适用于处理碳酸

页脚内容8

盐硬度比例高的水,优点是系统简单、运行条件好、交换容量大、易再生、酸耗较低。从根本上解决了结垢问题。缺点是运行费用高、占地面积大、废水排放量大。

④石灰软化-加酸-旁滤加药处理

补充水在预处理时就投加适当的石灰,除去水中的Ca2+、Mg2+。原水钙含量高而补水量又较大的循环冷却水系统常采用这种方法。经石灰处理的水,虽然碳酸盐碱度可以降低,但却有可能出现CaCO3沉淀,为消除这种不稳定性,可添加少量H2SO4。。该法优点是处理能力大,运行费用较低。缺点是投资大、对石灰粉纯度要求高、对环境影响大。

⑤旁流弱酸处理

除直接对循环系统补充水进行处理,还可对循环水进行旁流处理。其工艺流程如下:循环水塔池-循环泵-清水箱-清水泵-高效过滤器-弱酸交换器-循环水。该技术可有效去除循环水中的悬浮物,降低循环水的碳酸盐硬度。维持循环水高浓缩倍率运行,减少排污量。但含氯杀菌剂会对弱酸树脂的机械强度起一定的破坏作用,此外,弱酸离子交换反应速度慢,运行流速低,需要设备多,系统复杂。

⑥反渗透脱盐处理技术

随着膜处理技术的不断发展,现在也有厂家采用反渗透对循环冷却水进行软化、除盐处理。其脱盐率常在98%左右。一般≥95%。该处理法操作方便,易于实现自动化,是对弱酸树脂交换处理技术的新发展.并且脱盐效果好,有利于提高循环水水质,实现火电厂循环水系统零排放。缺点是投资大、膜污染严重、清洗频繁。

循环冷却水由于蒸发而浓缩,会产生结构和腐蚀。提高浓缩倍率可以使排污率降低,减少循环水系统排污的水量,达到减少给水从而节水的目的。针对给水系统组成和不同水质,采用加酸降低碱度结合加阻垢剂防止结垢,加缓蚀剂防止腐蚀,加杀生剂防止微生物粘泥,补充水(或旁流)弱酸处理、石灰处理降低碳酸盐硬度等。

页脚内容9

循环冷却水排污水可用于除灰渣系统和脱硫系统给水,经过适当处理后也可以作为锅炉补给水系统给水。其他系统统筹计划。

2.2.2 某电厂循环水节水初步方案

2.2.2.1 某电厂循环水基本情况

某热电有限责任公司共装设两台国产(2×330MW)供热机组,每台锅炉最大连续蒸发量为1100 t/h。循环水冷却水采用中水,污水处理厂,中水成分如下:

电厂循环水冷却水系统单台机组流量为36000t/h,补充水已采用了石灰处理,排水量约为为300t/h。

2.2.2.2 循环水节水方案分析

根据循环水系统的情况,电厂补充水量、排水量、浓缩倍率如下表。

表1.浓缩倍率及排水量关系表

页脚内容10

水量

(t/h)

76889244156224828

补充水量(t/h)

1

188

9

00

8

04

7

56

7

27

7

08

6

94

6

84

6

76

6

70

6

64

6

60

水量占循环水的比例(%)

1

.6

.8

.5

.4

.3

.3

.2

.2

.2

.2

.1

.1

排水量、浓缩倍率曲线如下图。

页脚内容11

页脚内容12图1.排水量曲线

从图1和表1可见,随着浓缩倍率的提高,系统排水量减少,但是减少的幅度越来越小。

2.2.2.3 电厂循环水方案设想

旁流处理相对于加药等处理方式,是更主动,效率更高而且排放水危害更小的处理方式。采用“化学混凝-纤维过滤”+“活性炭+弱酸树脂软化”+“精密过滤+反渗透”三级组合的方式,可以满足不同阶段对浓缩倍率不同的要求,而三级的成本也是逐级递增的。

对于该电厂的情况,对循环冷却水的1%进行旁流处理。循环冷却水经过“化学混凝-纤维过滤”和“活性炭+弱酸树脂软化”二级处理后,浓缩倍率能从3提高到6,此时排水量减少至115t/h,占总循环水量的0.3%,补充水量减少至727 t/h,比浓缩倍率3时减少了173 t/h。

如进一步采用第三级处理,浓缩倍率可提高至10以上,那么排水量将进一步减小,实现趋零排放。但是第三级处理采用“精密过滤+反渗透”,处理成本较高。

图2.三级旁流处理工艺流程图

2.2.2.4 循环水方案技术经济分析

①浓缩倍率3-4,投资在200万

②浓缩倍率5-6,投资在900万

此时排水量减少了单台173 t/h,两台346 t/h,年运行6000小时,排水水费按0.8元/h,将节省166.1万元。补充水量减少了单台173 t/h,两台346 t/h,年运行6000小时,来水按1元/h,将节省207.8万元。

两项合计373.9万元,与900万投资相比,3年可收回投资

③浓缩倍率9-10,投资在3400万

此时排水量减少了单台504 t/h,两台1008 t/h,年运行6000小时,排水水费按0.8元/h,将节省406.4万元。补充水量减少了单台504 t/h,两台1008t/h,年运行6000小时,来水按1元/h,将节省508万元。

两项合计914.4万元,与3400万投资相比,4年可收回投资。

2.2 火力发电厂排水系统

火力发电厂用水主要在以下几个系统

循环冷却水排污水

除灰渣系统

工业用水系统

煤场系统

生活水系统

雨水系统

脱硫系统

含油废水

页脚内容13

针对每个系统的特点设置各自的处理方案,最终实现电厂全厂废水零排放。

循环冷却水排污水可用于除灰渣系统和脱硫系统给水。

其余系统:

2.2.1 除灰渣系统零排放

除渣系统的用水水质要求不高,水分损耗主要由炉底水封槽补水补给,不足部分由废水处理站的排水补充,灰库回水池工业水补水作为备用。冲渣水形成闭式循环,回收利用。为防止系统管道结垢,可定期进行酸洗处理。日常运行中可加酸或阻垢剂以防止管道结垢。形成良好的闭路循环,使冲渣系统只补水,不排水。

2.2.2工业用水系统零排放

除油污水单独处理外,电厂的其它工业废水一般集中处理后回用。

包括:锅炉补给水处理系统再生排水、凝结水精处理装置再生排水、生活工业水预处理装置排水、锅炉排污水、设备冲洗水等。电厂的工业废水集中处理后回用技术在新建的大型电厂中应用比较普遍,技术也较为成熟。其处理工艺一般采用物理化学法。电厂的工业废水集中处理后回用工艺流程一般可按下图。工业废水集中处理后可回用于煤场喷洒、输煤系统喷洒、干灰搅拌、排渣系统和部分冲洗用水系统。

页脚内容14

2.2.3煤场系统零排放

煤场废水的污染物较为单一,主要是SS以及微量重金属的污染。若循环使用,则微量的重金属离子可以不处理,仅处理SS比较容易;使用高效混凝剂处理SS,可以使煤场废水形成闭路循环,不排污水。

2.2.4生活水系统零排放

电厂生活污水由于BOD含量高、可生化性较好且含盐量不高,一般采用生物处理即可达标,再加上深度处理后其出水水质可达到自来水水质,但由于人体感官作用,大都回用作为循环水系统补给水、冲灰用水、绿化用水等,最终实现生活污水的零排放。

2.2.5雨水系统零排放

雨水水质较好,处理较简单,与非经常性的工业废水一样属于间歇排水。且煤场回收利用的废水中很大部分就来自降雨,故电厂所排雨水也考虑回收利用,其简单的“沉淀+过滤”工艺后可并入工业废水集中处理系统中统筹考虑。实际运行中,注意雨水管道的检修,防止渗漏。

2.2.6 脱硫系统废水零排放

脱硫废水含有的杂质主要为固体悬浮物、过饱和亚硫酸盐、硫酸盐、氯化物以及微量重金属,其中很多物质为国家环保标准中要求严格控制的第1类污染物。由于燃煤中的各种元素在炉膛内高温条件下进行一系列的化学反应,生成了多种化合物,一部分化合物随炉渣排出炉膛,另一部分随烟气进入脱硫装置吸收塔,溶解于吸收浆液并在吸收浆液循环系统中不断浓缩,最终导致脱硫废水中的杂质含量很高。

2.2.6.1 脱硫废水蒸发浓缩工艺

在将废水蒸馏前,先对废水进行软化处理,尽量除去水中的易结垢离子Ca2+,Mg2+或SO42-,降低废水蒸馏过程中易结垢的倾向,然后进入蒸发结晶系统进行蒸发结晶,最后将结晶进行离心干燥和包装。工艺流程如下图。

页脚内容15

页脚内容16

2.2.6.2 工艺主要设备

表3.废水蒸发浓缩工艺主要设备清册 序

名称 单位 数量 一

预处理软化系统 1

离心分离器 套 1 2

陶瓷膜过滤器 套 1

二 蒸发-结晶系统

1 离心压缩机(MVR )蒸发器

套 1 2 三效混流强制循环蒸发器

套 1 三 离心干燥包装系统

2.2.6.3 投资和运行成本

配置一套末端废水蒸干结晶系统,出力为20 m3/h,具有短期(不超过运行时间的1/10)超20%设计流量的处理能力。系统总投资7000万元,每小时运行费用为17.75元/m3。该系统分为蒸发系统、结晶干燥系统、结晶固体回收系统,

2.3 综述

采用上述针对各个用水系统的处理措施后,水尽可能回用,达到深度节水,真正实现废水“零排放”的目标。

页脚内容17

燃煤电厂废水零排放技术

燃煤电厂废水零排放技术

燃煤电厂废水零排放技术 莱特莱德专业从事无废水处理及回用,拥有诸多成功案例,其中1600m3/h 矿井水脱盐及回用项目设计的膜处理系统采用大错流高循环设计,结合Neterfo 极限分离系统,提高系统耐受性的同时,可相对降低膜系统清洗频率。降低清洗频率,充分恢复膜系统性能,保证系统处理效果的同时,提高系统的使用寿命,从而实现系统的长期、稳定运行。工艺选择及系统设计考虑余量问题,有较大的灵活性及调节余地,以适应短期水质、水量的波动。 项目水质情况 系统处理后回用水水质满足《生活饮用水卫生标准》(GB5749-2006)。外排水达到《山东省流域水污染物综合排放标准》(DB37/3416.1-2018)的要求。无水硫酸钠品质达到“GBT 6009-2014 工业无水硫酸钠”标准中的I类一等品标准要求(同时满足业主技术资料中对部分指标的限值)。 项目核心工艺 Neterfo极限分离系统是莱特莱德专门针对高溶解性固体、高硬、高COD废水和中高浓度物料研发的一套深度处理膜系统,系统搭载了错流PON耐污染技术、POM宽流道高架桥旁路技术等多项莱特莱德技术,实现了超高回收率和极低能耗,是废水回用、零排放减量、物料浓缩分离等领域的不二选择。 PON耐污染技术:

膜片一次成型,增加机械强度 膜表面更细腻,大幅降低污染的倾向 POM宽流道高架桥旁路技术: 平行宽流道,阻力更小,能耗更低 更高的分子交联架桥,呈现弱极性 更高的孔隙率,降低污染物接触附着的 项目工艺流程 来水→高密度澄清池→自清洗过滤器→超滤装置→超滤水池→反渗透装置→产水池→回用 来水经过高密度澄清池(PON,POM),再经过自清洗过滤器到超滤装置和超滤水池,再到反渗透装置和产水池,最后回用。 反渗透装置 根据排水及回用水要求,系统一级处理采用反渗透装置,其产水可满足回用标准,且剩余部分与其他部分进行混合排放,反渗透装置高回收率设计使大部分的水满足排放要求,减低后续处理水量,整体将盐分进行高度浓缩。 序号项目原水反渗透系统 1 膜元件类型抗污染膜元件 2 系统回收率80% 3 系统设计通量22.1

火电厂节水措施

电厂节水措施 火力发电厂作为用水大户,需要大量水资源。当在缺水地区选定火力发电厂厂址时,许多发电厂的选择原则都是以水定点。根据可获取水量的多少,来决定发电厂的建设规模。同时,火力发电厂是排水大户,大量污废水外排不利于水环境的保护,和可持续发展。由此来看火力发电厂的节水工作就显得越来越重要,它不仅对其周围生存环境的保护有重要的意义,而且还对发电厂的安全经济、持续发展有着重要的意义。 1、火力发电厂的节水措施 节约用水和减少外排废水是电厂水务管理的核心,进行火电厂的废污水治理,减少新鲜水用量,提高水的重复利用率,实现节约用水,已成为火电厂生存和发展的关键。供水设计中可采用的节水措施有以下方式: (1)电厂辅机系统冷却用水采用热交换器闭式循环系统。 (2)生产废水经废水处理站处理达到排放标准后排入工业废水管道,经收集后重复用于道路绿化、灰加湿等。 (3)生活污水由管道汇集后流至生活污水处理场,处理达到排放标准后回收到至复用水池,重复利用于煤场喷洒。进深度处理合格也可作为循环冷却水的补充水。 (4)输煤栈桥冲冼水经处理后重复使用,煤场喷洒、尘采用重复水池中的复用水。 (5)集中制冷站冷却用水、环水泵房冷却用水等分散点的大用户均设置冷却和升压泵,循环使用,增加水循环利用率。 (6)除灰系统采用干除灰。 (7)在严重缺水地区,经过经济技术比较后可采用空冷技术。 2开发应用节水新技术 2.1废水回收利用 循环冷却系统是电厂用水、耗水最大的环节,回收利用冷却塔排污水,处理回收其他工业废水或生活污水做冷却塔循环水的补充水,取得了明显的节水效果,是电厂耗水定额指标下降的主要原因。冷却塔排污水用于脱硫补水、冲灰、冲洗和喷洒,可以减少低污染水直接排放损失,提高水的回用率,是较为传统并被广泛

火电厂脱硫废水零排放处理技术浅析

火电厂脱硫废水零排放处理技术浅析 发表时间:2019-02-13T16:10:53.017Z 来源:《基层建设》2018年第36期作者:柏发桥 [导读] 摘要:根据国家提出的“实施国家节水行动”,“加快水污染防治”的决定,在保证电厂安全运行前提下,采用先进节水与废水零排放技术,使有限的水资源发挥更大经济效益,是我国发展电力工业的必然选择和发展趋势。 安徽安庆电厂安徽安庆 246008 摘要:根据国家提出的“实施国家节水行动”,“加快水污染防治”的决定,在保证电厂安全运行前提下,采用先进节水与废水零排放技术,使有限的水资源发挥更大经济效益,是我国发展电力工业的必然选择和发展趋势。本文列举了某电厂1000MW机组脱硫废水零排放处理中试实例,对大型火电机组脱硫废水零排放处理技术路线选择与问题解决提供参考。 关键词:节水利用;脱硫废水;废水零排放;蒸发 0前言 某电厂2×1000MW机组采用石灰石-石膏湿法脱硫,系统工艺要求需要连续排放一定量的废水以维持吸收塔氯离子浓度,脱硫系统设计废水处理采用常用的三联箱沉淀法,通过中和、沉淀、絮凝等工艺去除脱硫废水中的重金属和悬浮物等污染物,处理后废水水质达到国家《污水综合排放标准》(GB8978-2002)规定第一类污染物最高允许排放浓度及第二类污染物最高允许排放浓度一级标准,处理后脱硫废水主要用于锅炉渣水系统、干灰拌湿、灰场喷洒等,为进一步提高电厂节水综合利用水平,电厂委托江苏某环保科技公司进行了脱硫废水零排放处理中试。 1电厂脱硫废水零排放处理中试工艺技术 根据电厂现有工艺系统、水质情况及应用要求,经过综合分析,确定电厂中试采用“化学预处理+分质(盐)+膜减量浓缩+MVR蒸发结晶”技术路线。 1.1 技术要求 1.1.1进水条件 电厂中试进水水量为5m3/h,水质具有以下特点。 1)进水硬度较高,镁硬远高于钙硬; 2)进水含盐量较高,仅采用普通卷式反渗透的浓缩倍数较低,采用极性分流(质)与高压平板膜结合的技术可以有效的提高浓缩倍数,降低蒸发水量; 3)水体中主要阴离子为氯离子、硫酸根离子,其他离子共存,同时水中COD较高。采用极性分流(质)单元将氯化物与硫酸盐分离,同时分离大分子COD和氯化物,使得极性分流(质)产水氯化钠纯度较高,其余盐分在蒸发结晶单元利用溶解度的差异与氯化钠进行分离。 1.1.2 产水水质要求 根据《城市污水再生利用工业用水水质》GBT19923-2005的规定,经过脱硫废水零排放系统处理后的产水可以回用于系统内部。 1.1.3固化盐要求 经过脱硫废水零排放系统后的工业盐可以达到《工业盐》GBT5462-2003标准中精制工业盐二级标准。 1.2 工艺流程 电厂中试采用“化学预处理+分质(盐)+膜减量浓缩+MVR蒸发结晶”技术路线,见下列系统框图。 图1 工艺流程

燃煤电厂脱硫废水零排放技术

燃煤电厂脱硫废水零排放技术 1 脱硫废水零排放技术 1.1 脱硫废水的水质特点 第四阶梯的脱硫废水在烟道内被浓缩,成分复杂,污染物浓度高,具有以下特点。 1) 高含盐:溶解固体含量10000~40000mg/L,以SO42?,F?、Cl?、Mg2+和Ca2+为主; 2) 高浊度:悬浮物含量10000~30000mg/L,以飞灰、石膏晶粒、氟化钙和酸不溶物为主; 3) 高硬度:钙、镁离子浓度高,易结垢; 4) 腐蚀性:氯含量20000mg/L左右,腐蚀性较强; 5) 重金属:包含铅、铬、镉、铜、锌、锰和汞等,污染性强; 6) 不稳定:发电厂负荷波动、季节、煤质对脱硫废水成分影响大。 脱硫废水零排放工艺可以分为预处理单元、浓缩减量单元和固化单元。每个单元都有多种成熟技术可供比选。电厂可根据当地气候条件,经济预算,技术论证选取适合电厂本身的技术路线。 1.2 预处理单元 预处理过程是实现脱硫废水零排放的第一步,用于去除废水中的部分悬浮物及硬度、重金属离子。脱硫废水常规预处理:中和/反应/絮凝三联箱+澄清池。深度预处理:碳酸钠/氢氧化钠澄清池或管式微滤、纳滤、电驱动膜。常规预处理方法操作相对简单,费用低,处理能力有限,预处理出水硬度及重金属离子浓度大,对后续设备运行不利。深度预处理出水水质效果良好,减少后续设备结垢,但是用于去除硬度使用的碳酸钠用量大,费用高,有工艺用价格便宜的硫酸钠代替碳酸钠去除硬度,可以有效降低费用成本。 1.3 浓缩减量单元 浓缩减量单元中的各种水处理技术现已应用广泛,浓缩减量单元工艺的选取要依据固化单元可处理的水量。目前,脱硫废水处理方法主要是膜浓缩工艺。常用的膜浓缩处理方法包括反渗透、正渗透、电渗析和蒸馏法,其中反渗透技术应用最为广泛。 1.3.1 反渗透

电厂废水零排放技术介绍(5t)

烟气干燥法脱硫废水零排放技术的介绍 二零一五年八月

目录 一、概述 (2) 二、设计参数 (2) 三、喷雾干燥技术原理 (3) 3.1 喷雾干燥原理 (3) 3.2 装置描述 (3) 3.3 技术特点 (4) 四、喷雾干燥废水处理工艺 (4) 4.1 石灰浆液制备与输送系统 (4) 4.2 烟气系统 (4) 4.3 喷雾干燥塔系统 (5) 五、喷雾干燥废水处理工艺的主要技术参数 (5) 六、废水处理工艺主要设备 (7) 6.1利用空气预热器前的热烟气系统 (7) 6.2利用除尘器后的热烟气系统 ................................................ 错误!未定义书签。 6.3工艺设备清单 (9)

烟气干燥法脱硫废水零排放技术的介绍 一、概述 随着废水排放标准的要求日益严格及用水、排水收费制度的建立,火电厂作为用水、排水大户,无论从环境保护还是从经济运行角度来看,节约用水和减少外排废水已变得十分必要,已要求电厂实现脱硫废水零排放。 火电厂湿法脱硫废水的杂质来自烟气和脱硫用的石灰石,主要包括悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属:其中很多是国家环保标准中要求控制的第一类污染物。由于水质的特殊性,脱硫废水处理难度较大;同时,由于各种重金属离子对环境有很强的污染性,因此,必须对脱硫废水进行单独处理。 目前,国内有电厂采用蒸发结晶工艺对脱硫废水进行深度处理来达到零排放的要求,但该工艺的建设投资和运行费用均较高。 本文参考喷雾干燥技术,将喷雾干燥方法应用于处理脱硫废水,即将脱硫废水经过旋转雾化盘雾化后,利用锅炉热烟气作为热源(锅炉热烟气按照连接位置分两种情况:1)锅炉脱硝后进空气预热器前的热烟气;2)除尘器后脱硫前的锅炉热烟气。),在喷雾干燥塔内将废水蒸发,水分进入烟气中,废水中的盐类干燥后被收集下来。这种工艺充分利用锅炉热烟气的热量,不需额外的蒸汽源,是一种低能耗的技术。二、设计参数 处理废水量:5t/h; 热烟气参数: 脱硝后空气预热器前的烟气(假设值) 烟气温度:300℃; 烟气中SO2浓度:2200mg/Nm3。 SO3含量:100 mg/Nm3 HCL含量:40 mg/Nm3 HF含量:20 mg/Nm3

工业废水零排放工程设计方案

工业废水零排放工程设计方案 第一章概述 一、工程概况 中铝瑞闽铝板带有限公司是中国铝业公司控股的一家以生产优质铝板带材为主的现代化铝加工企业,按中铝集团节能减排的目标与要求,要求所属企业2008年全部实现工业废水零排放,实现工业废水的零排放,对公司内的生产废水和生产污水进行集中处理,达到回用水标准后作为景观用水、循环水补充水、道路清洗、绿化用水、车辆冲洗用水等杂用水或其他用水,为创建国家环保友好企业目标而努力。二、设计依据 1)《中华人民共和国环境保护法》(1989年12月) 2)《中华人民共和国水污染防治法》(1996年5月修正) 3)《给排水构筑物施工及验收规范》(GBJ125-1989) 4)《室外排水设计规范》(GBJ14-1987) 5)《给排水管道工程施工及验收规范》(GB50268-1997) 6)《给排水工程结构设计规范》(GBJ69-1984) 7)《给水排水标准规范实施手册》(GB17-1988) 8)《低压电器设计规范》(GB50054-1995) 9)《污水综合排放标准》(GB8978-1996) 10)《城市污水再生利用城市杂用水水质标准》GB/T18920-2002 11)《污水再生利用工程设计规范》GB/T18920-2002 12)中铝瑞闽铝板带有限公司提供的设计资料 三、设计范围 1、本方案设计范围从中水站拦污渠进水口起至回用水池止。 2、本方案设计内容包括处理工艺、设备选型、土建、电力、仪表及工程概算。 四、设计原则 1、采用先进可靠的处理工艺,确保处理出水的各项指标达到回用水水质标准。 2、中水处理设施力求占地面积小,工程投资省,运行能耗低,处理费用少,劳动强度低。 3、选用质量可靠、维修简便、能耗低的机电设备及性能优异、价格适宜的专用设备,

废水零排放浅谈网

废水零排放浅谈 中国石化 北京化工研究院环保所-刘正 [摘要] 对废水零排放进行了解释和说明,提出了废水零排放的主要考核内容,介绍了废水零排放的主要技术,并通过工程实例进行了技术及经济分析。同时也提出废水零排放不仅在末端,要从生产的全过程控制,在进行水平衡时应进行盐分析。 [关键词]废水零排放;水平衡;盐分析;膜分离技术;蒸发浓缩 所谓“零排放”意指在生产过程中所有的原料被完全利用,全部转换为产品,或完全循环至下一生产过程中去,不向自然界排出任何废弃物。在化工行业,纯粹的零排放意味着所有的反应物全部转化为产品、所有的催化剂被再次利用、整个生产过程中没有废物排出。这仅仅是指主要生产过程中的“零排放”,辅助生产(如蒸汽、循环水等)和附属生产过程中仍不可能达到“零排放”。因此,在实际的生产过程中,完全的“零排放”是不可能的,对于“零排放”的界定尚存在一定的分歧,并有了各种“零排放”定义和限定,通常“零排放”三个字也加上引号。 随着我国经济的发展和水污染的加剧,加重了水资源紧张的局面。废水排放标准的不断从严和执法力度的加大,使个别难处理达标的废水和位于水体污染敏感地区的企业不得不考虑企业废水的零排放。各种各样的废水零排放技术也随之产生,并能使各种各样的废水达到不同程度的零排放。 本文针对废水的零排放提出个人见解,供同行参考。 1 废水零排放的定义 在GB/T 21534—2008《工业用水节水术语》中有如下术语解释: 3.23 工业污水 industrial sewage——生产过程和生产活动中使用过、且被污染的水的总称。 3.24工业废水 industrial wastewater——生产过程中使用过,在质量上已不符合生产工艺要求,对该过程无进一步利用价值的水。(也就是说,企业在生产过程中的所有外排水均为工业废水。) 3.25 工业排水 industrial drainage——完成生产过程和生产活动之后排出生产系统或企业之外的水。 6.21 零排放 zero emission——企业或主体单元的生产用水系统达到无工业废水外排。(笔者认为可以理解为工业废水浓缩为固体或浓缩液,外送作为固废处置,不再以废水的形式外排。)1970年美国国家污染物排放清除法案(NPDES)首先对特定地区的零排放提出明确规定和要求。美国电力研究院(EPRI)进一步对电厂废水零排放定义为:电厂不向地面水域排放任何形式的水(排出或渗出),所有离开电厂的水都是以湿气形式或是固化在灰或渣中。可以理解为少量的废水在灰或渣中带出企业,作为固废一并处置,又称之为“液体零排放”。 企业为了达到不可能的废水零排放,在零排放前加上各种各样的解释,如废水排放口零排放、一次废水零排放、循环水排污零排放、反渗透(RO)浓水零排放、高浓废水零排放等,甚至提出准零排放的概念,意味着企业将某些单股废水做到零排放,同时减少了企业外排废水中的污染物总量,如高浓废水零排放是减少了企业废水中有机物的排放,循环水排污零排放和RO浓水零排放是减少了企业废水中有机物和盐的排放。企业的某种废水及污染物以浓缩液或固废的形式外排进行处置,虽然污染物并没有达到真正的零排放,但达到了废水零排放。 2 废水零排放 由于我国水污染加剧和水资源紧张,部分地区颁布了更加严格的废水排放标准,部分水污染严重的敏感地区甚至不允许企业的废水排放到水体。部分地区的废水排放标准见表1。 表1 部分地区的废水排放标准 标准下限值,mg/L 部分地方标准标准号 COD TN Cl-氨氮 陕西省地方标准(黄河流域(陕西段)污水综DB 61/224—20115020

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放”处理技术 随着中国水环保政策趋于严控,火力发电厂脱硫废水“零排放”理念不断升温。脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与成本。本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。 一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置(FGD)当中浆液循环系统的平衡度,避免离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。为保证脱硫系统的安全运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即“三联箱”技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。排入自然水系后还会影响环境,潜在环境风险高。随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。传统的脱硫废水处理工艺达到的水质排放标准越来越不符合当下国家越来越严格的环保发展形势,电力企业实现脱硫废水零排放的需求越来越迫切,减排和近零排放成为必然趋势。三、脱硫废水的产生及其水质特点脱硫废水主要来自石膏旋流器或废水旋流器的溢流,是维持脱硫装置浆液循环系统物质平衡,控制石灰石浆液中可溶部分(即Cl-)含量、保证石膏质量的必要工艺环节。废水中所含物质繁杂,大体分为氯化物、氟化物、亚硫酸盐、硫酸盐、硫化物、悬浮物以及重金属离子(如Hg2+,Pb2+、Cr2+等)、氨氮等。脱硫废水具有污染物成份复杂、波动范围大等特点。pH值较低,呈酸性,水中悬浮物含量高、盐含量高、存在重金属超标的可能,氯根含量很高,腐蚀性很强,是电厂中最难处置的废水。四、脱硫废水深度处理方法1.废水浓缩处理技术目前,国内的脱硫废水浓缩处理主要采用膜浓缩、热法浓缩和烟气浓缩技术路线。(1)膜浓缩技术目前,膜浓缩技术广泛应用于脱硫废水的深度处理和浓缩研究,以减少废水处理系统中蒸发结晶的污水处理量,使得电厂零排放技术更经济可行。(1.1)反渗透(RO)技术。在外界高压力作用下,利用反渗透膜的选择透过性,水溶液中水由高浓度一侧向低浓度一侧移动,使得溶液中的溶质与水得到分离。(1.2)电渗析技术。利用离子交换膜的选择透过性,溶液中的带电阴、阳离子在直流电场作用下定向迁移,实现对废水的浓缩和分离。Cui等利用电渗析法去除脱硫废水中的氯离子,结果表明,在最佳条件下,当氯离子质量浓度为19.2g/L时,氯离子的去除率为83.3%,得到副产品Cl2、H2和Ca(OH)2,处理成本0.15$/kg。(2)热法浓缩技术热法浓缩技术包括多效蒸发(MED)和机械蒸汽再压缩(MVR)等。(2.1)多效蒸发(MED)技术。将蒸汽的热能进行循环并多次重复利用,以减少热能消耗,降低成本。加热后的盐水在多个串联的蒸发器中蒸发,利用前效蒸发产生的二次蒸汽,作为后效蒸发器的热源,后效中水的沸点温度和压力比前效低,效与效之间的热能再生利用可以重复多次。(2.2)机械蒸汽再压缩(MVR)技术。将蒸发器蒸发产生的原本需要冷却水冷凝的二次蒸汽,经压缩机压缩后,提高压力和饱和温度,增加热焓,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,二次蒸汽的潜热得以充分利用,同时还省去了二次蒸汽冷却水

废水零排放技术发展趋势几何

有数据显示,高盐废水产生量约占总废水量的5%,且每年仍以2%的速度增长,我国很多工业面临的问题。针对这一情况,有业内人士指出,综合利用成解决高盐废水处理瓶颈的重要路径。 随着环保政策不断趋严,水处理行业逐渐从"总量控 制"走向"质量控制"。 在这个过程中,高盐废水这一多个行业面临的共性 难题被提上日程中来。 高盐废水是其中一种比较常见的,它是指废水中含 有有机物且总溶解固体高于3.5%的废水。数据显 示,我国每年产生高盐废水超过3亿立方米,产生 量约占总废水量的5%,且每年仍以2%的速度增长。 来源广泛是高盐废水排放量大的主要原因之一。工 业规模的逐渐壮大,使工业污水处理的种类和排放 量迅速增加,石油化工、纺织印染、制药工程等领 域会排放高盐废水。除此之外,海水、生活污水和 地下水等也是高盐废水的几大来源。

这加大了污水处理的难度。目前我国研究和常用的高盐废水方法有蒸发法、电解法、膜分离法、焚烧法和生物法等,但面对水资源紧缺的现状,业内人士普遍认为,综合利用是解决高盐废水瓶颈的重要路径。 有专家表示,"从资源利用的角度来看,高盐废水处理要开发低成本工艺技术,实现高价元素回收、低价元素的转化的高值化利用,从而实现高盐废水的近零排放,实现资源利用与环境治理的双赢。" 资料显示,"废水零排放"是指工业废水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂。 但由于废水零排放项目投资和运行成本较高,导致只有少数企业引入了废水零排放相关技术,大多数企业还处于观望阶段。有先试先行的企业实践表明高含盐废水实现近零排放后,预计年节水量可达288万立方米。

火电厂废水零排放技术及工艺案例

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 火电厂废水零排放技术及工艺案例火电厂废水零排放技术及案例分析 1/ 43

废水零排放案例案例1:河源电厂技术路线:处理22吨/小时脱硫废水,经预处理加氢氧化钙、碳酸钠、盐酸后沉淀脱泥,直接进入四效蒸发结晶器,出混盐烘干装袋。 具体路线及照片如下:曝气石灰、絮凝剂、助凝剂脱硫废水有机硫、碳酸钠、助凝剂缓冲池一级反应池一级澄清池中间水池二级反应池二级澄清池过滤器清水箱污泥脱水机脱盐水凝汽器污泥池四效蒸发器三效蒸发器二效蒸发器一效蒸发器动力蒸汽结晶盐烘干机脱水机污泥外运存在的问题:1、多效蒸发结晶器能耗高(1吨废水需0.4吨蒸汽)。 2、产生混盐,无法综合利用。 废水零排放技术及案例分析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 废水零排放案例案例1:河源电厂每1m3废水,消耗蒸汽约300kg,耗电约30kW.h进水原水池二级软化澄清清水箱蒸馏水换热器4效MED蒸发 +结晶实际~240~360m3/d约50吨泥饼/d结晶盐打包装置干燥系统压滤机工业盐约3~4t/d废水零排放技术及案例分析 3/ 43

废水零排放案例案例1:河源电厂? 河源电厂工艺系统2×600MW超超临界燃煤机组,系统出力15~16 t/h 深度预处理+四效蒸发MED+盐干燥系统经济指标总投资12000多万人民币整套装置占地约400m2(不包括预处理系统)结晶盐(NaCl)纯度92%~98% 处理蒸发器一年1~2 次化学清洗,清洗时间约为7天度高结晶器运行6~8周需化学清洗,清洗时间约为8小时吨水运行费用70~80元废水零排放技术及案例分析

燃煤电厂废水零排放系统的应用

燃煤电厂废水零排放系统的应用 随着社会经济的快速发展,人们生活质量提高,工业也得到了迅猛进步,因而在日常生活生产中对水资源的需求也在逐渐加大。作为水资源紧张的国家,水资源供需矛盾和水资源污染问题一直是国家重点关注的问题。 为了提高水资源的利用率,加快对水资源的保护,在工廠生产中应该采取废水循环利用策略,加快对工业废水的优化处理。现阶段,电厂作为水资源需求量大且废水生产量大的主要场所,加快电厂废水零排放处理,不但可以解决废水排放的问题,而且可以使水资源得到循环利用,减少水源的浪费。 不过废水零排放处理会增加处理成本,且关于废渣处理和落实的有效性也有待进一步探索研究,所以如何优化废水处理工艺是当下火电厂生产运营中需要重点考虑的问题之一。 1传统处理技术 早期国家对燃煤电厂脱硫废水处理的限制较少,传统的处理工艺较为粗放,主要有煤场喷洒、灰场喷洒与水力冲灰等。煤场喷洒和灰场喷洒是出于安全和抑尘等目的将脱硫废水喷洒入煤场和灰场,在实际应用中存在废水用量小的问题,其次由于工艺未对污染物本身进行任何处理,在其转移过程中容易对周边环境造成一定的污染。 水力冲灰是将脱硫废水混入水力除灰系统,能同时对灰分起到输送和中和作用,但该工艺不能用于气力清灰等类型机组,对废水的用量较少,难以消纳每小时数吨甚至十余吨的新生废水,而且由于氯离子含量高,会对相关的金属管道造成一定的腐蚀。 2脱硫废水处理技术 为了保证石膏品质和脱硫系统稳定运行,需要排放一定量的脱硫废水以严格控制氯离子浓度<2×104mg/L。以尚未投入生产的工程进行参考,比较常用的处理技术,即混凝沉淀法、废水回用法、预处理+浓缩结晶+固体废物处理法、烟道处理法、微滤/超滤+反渗透法用于实际工程的优缺点,选出最经济高效的废水处理技术。 2.1混凝沉淀法

蒸发器在工业废水零排放上的应用

蒸发器在工业废水零排放上的应用 王莉莉,田旭峰,赵利鑫 (合众高科(北京)环保技术股份有限公司) 摘要:我国水资源污染和短缺问题日益凸显,而工业用水在整个水资源消耗中所占比例重大。工业废水零排放是实现水资源循环利用和保障我们经济社会可持续发展的重要举措,因而对工业废水零排放技术进行研究和发展具有重要意义,本文对蒸发器在工业废水零排放上的应用进行论述,介绍了蒸发器的种类和工作原理,着重对工业废水零排放上应用最为广泛的械蒸汽压缩再循环降膜蒸发器(MVR)和低温多效蒸发器(MED)进行了阐述和对比,最后对工业废水零排放的蒸发器发展现状和趋势进行了展望。 关键词:蒸发器;工业废水;零排放;械蒸汽压缩再循环降膜蒸发器(MVR);低温多效蒸发器(MED) 一、概述 近年来,我们水资源短缺和环境污染问题日益严重。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全[1]。工业废水排放的危害,一是重金属等难以降解的有毒有害物质随着污水进入土壤不断富集,造成农田的重金属超标(据罗锡文院士称:我国已有3亿亩耕地受到重金属污染),将会危及我们的食品安全;二是污水处理厂的污泥受工业污水影响有害物质超标,不能被用作肥料回归土地,影响氮、磷等物质的循环;三是大量工业用水造成了水资源的消耗和浪费[2]。如何将工业废水达标或减少排放,并尽最大可能地实现水资源循环利用,成为困扰着工业企业一大难题。因此,在我国大力提倡水资源节约利用和环境保护的大环境下,工业废水零排放应运而生。 工业废水零排放是指工业水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂,水中的盐类和污染物经过浓缩结晶以固体形式排出厂送垃圾处理厂填埋或将其回收作为有用的化工原料[3]。也就是说,从废水中完全回收水资源,变液态废弃物为固态资源再利用,实现对水等不可再生资源的可持续利用。工业废水零排放是保护地球环

燃煤电厂脱硫废水零排放处理工艺 尹建

燃煤电厂脱硫废水零排放处理工艺尹建 发表时间:2019-07-16T13:53:17.733Z 来源:《电力设备》2019年第6期作者:尹建 [导读] 摘要:燃煤电厂是我国现代化经济建设中的支柱型产业,能够最大程度上满足社会群体的日常生活用电供应需求,在拉动国民经济增长上发挥着重要的作用。 (山东鲁泰热电有限公司山东济宁 272300) 摘要:燃煤电厂是我国现代化经济建设中的支柱型产业,能够最大程度上满足社会群体的日常生活用电供应需求,在拉动国民经济增长上发挥着重要的作用。在可持续发展理念下,节能政策不断推广,社会群体的环保意识也不断提升,政府部门高度重视燃煤电厂的脱硫废水排放问题,为进一步加强生态环境保护,应当积极优化燃煤电厂脱硫废水零排放处理工艺,全面提高燃煤电厂的生态效益和经济效益。 关键词:燃煤电厂;脱硫废水;零排放处理 燃煤电厂的发展和施工对于我国经济的长远进步也有着重要的促进作用。但是随着我国环保政策推广,燃煤电厂中的水污染情况得到了我国政府的高度重视,政府在这一工作中力求提高水资源的利用率,以此促进经济的快速增长。由此可见,燃煤电厂中脱硫废水零排放处理工艺显得尤为重要。 一、脱硫废水主要特性 1.水质不稳定脱硫废水水质与石灰石纯度、煤种类、脱硫氧化风量、吸收塔内Cl一质量浓度和吸收塔内的浓缩倍率等因素有关,因而即使相同脱硫装备在不同时段,水质也存在较大差别。 2.悬浮物含量高脱硫废水中的悬浮物质量浓度主要受煤种的变化和脱硫运行工况的影响,一般在6 000 10 000mg/L,大部分电厂的脱硫废水可在2~3h内自然澄清,少量废水长时间难以自然澄清。 3.含盐量高脱硫废水中的含盐量很高,一般在10 000~40000mg/L之间。其中含量最高的阴阳离子分别为Cl一和M92+,其质量浓度通常在4 000 12 000 mg/L和5 000~15 000mg/L之间;其次为硫酸盐和Ca2+,其质量浓度分别在2 000~6 000mg/L和800~2000mg/L之间;另外,还含有一类污染物Cd、Hg、Cr、As、Pb、Ni等重金属离子和二类污染物Cu、Zn、氟化物、硫化物等。 二、燃煤电厂脱硫废水 1.来源。就当前我国燃煤电厂运行的实际情况来看,石灰石-石膏湿法脱硫技术是常用的脱硫工艺,实际应用效率较高,适应性较强。通常情况下,燃煤电厂脱硫废水大多来源于脱硫塔排放废水,在湿法脱硫条件下,煤的燃烧以及石灰石的溶解过程中产生大量的烟气、悬浮物和杂质,严重污染水资源。石灰石-石膏湿法脱硫技术能够有效去除烟气中的二氧化硫等,有效控制浆液中的灰尘颗粒浓度,保证脱硫设备中物质平衡,此种情况下,必须排放一定废水以促进飞灰排出。脱硫废水中包含一定量的亚硫酸盐、硫酸盐及重金属等,属于国家环保标准中的第一类污染物,严重污染生态环境,此种情况下,应当积极优化燃煤电厂脱硫废水零排放处理工艺,以维护生态环境的稳定持续发展。 2.特点。一是成分多,水质变化大。就燃煤电厂脱硫废水的实际排放情况来看,在煤燃烧和烟气吸收后,脱硫废水的成分发生明显变化,尤其是钠离子、钙离子、硫酸离子和重金属离子的成分较多,并且随着电厂各项设备的不断运行,脱硫废水的水质发生明显变化,此种情况下对水资源造成严重污染。二是燃煤电厂脱硫废水的盐含量过高。燃煤电厂生产实际表明,脱硫废水中含有大量的盐,其与燃煤电厂实际供电需求存在密切的联系,随着燃煤电厂电力供求的不断增大,脱硫废水的含盐量也随之提高。三是脱硫废水中的悬浮物含量较大。当前燃煤电厂脱硫废水处理过程中,主要采用石灰石-石膏湿法脱硫技术,但在燃煤电厂实际运行过程中,脱硫废水中实际所含的悬浮物数量较多,严重制约着燃煤电厂的安全稳定运行。四是腐蚀性较强。由于脱硫废水的成分较复杂,含有较多酸性物质,具有较强腐蚀性,因此,在发电过程中,会对机械设备、管道等造成了严重腐蚀,是燃煤电厂目前急需解决的重要问题。五是硬度强,易结垢在运用石灰石和石膏进行脱硫处理以后,废水中会含有大量的镁离子、钙离子等,并且硫酸钙基本呈现饱和状态,一旦温度升高,脱硫废水很容易结构,具有较强硬度,使设备的使用寿命受到严重影响。 三、燃煤电厂脱硫废水处理方式 1.中和处理。根据我国脱硫废水处理相关规定和燃煤电厂的实际发电情况,进行中和处理,首先要将废水进人混合池,采用石灰石或其他碱性化学试剂,进行脱硫废水的PH值调整;然后进行中和处理的酸碱中和反应,除去相关离子物质。 2.重金属分离。在进行脱硫废水的中和处理时,会有重金属氢氧化物生成,当PH值达到9以上,会生成更多难溶氢氧化物,同时有难溶酸性物质生成。为了将金属离子都分离开,再向剩余脱硫废水加人有机硫化物,可以生成相应的难溶硫化物质,从而达到除去重金属离子的目的。 3.絮凝处理。在完成上述两个处理工序以后,还需要对脱硫废水进行絮凝处理,将废水中的胶体和其他物质除去。一般加人的絮凝剂有氯化铁,并且在出口地方加人相应的助凝剂,可以使胶体和其他物质形成的絮状物更易沉淀,同时加速其它氢氧化物和硫化物的沉淀,使脱硫废水中的悬浮物都得到相应处理,便于进行最后的综合处理。 4.沉淀处理。经过上述处理以后,需要将剩余废水转移到其它设备,观察废水的处理情况,一般底部的污泥都由絮凝物沉积而成,经过厢式压滤机压滤之后,进行沉淀物的固液分离操作。在按照脱硫废水处理工艺的工序进行沉淀处理时,上部分的净水必须经过PH值检测和悬浮物含量检测达标后,才可以由净水泵向外排出,否则将按照混凝沉淀到综合处理的工序进行重新净化,以达到提高水资源利用率的目的。 四、燃煤电厂脱硫废水零排放处理工艺 就燃煤电厂脱硫废水处理的实际情况来看,大多以混凝沉淀和总额和处理方式对脱硫废水进行处理,但其仅仅能够除去排放标准中的相关物质,其钙离子和钠离子等仍留存于废水中,实际处理工序复杂,且处理效果并不十分理想。此种情况下,应当积极优化燃煤电厂脱硫废水处理工艺,切实提高处理技术水平,这就要求相关工作人员积极借鉴相关资料和以往技术经验,优化燃煤电厂脱硫废水零排放处理工艺,通过预处理和深处理,对燃煤电厂脱硫废水进行混凝沉淀处理,真正促进燃煤电厂脱硫废水处理零排放的顺利实现,实现水资源的优化利用,降低水污染程度,并合理控制燃煤电厂脱硫废水处理的成本,延长处理设备使用寿命,切实提高燃煤电厂脱硫废水排放的有效性。常规废水零排放处理方法即为常规的多效蒸发结晶工艺。蒸发系统分为4个单元:热输入单元、热回收单元、结晶单元、附属系统单

高效反渗透废水处理工艺在电厂废水零排放中的应用_胡小武

1概述我国是个水资源短缺的国家,人均水资源量约 为2200m 3,约为世界平均水平的四分之一。而且水资源供需矛盾突出,据统计全国600多个城市半数以上缺水,其中108个城市严重缺水。随着经济的发 展,用水量持续增长,用水结构也在不断调整,节约用水、高效用水是缓解水资源供需矛盾的根本途径。 在全国总取水量中,农业约占70%,工业约占20%,生活约占10%。而我国火力发电厂取水量约占总工业取水量的50%。因而发电企业实施节水及高效用 水战略, 不仅是电力行业的一个经济问题,更是关系到电力工业持续发展和保证经济和社会快速健康发展的重大社会问题。 本文分析了反渗透系统运行的特点,对制约反渗透系统回收率提高的因素进行了分析,并结合神华亿利煤矸石电厂高效反渗透废水处理工艺系统的应用实例,充分阐述了高效反渗透废水处理工艺系统在工业废水处理中的有效应用。 2项目简介 神华亿利煤矸石电厂位于内蒙古鄂尔多斯市达 拉特旗,该厂安装有4×200MW 空冷发电机组。采用 循环流化床脱硫工艺,由于没有下游用户,电厂各种废水难以处置。为减少全厂外排废水量, 降低单位发电量取水量,电厂实施了废水零排放工程,将各种废水经深度处理后进行回用。 神华亿利煤矸石电厂4×200MW 电厂废水 “零排放”工程项目于2009年9月正式开工,2010年6月开始进入调试阶段,2010年9月正式移交生产。 3工业废水处理工艺的选择 神华亿利煤矸石电厂高效反渗透废水处理工艺 系统主要采用“石灰软化+过滤+离子交换+反渗 透”的处理工艺,主要包括废水收集和输送系统、预处理系统、离子交换系统、反渗透系统、RO 浓水回用 系统、加药系统、压缩空气系统。3.1 神华亿利煤矸石电厂工业废水种类及特点电厂所排工业废水主要有四类,一类是含油的废水,主要是油库区的含油废水,这部分水水量小,为非连续性工业废水;一类为使用后盐份浓缩的废 水,主要是循环水排污水和化学车间的废水;一类为使用后悬浮物增加的水,包括主厂房地面冲洗水和无阀滤池反洗排水;一类为温度较高的锅炉排污水 和疏放水。这四类工业废水目前在电厂管系系统为合流制,也就是目前电厂所有的工业废水都通过总排口排放。 3.1.1含油废水 油库区的含油废水由于油的含量较高,处理水 量较小,平均仅有1m 3/h,工业废水处理系统将这部分水从工业废水管网中分流出来,单独改造含油废水排放管道系统,将这部分废水就近排放到煤场随 煤一起燃烧处理。3.1.2 循环水排污水 厂区内的循环水是混凝澄清处理后的黄河水经机械通风冷却塔自然浓缩至1.5~2.5倍后的水,且水中添加了一定量的缓蚀阻垢剂和杀菌剂,连续排 放,排污量45m 3/h,部分送至输煤系统和煤场进行冲洗、喷洒、抑尘,剩余部分排至厂区内的工业废水管网。冷却塔排污水水质见表1。 高效反渗透废水处理工艺在电厂废水零排放中的应用 胡小武 (神华亿利能源有限责任公司,内蒙古鄂尔多斯,014300) 摘要:工业废水处理工艺系统越来越广泛应用于企业的废水处理中。神华亿利煤矸石电厂利用高效反渗透废水处理工艺系统,对电厂中的各种工业废水进行处理,从而达到废水再循环利用,实现了废水零排放。 关键词:零排放废水处理火电厂灰水循环冷却水工业废水中图分类号:X773 文献标识码:A 文章编号:1674-8492(2011)05-092-05 第9卷第5期VOL.9NO.52011年10月 Oct.2011

脱硫废水零排放

脱硫废水零排放(ZLD)系统 脱硫废水零排放工艺是针对火电厂脱硫废水特点,通过软化、MVR蒸发、结晶等技术途径,实现高盐度脱硫废水的零排放要求,最终看形成纯净可回用的蒸馏水和结晶盐。该工艺也可实现其他各种高盐度、高硬度、高COD工业废水零排放,具有高效、节能、运行稳定、低成本的特点。 脱硫废水零排放预处理工艺 脱硫废水首先进入预澄清池,进行沉淀澄清,降低原水浊度。沉淀物排放至沉淀浓缩池,上清液进入三联箱反应器。三联箱中加入Ca(OH)2、Na2CO3和絮凝剂,反应沉淀废水中的Mg2+、Ca2+和重金属离子。反应后的脱硫废水自流入澄清池,废水中的絮凝物沉淀到池底,并排放至沉淀浓缩池,上清液流入中间水池,后经多介质过滤后进入清水池,并加酸调节pH值。经沉淀浓缩池进一步浓缩后的污泥浆液,进入污泥脱水机固液分离,脱水后的污泥转运到场外处理,污水经缓冲水池后循环回预澄清池。 脱硫废水零排放深度处理工艺 MVR是“机械式蒸汽再压缩”的英文简称(Mechanical Vapor Recompression)。其基本原理是:对蒸发过程中产生的二次蒸汽通过机械再压缩,二次蒸汽的温度、压力升高,热焓增加,然后进入换热器冷凝,二次蒸汽的潜热得到完全利用。

进液经预热、除气后,进入蒸发系统,由泵送至卧式降膜蒸发器顶部,经液体分布装置,均匀分配到各换热管外,在重力作用下,成均匀膜状自上而下沿管外壁环向流动。流动过程中,被管程加热介质加热汽化,产生的二次蒸汽经离心蒸汽压缩机增压升温后进入降膜蒸发器管程与管外液体冷凝换热。 一定比例的蒸发浓缩液进入结晶系统。结晶系统的料液由泵送至加热器,晶浆在加热器管程升温,但不蒸发。热晶浆进入结晶器后沸腾,使溶液达到过饱和状态,于是部分溶质沉积在悬浮晶粒表面上,使晶体长大。产生的二次蒸汽一部分被蒸汽热泵引射后进入加热器壳程,继续加热管内浓缩液,另一部分通过冷凝器冷凝。 作为产品的晶浆从结晶器底部排出,通过旋液分离器初步分离后,富集晶体的浓浆液进入离心机分离出晶体,浓浆液继续循环回结晶系统。最终,将结晶物干燥、装袋、储存。 技术优势 1) 真正实现高盐度脱硫废水零排放,完全没有污水排放。 2) 节能效果显著,运行成本低,吨水成本25~40元/吨。 3) 采用特色的“MVR蒸发浓缩–TVR结晶工艺”,针对浓缩工艺和结晶工艺不同特点,分别优选最适宜的工艺方案。 4) 蒸发温差3~8℃,蒸发过程温和稳定。 5) MVR蒸发浓缩过程100%利用二次蒸汽潜热,废热蒸汽零排放,不需要冷却水系统,公用工程配套少。 6) 废水进蒸发器前先除气,将进水中的CO2和溶解氧清除掉,减少蒸发器内发生腐蚀、结垢和不凝性气体累计的风险。 7) 配置在线清洗系统,自动化程度高,清洗速度快。

脱硫废水零排放工艺

脱硫废水零排放工艺 1脱硫废水概述 1.1脱硫废水的水质特点及常规处理工艺 典型热电厂脱硫废水中一般含有大量的盐分、硫酸根离子、重金属离子及氯化物,并含有难处理的COD等,pH值一般在5~6之间,水质呈弱酸性。处理时需要在水中加入Ca(OH)2,将pH值调节到8.5~9.0之间,使得重金属离子(如铜、铁、镍、铬和铅)生成氢氧化物沉淀;同时反应过程中还会生成CaCl2、CaF2、CaSO3、CaSO4沉淀物,以分离氯根离子、氟化物、亚硝酸盐、硫酸盐等盐类物质;对于汞、铜等重金属,目前普遍采用15%TMT溶液替代Na2S 来将其沉淀出来。 1.2脱硫废水处理难点 从脱硫废水常规处理工艺中可以看出: 预处理工艺中添加了大量的熟石灰,会导致水中硬度离子含量较高,且水中残留有高浓度的SO42-、Cl-,属于典型的高含盐废水。水中硬度离子含量高会导致处理设备结垢污堵,Cl-离子含量高会对设备、管道产生严重腐蚀。其次,脱硫废水水质成分复杂,污染物超标严重,水中镉、汞、硫化物、氟化物含量高。另外,脱硫废水受燃煤品种、脱硫工艺、吸收剂等多种因素影响,水质变化较大。 1.3脱硫废水排放标准滞后与现实环保要求 脱硫废水水质控制的行业标准:DL/T997-2006《火电厂石灰石-石膏湿法脱硫废水水质控制指标》,其对脱硫废水中总汞、总铬、总镉、总铅、总镍、悬浮物等指标进行了限制,但是总体标准偏低,如汞的最高排放限值为0.05mg/L,同时也没有对Cl-的排放浓度进行限制。而目前火电厂的废水排放是按照GB8978-1996《污水综合排放标准》进行控制的,但该标准规定的控制项目和指标也不能完全适用于脱硫废水。 2015年4月16日,国务院发布《水污染防治行动计划》,强调将强化对各类水污染的治理力度,脱硫废水因成分复杂、含有重金属引起业界关注。目前行业内工程案例基本上都是:利用浓缩工艺对脱硫废水减量化处理,产水回用循环水系统,浓缩水进入蒸发器结晶生成固态盐。从而实现脱硫废水“零排放”的目标。 2、脱硫废水“零排放”常规处理工艺介绍 2.1预处理工艺系统 经三联箱处理后的脱硫废水中硬度离子含量很高,若不加处理会对后续设备及管道造成严重的污堵,所以在预处理时常会采用“pH调节+混凝+沉淀”的处理工艺降低水中钙镁离子的含量。 首先在pH调节池中将进水调整至9.0~10.0,将Mg硬度转换为钙硬度。然后在混凝池中分别加入碳酸钠药剂,可以有效的将水中的硬度离子降低至1~2mmol/L。再投加PAM药剂,通过絮凝、沉淀工艺将无机泥排出。处理后的水进入浓缩工艺段进一步处理。 2.2浓缩减量工艺系统 零排放工艺的最终目标是将水送至蒸发器中结晶,但由于蒸发器造价高昂,且运行费用高,所以最大限度的将废水减量是本工艺段的主要目标。 (1)反渗透工艺(预浓缩工艺—不分盐) 反渗透工艺是利用半透膜的原理,通过在高浓度侧施加压力将水和盐分离出来。系统回收率通常可以设计在70%~80%之间,产出的干净水由于离子含量低,可以回用到工业系统中。而反渗透膜截留下的有机物、胶体和无机盐由浓水侧排至浓水收集水箱,后续进入高效浓缩工艺单元进一步处理。 反渗透法制取除盐水是一个物理过程,所以比离子交换法环保。同时处理过程简单,易操作,自动程度化高,人工干预量小,同时系统的管理与维护简单。 (2)纳滤工艺(预浓缩工艺-分盐)

相关文档
最新文档