二阶有源滤波器设计实验报告

二阶有源滤波器设计实验报告
二阶有源滤波器设计实验报告

二阶有源带通滤波器的研究

所属课程:模拟电子技术基础

班级:

姓名:

学号:

日期:

一、 实验目的

1、

熟悉由运放、电阻和电容组成的二阶有源带通滤波器及其特性,并运用理论知识计算满足一定设计要求所需的元件参数; 2、 学会测量二阶有源带通滤波器的幅频特性及找出其截止频率点;

3、

进一步学习和提高焊板技术,掌握软件multisim 仿真和硬件检测电路的基本方法。

二、 设计任务及要求

1、由二阶有源低通滤波器和二阶有源高通滤波器组成二阶有源带通滤波器 技术指标:单运放增益586.1==VF O A A Q=0.707

通带增益515.22

≈=VF V A A

下限频率Hz f L 300= 上限频率kHz f H 4.3=,误差允许范围20% 2、设计二阶有源带通滤波器电路,计算电路元件参数,并进行仿真

3、焊好硬件电路,测量技术指标参数,测量滤波器的截止频率

三、 实验原理

电路原理图

该带通滤波器由二阶有源低通滤波器和二阶有源高通滤波器组成,前级为低通,后级为高通。

1、前级:二阶有源低通滤波器

传递函数:

2

2

2

)(c

c

c

O s Q

s A s A ωωω++

= 其中:VF

c A Q RC

-=

=

31

1

ω

低通电路决定了本实验带通滤波器的上限频率H f ,要求kHz f c

H 4.32==

π

ω,取C 1=C 2=1000pF 可求得:R 3=46.8k, 取47k, R 3=R 1||R 2, 取R 1=110k, 取R 2=82k (R 1、R 2为分压器,可使通带增益为0dB 。)

取Q=0.707,则A VF =1.586 取R 5=39k R 4=68k

2、后级:二阶有源高通滤波器

传递函数:

2

22

)(c

c

O s Q

s s A s A ωω++

= 其中:VF

c A Q RC

-=

=

3

ω

高通电路决定了本实验带通滤波器的下限频率L f ,要求Hz f c

L 3002==

π

ω,取C 1=C 2=0.1uF 可求得:R 6= R 7=5.31k, 取5.1k 取Q=0.707,则A VF =1.586 取R 8=47k R 9=82k

四、 实验内容及步骤

1、 软件仿真

输入信号:正弦信号Vipp=2V f=1kHz 幅频特性曲线:

下限频率:y1= - 3.0899dB ,Hz f L 54.298≈,在误差允许范围内 上限频率:y2= - 2.9588dB ,kHz f H 48.3≈,在误差允许范围内 相频特性曲线:

2、 硬件测试

○1按电路原理图正确连接电路,注意正负双电源的连接,千万别接反。接入正弦信号Vipp=2V f=1kHz ;

○2用双踪示波器观察电路原理图中的1点的输入波形和7点的输出波形,记录两点的电压,并计算滤波器通带电压增益A V 。

3分别向上、向下改变输入信号的频率,直到增益下降到滤波器通带电压增益A V 的0.707倍,记录输入信号的频率,即分别为该滤波器的上限频率和下限频率。

五、 实验数据及整理

Vipp=2V f=1kHz 时,1点输入电压Vipp1=0.85V ,7点输出电压V opp=1.88V , 通带增益 21.21

==

Vopp

Vipp A V 截止频率点增益56.1707.0/

==V V A A 输出电压V opp ’=1.33V 下限频率:

Hz f L 340=实

,误差:%33.13%100=?-=

?L L

L L f f f f 实,在误差范围内 上限频率:kHz f H 51.3=实

,误差:%23.3%100=?-=

?H

H

H H f f f f 实,在误差范围内 六、 实验所获

1、 加深了对有源滤波器的认识,进一步掌握了有关有源滤波器的电压增益与

截止频率的计算方法

2、 学会了设计电路和运用理论知识计算元件参数的基本方法

3、 掌握了multisim 软件仿真和硬件电路检测的基本方法

有源滤波实验报告

姓名: 学号:2009118125 班级:电工二班 实验十一 有源滤波器 实验目的 1. 掌握有缘滤波器的构成及其特性 2. 学习有缘滤波器的幅频特性的测量方法 实验仪器 数字示波器 信号发生器 交流毫伏表 直流电源 预习要求 1. 复习有缘滤波器的概念、工作原理。 2. 分析计算图5-11-1、图5-11-2电路的截止频率,图5-11-3电路 的中心频率。 3. 画出三个电路的幅频特性曲线 实验原理 有源滤波器又称作有源选频电路,通常用继承运放和电阻,电容网络构成。它的作用是让指定频段信号通过,而将其余频段信号加以抑制或大幅度衰减。分低通、高通、带通、带阻等电路。 1. 低通滤波电路 低通滤波器是指通过低频而抑制高频信号的滤波器,如图5-11-1所示为二阶低通滤波器。 传输函数: 200 11()f A j Q ωωωω-+ 1 (1)f f R A R =+ 1( )3f Q A =- 01 RC ω= 根据上式可知,当Q 取不同值时,可使电路的频率特性具有不同的特点。一般Q 取0.7。 2. 高通滤波器 高通滤波器的功能是使频率高于某一数值(如fo )的信号通过,而低于fo 的信号不能通过。图5-11-2电路为二阶高通滤波器。

其频率特性为:200()11()f A H j j Q ωωωωω = -- 1 1f f R A R =+ 13f Q A = - 01RC ω = 3. 带通滤波器 带通滤波器可由低通滤波器和高通滤波器构成,也可以直接由集成运放外加RC 网络构成,不同的构成方法,其滤波特性也不同。带通滤波器的功能是指定频段内的信号通过而衰减其它频段的信号。 4.带阻滤波器 带阻滤波器又称陷波器,它衰减指定频段的信号,而让其它频段的信号通过。带阻滤波器可由低通电路和高通电路构成,也可由集成运放外加RC 网络构成。常用的带阻滤波器是由双T 网络构成的,如图5-11-3所示。 其幅频特性为:

二阶压控型低通滤波器设计

二阶压控型低通滤波器设计 1. 设计要求 设计一个二阶压控型低通滤波器,要求通带增益为2,截止频率为2KHz ,可以选择0.01uF 电容器,阻值尽量接近实际计算值,电路设计完后,画出频率响应曲线,并采用Multisim 软件进行仿真分析。 2. 设计目的 (1) 进一步掌握滤波器电路的工作原理和参数计算。 (2) 熟练使用Multisim 进行简单的电路设计和仿真。 3. 问题分析与参量计算 3.1 问题的简单分析 二阶压控型低通LPF 电路基本原理图可参照教材P345页(如下) 而题目中已经给出了电容的值,故我们所要做的只是确定电阻阻值以及进行电路合理的相关改善。 实验所选取的运放器是a741,实验是在Multisim 环境仿真完成的。 3.2 计算电路相关参数 (1) 低通滤波器在通带将内电容视为开路,给电路引入负反馈从而满足“虚短”、“虚断”,通带增益 3412up R A R =+ =,则34R R =,取34R R == 10k Ω。 (2) 传递函数:为方便计算,取1212,R R R C C C ====,由“虚短”、“虚断”及叠 加定理,得()() ()()() ()()()677776/1()()[()]0up p p p i U s A U s U s U s sCR U s U s U s U s U s U s sC R R ==+-----= 得到传递函数:62()1()()1(3)()u up i up U s A s A U s A sCR sCR ==+-+ 令s j ω=,取012f RC π=,2f ωπ=,2 001(3)()up u up A A f f j A f f ?=+-- (3) 当f 为截止频率时,200|1(3)()|2up f f j A f f +--=,令0f x f =,则得方程 4210x x --=,解得x ,因为2f kHz =,取0.01C F μ=可解得10.1224R k ≈Ω电阻,由于实际试验中难以的到10.1224k Ω的电阻,故实际试验中用10k Ω的电阻代替之 (4)入10,1p V mv f kHz ==的信号源 最终得到的电路图: 3.3二阶压控电压源低通滤波器(LPF )的幅频特性 Q=13-Aup =13-2 =1 ,所以Q=1的曲线即为此二阶压控电压源低通滤波器(LPF )的幅频特性。

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

二阶有源带阻滤波器课程设计汇总

二阶有源带阻滤波器 设计报告 目录 1、设计要求………………………..P1 2、设计作用及目的………………..P1 3、设计的具体实现 ⑴系统概述……………………...P1-P8 ⑵单元电路设计及仿真分析…...P9-P22 ⑶PCB版电路制作……………..P 4、心得体会及建议………………...P 5、附录……………………………...P 6、参考文献………………………...P

一、设计要求 ⑴、设计一个二阶有源带阻滤波器电路,要求中心频率0f=50Hz,Q=10; ⑵、设计时要综合考虑实用、经济并满足性能要求指标; ⑶、合理选用元器件。 二、设计的作用、目的 ⑴、掌握二阶有源带阻滤波器电路的设计方法 ⑵、了解二阶有源带阻滤波器的性能特点 ⑶、掌握二阶有源带阻滤波器的安装与调试方法 ⑷、掌握滤波器有关参数的测量、计算方法 ⑸、理论应用于实践,增强动手能力 三、设计的具体实现 1、系统概述 ⑴、相关知识了解 由有源器件(晶体管或集成运放)和电阻、电容构成的滤波器称为RC有源滤波器。滤波器分为一阶、二阶和高阶滤波器。阶数越高,其幅频特性越接近于理想特性,滤波器的性能就越好。滤波器的功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信号处理、数据传输、抑制干扰等方面。这类滤波器主要优点是:小型,价廉;不需要阻抗匹配且可具有一定的增益;抗干扰能力强;截止频率低(可低至10-3Hz)。因受运算放大器的频带限制,主要用在超低频至几百千赫的频率范围。根据滤波器所能通过信号的频率范围或阻止信号频率范围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 这里专门对二阶有源带阻滤波器进行研究。常用的二阶有源带阻滤波器电路有两种形式,一种是无限增益多路负反馈(MFA)有源二阶带阻滤波器电路,另一种是电压控制电压源(VcVs)有源二阶带阻滤波器电路。 电压控制电压源电路,它的运放为同相输入,具有高输入阻抗、低输出阻抗

数字图像处理实验报告.docx

谢谢观赏 数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif 谢谢观赏

电路实验报告12 有源滤波器设计

课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、掌握有源滤波器的分析和设计方法。 2、学习有源滤波器的调试、幅频特性的测量方法。 3、了解滤波器的结构和参数对滤波器性能的影响。 4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 1、滤波器的5个主要指标: (1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 (2) 通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 (3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 (4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 (5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 2、有源滤波器的设计流程: 设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。最后再通过实验进行调试,确定实际的器件参数。 三、实验器材 运放LM358、 四、操作方法和实验步骤 1、实验内容 (1) 在实验板上安装所设计的电路。 (2) 有源滤波器的静态调零。 (3) 测量滤波器的通带增益A v p、通带截止频率f p。 (4) 测量滤波器的频率特性(有条件时可使用扫频仪)。 (5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。 2、设计一个二阶有源低通滤波器。具体要求如下: (1) 通带截止频率:f p=1kHz;

二阶低通有源滤波器设计

光电子线路课程设计二阶低通有源滤波器的设计

一、 实验要求 利用给定电阻、电容,与ua741,设计一二阶有源低通滤波器,截止频率1KHz 。 二、 理论计算 二阶低通有源滤波器传递函数 r r r r s o R R C C s C R A C R C R s R R C C A V V 212112 2111) 1(111+ ??? ? ? ?-+++=2 22 c c c s Q s A ωωω++ = 其归一化的传输函数: 1 12 ++= L L s o s Q s A V V 其中: c L s s ω= 。Q 为品质因数,取2 1= Q 通带内的电压放大倍数:11R R A f += 取f R =1R =33K Ω,使A=2. 滤波器的截止角频率:c r c f C C R R πω21 2 1== ----------------1 又, 2 111 )1(11C R A C R C R Q r r c -++= ω----------2 再取f R R C C ==,21, 带入1、2计算 得: 7.4,033..021====f R R uf C C K Ω时 02.1=c f KHz

三、 仿真 图1 仿真电路 图2 仿真波形 在仿真过程中发现,当取7.4,033..021====f R R uf C C K Ω时,截止 频 率 为 1.29KHz 。 调 整 参 数 , 使 ΩΩ,K R K R uf C C f 1.55.7,033..021====,得到截止频率为1.062KHz , 幅频特性较好。

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

有源滤波器设计实例

有源滤波器设计任务书 一、设计目的 1. 熟悉二阶有源滤波电路幅频特性和相频特性。 2. 掌握二阶有源滤波电路的快速设计方法。 3. 掌握二阶有源滤波电路的调试及其幅频特性和相频特性的测试方法。 二、使用仪器与器材 信号发生器;双线示波器;万用表;直流稳压源;实验电路板;元器件若干。 三、设计任务 图中所示为无限增益多路反馈电路的一般形式,请选择适当类型无源元件Y1~Y5,以构成低通滤波器和高通滤波器 1. 请设计一个二阶1dB无限增益多路反馈切比雪夫低通滤波器,通带增益Kp=2,截止频率fc=5kHz,画出电路图。 2. 请设计一个二阶1dB无限增益多路反馈切比雪夫高通滤波器,通带增益Kp=2 截止频率fc=2kHz,画出电路图。 ● 以上工作请在实验课前完成。写在实验报告中。 四、设计步骤 1. 按设计所确定的电路参数,在实验接插板上放入器件,连接低通滤波器(注意连接可靠,正确) 2.将信号发生器的输出信号电压幅值调到1V,接入低通滤波器的输入端,并调整信号源的频率,在低通滤波器输出端测量所对应的幅值。(可用示波器或交流毫伏表测试,并计录输入频率值和所对应的输出幅值,测量10~12 点。) 3.用示波器李沙育图形测试低通滤波器的相频特性,测量10~12 点。 4.进行高通滤波器的电路连接及幅频特性和相频特性测试。测试方法同上。

五、设计报告要求与思考题 1. 复习并掌握滤波器的工作原理,设计方法及应注意问题。 2. 画出所设计的低通滤波器、高通滤波器的电路图。并注明元件参数。 3. 画出幅频特性与相频特性测试原理图,说明测试方法与步骤。 4. 以表格形式分别给出低通滤波器与高通滤波器的幅频特性与相频特性测试数据,并画出其特性曲线。 5. 如果将低通滤波器与高通滤波器相串联,得到什么类型的滤波器,其通带与通带增益各为多少?画出其特性曲线。也可在实验中予以观测和证实。 6. 为构成所得类型的滤波器,对低通滤波器与高通滤波器的特性有无特 定要求。二者哪个在前有无关系? 附录: 1.几种滤波器原理图、幅频特性

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

二阶有源低通滤波器

设计题题目 二阶有源低通滤波器 设计一个有源低通滤波器的截止频率为kHz f 10 。 方案论证 (1):对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 滤波器分为无源滤波器与有源滤波器两种 工作原理: 二阶有源滤波器是一种信号检测及传递系统中常用的基本电路, 也是高阶虑波器的基本组成单元。常用二阶有源低通滤波器的电路型式有压控电压源型、无限增益多路反馈型和双二次型。本次课程设计采用压控电压源型设计课题。 有源二阶滤波器基础电路如图1所示: 图1 二阶有源低通滤波基础电路 它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f0时(f0 为截止频率),电路的每级RC 电路的相移趋于-90o,两级RC 电路的移相到-180o,电路的输出电压与输入电压的相位相反,故此时通过电容c 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。其特点是输入阻抗高,

输出阻抗低。 传输函数为: )()()(i o s V s V s A = 2F F ) ()-(31sCR sCR A A V V ++= 当f=0或者频率很小时,各电容可视为开路 F 0V A A ==1+(A vf\-1)R1/R1 称为通带增益 F 31V A Q -=称为等效品质因数 RC 1c = ω 称为特征角频率 则2c n 22c 0)(ωωω++= s Q s A s A 上式为二节低通滤波电路传递函数的典型表达式 注:当Q =0.707时的3dB 截止角频率,当30≥=VF A A 电路将自激振荡。 当jw s =代入 2220222)(c c c c c c VF w s Q w s w A w s Q w s w A s A ++=++= (式11) 则 2220 )(])(1[1lg 20)(lg 20Q w w w w A jw A c c +-= (式12) 2)(1)(arctan )(c c w Q w w w --=? (式13)

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

有源滤波器实验报告

实验报告 课程名称:电路与电子技术实验Ⅱ指导老师:张德华成绩:__________________ 实验名称:有源滤波器实验类型:模拟电路实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.了解有源滤波器的工作原理、特点; 2.掌握有源滤波器典型电路的设计、分析与实现; 3.学习有源滤波器典型电路的频率特性测量方法、电路调试与参数测试,了解其滤波性能; 4.通过仿真方法进一步研究有源滤波电路,了解不同的有源滤波器结构、参数等对滤波性能的影响。 二、实验内容和原理 实验内容: 1.原理分析; 2.频率特性; 3.滤波效果。 实验原理: 0.滤波器 ⑴定义: 让指定频段的信号通过,而将其余频段上的信号加以抑制,或使其急剧衰减。(选频电路) ⑵分类: a)按照器件类型分类: 无源滤波器:由电阻、电容和电感等无源元件组成; 有源滤波器:采用集成运放和RC 网络为主体; b)按照频段分类: 低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )、带阻滤波器(BEF ); 通带:能够通过(或在一定范围内衰减)的信号频率范围; 阻带:被抑制(或急剧衰减)的信号频率范围; 过渡带越窄,说明滤波电路的选频特性越好。

⑷关键指标: 传递函数(频率响应特性函数)A v:反映滤波器增益随频率的变化关系; 固有频率(谐振频率)f c、ωc:电路无损耗时的频率参数,其值由电路器件决定; 通带增益:A0(针对LPF)、A∞(针对HPF)、A r(针对BPF); 截止频率(-3dB频率)f p、ωp:增益下降到通带增益时所对应的频率; 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同(低通、高通滤波器中,定义为当f = fc 时增益模与通带增益模之比)。 1.一阶低通有源滤波器 ⑴电路原理图: ⑵关键指标: ⑶幅频特性图: ⑴电路原理图: ⑵关键指标:

有源模拟滤波器实验报告

实验报告

工程大学教务处制 一、实验目的 1.掌握滤波器的滤波性能特点。 2.掌握常规模拟滤波器的设计、实现、调试、测试方法。 3.掌握滤波器主要参数的调试方法。 4.了解电路软件的仿真方法。 二、实验原理 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的结束n,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: 1.根据阻带衰减速率要求,确定滤波器的阶数n。 2.选择具体的电路形式。 3.根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程 组。 4.解方程组求出电路中元件的具体数值。 5.安装电路并进行调试,使电路的性能满足指标要求。 根据滤波器所能通过信号的频率围或阻带信号频率围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 a)有源二阶低通滤波器(LPF) 图1 压控电压源二阶低通滤波器 b)有源二阶高通滤波器(HPF)

图2 压控电压源二阶高通滤波器 c)有源带通滤波器(BPF) 图3 压控电压源二阶带通滤波器 d)带阻滤波器(NF) 图4 压控电压源双T 二阶有源带阻滤波器 三、实验仪器 1.示波器 2.信号源 3.万用表 4.直流稳压电源 四、实验容

1.二阶低通滤波器 ①参照图4 电路安装二阶低通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 17k Ω,R4 =10k Ω, C1 = C2 = C =0.1μF,计算截止频率fc、通带电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万用 表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并将 测量结果与理论值相比较。 2.二阶高通滤波器 ①参照图6 电路安装二阶高通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 1.7k Ω,R4 = 10kΩ,C1 = C2 = C = 0.1μF,Q = 0.707,计算截止频率fc 和通带电压放大倍数Auo 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并 将测量结果与理论值相比较。 3.二阶带通滤波器 ①参照图9 电路安装二阶带通滤波器。元件值取:R1 = R2 = R = 1.5kΩ,R3 = 2R = 3kΩ,R4 = 10kΩ, R5 = 19kΩ,C1 = C2 = C = 0.1μF,计算截止频率fc、通带电压放大倍数Auo 和 Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 4.二阶带阻滤波器 ①参照图12 电路安装二阶带通滤波器。元件值取:R1 = R2 =R = 3kΩ,R3 = 0.5R = 1.5kΩ,R4 = 20kΩ, R5 = 10kΩ,C1 = C2 = C = 0.1μF,C3 = 2C = 0.2μF,计算截止频率fc、通带 电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 五、实验预习和仿真 1.压控电压源型有源二阶低通滤波器 仿真电路:

二阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度

选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

7.有源滤波器设计实验

电气工程学院 实验名称:有源滤波器设计实验课程:电路与电子技术实验2 课程号:101C0330 学期:2018春夏学期 任课教师:沈连丰

课程名称:电路与电子技术实验2 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验实验类型:练习型 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握有源滤波器的分析和设计方法。 2.学习有源滤波器的调试、幅频特性的测量方法。 3.了解滤波器的结构和参数对滤波器性能的影响。 4.用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 实验原理: 1.传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 2.通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 3.固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 4.通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 5.品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 实验内容: 1.设计一个简单的二阶、有源、低通滤波器(LPF,同相型),并测量其幅频特性。 2.设计一个简单的有源、低通滤波器(LPF,同相型),并测量其幅频特性。 3.设计一个二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型),并测量其幅频特性。 4.设计一个二阶、有源、多路负反馈型、低通滤波器(LPF,反相型),并测量其幅频特性。 三、主要仪器设备 1.集成运算放大器LM358 2.电阻电容等元器件 3.MY61数字万用表 4.示波器 5.函数信号发生器

有源滤波器实验报告

实验七 集成运算放大器的基本应用(H)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 图7 —1四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内 的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的 选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7 —1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性 (a)低通 (C)带通(d)带阻

衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图7 —2 (a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,弓I入适量的正反馈,以改善幅频特性。 图7—2 ( b)为二阶低通滤波器幅频特性曲线。 图7 —2二阶低通滤波器 电路性能参数 R f A UP=^- 二阶低通滤波器的通带增益 R I 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 状。 2、高通滤波器(HPF 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7—2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7 —3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照 LPH分析方法,不难求得HPF的幅频特性。 1 2ΠR 1 3 -A UP 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形 (a) 电路图(b)频率特性

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

东南大学模电第八次实验有源滤波器要点

东南大学电工电子实验中心 实验报告 学号:04009543 姓名:顾馨月 第8次 实验名称:有源滤波器实验 提交报告时间:2011年月日 完成名次: 成绩:审批教师:团雷鸣

实验八 有源滤波器实验 实验目的: 1、 掌握由运算放大器组成的RC 有源滤波器的工作原理 2、 熟练掌握RC 有源滤波器的工程设计方法 3、 掌握滤波器基本参数的测量方法 4、 进一步熟悉MultiSim 软件高级分析功能的使用方法 设计提示: 1、 有源滤波器设计中选择运算放大器主要考虑带宽、增益范围、噪声、动态范围这四个参 数。 (I) 带宽:当为滤波器选择运算放大器时,一个通用的规则就是确保它具有所希望滤波 器频率10倍以上带宽,最好是20倍的带宽。如果设计一个高通滤波器,则要确保运算放大器的带宽满足所有信号通过。 (II) 增益范围:有源滤波器设计需要有一定的增益。如果所选择的运算放大器是一个电 压反馈型的放大器,使用较大的增益将会导致其带宽低於预期的最大带宽,并会在最差的情况下振荡。对一个电流反馈型运算放大器来说,增益取的不合适将被迫使用对於实际应用来说太小或太大的电阻。 (III) 噪声:运算放大器的输入电压和输入电流的噪声将影响滤波器输出端的噪声。在噪 声为主要考虑因素的应用里,你需要计算这些影响(以及电路中的电阻所产生热噪声的影响)以确定所有这些噪声的叠加是否处在有源滤波器可接受的范围内。 (IV) 动态范围:在具有高Q 值的滤波器里面,中间信号有可能大於输入信号或者大於 输出信号。对操作恰当的滤波器来说,所有的这些信号必须能够通过而无出现削波或过度失真的情况 2、 目前已经有很多专业的有源滤波器设计软件如:德州仪器的Filter Pro 、国家半导体 WEBENCH? 中的Active Filter Designer 、Nuhertz Technologies 的Filter Solutions 等。这些软件可以根据您的设计指标要求很快的算出电路参数,很大程度上节省了开发周期。 预习思考: 1、 根据38页实验内容1的指标要求,设计一个低通滤波器,画出电路图,计算各元件参 数。所有的电阻和电容值必须采用标称值代替计算值。 (1) 计算过程: 根据设计要求:截止频率7.0,20==Q kHz f ,利用公式有: 根据现有元件的标称值,选择R f =44k,R F =25k , 使得 57.044 25 ≈=f F R R 逼近计算值。 此时的实际值应为7.0,57.10≈=Q A 当C C C R R R ====2121,时,

相关文档
最新文档