同余与同余方程

同余与同余方程
同余与同余方程

第2章 同余与同余方程

在整除的基础上,我们进一步研究同余理论.德国大数学家高斯发明了同余式语言.这使

得我们差不多能像处理等式一样来处理整除关系.在本章中,我们将给出同余的基本性质,描

述如何进行同余式的算术运算,还将研究含未知数的同余方程,例如线性同余方程.引出线性

同余方程的一个例子是这样的一个问题,求使得7x 被11除所得余数为3的所有整数x .我们

还将研究线性同余方程组,它们来源于古代中国难题:求一个数,它被3,5,7处所得余数分别

为2,3,2.我们将学习如何运用著名的中国剩余定理来解像上一难题那样的线性同余方程

组.

2.1 同余的概念及其基本性质

一、同余的概念

本章所介绍的同余这一特殊语言在数论中极为有用,它是由历史上最著名的数学家之一高

斯于19世纪初提出的.

同余的语言使得人们能用类似处理等式的方式来处理整除关系.在引入同余之前,人们研

究整除关系所用的记号笨拙而且难用.而引入方便的记号对加速数论的发展起了帮助作用.

定义1 给定正整数m ,称为模,设a , b 是整数

(1) 如果 ()|m a b -,则称a 和b 对模m 同余,简称同余,记为()mod a b m ≡;

(2) 如果 ()|m a b -,则称a 和b 对模m 不同余,记为()mod a b m ≡/.

例1 下列数中哪些对模7同余:

421, 46, 11, -6, -32, 3

解:由()[][]7|4216,7|4611,7|323-----????,得

()()()4216mod7,4611mod7,323mod7≡-≡-≡.

我们有时需要将同余式转换为等式.下面的定理能帮助我们做到这一点.

定理1 ()()mod a b m a mq b q ≡?=+∈Z .

证明:若()mod a b m ≡,则()|m a b -,这说明存在整数q , 使得qm=a-b ,即a mq b =+.

反过来,若存在整数q , 使得a mq b =+,则qm=a-b .于是,()|m a b -,()mod a b m ≡. ■

小结:()()()mod |a b m m a b a mq b q ≡?-?=+∈Z

二、同余的性质

定理2 设m 是正整数,模m 的同余满足下面的性质:

(i) 自反性.若a 是整数,则()mod a a m ≡;

(ii) 对称性.若a ,b 是整数,且()mod a b m ≡则()mod b a m ≡;

(iii) 传递性.若a ,b ,c 是整数,且()mod a b m ≡,()mod b c m ≡则()mod a c m ≡. 所以同余是整数间的一种等价关系.

由定义1知定理2是显然的.

定理3 若()()mod ,mod a b m c d m ≡≡, 则

(i)(可加性)()mod a c b d m +≡+;

(ii)(可乘性)()mod ac bd m ≡.

定理3很容易证明,另外利用归纳法不难把定理3推广到n 个同余式的情形,且易推出下述结论.

推论 设 ()mod a b m ≡,k 是整数,n 是正整数,则

(i) ()mod ak bk m ≡;

(ii) ()mod n n a b m ≡.

定理4 设()()111010,n n n n n n n n f x a x a x a g x b x b x b ----=+++=+++L L 是两个整系数

多项式,且满足()mod ,1,2,,.i i a b m i n ≡=L 那么若()mod a b m ≡,则()()()mod .f a g b m ≡

定理4由定理3及其推论即可推出.当定理4中条件:同次幂系数关于模m 同余时,就称多项式f(x)和g(x)对于模m 同余,记为()()()mod .f x g x m ≡

定理5 设()mod a b m ≡,k 是正整数,则()mod ka kb km ≡.

定理6设()mod a b m ≡,d 是正整数,且|d m ,则()mod a b d ≡.

定理7若()mod ca cb m ≡,且设(),c m d =,则mod

m a b d ??≡ ???

,特别地,当(),1c m =时,有()mod a b m ≡. 证明:因为()mod ca cb m ≡,所以有()|m ca cb -,即()|m c a b -,由(),c m d =,得

()|m c a b d d -.又因为,1c m d d ??= ???,故()|m a b d -,所以mod m a b d ??≡ ??

?. ■ 这一性质说明:在模m 不变的情况下,同余式两边不能随便约去相同的因数,如()6368mod10?≡?,但()3810mod ≡/.

定理8 若()()1212mod ,mod ,[,]a b m a b m k m m ≡≡=,则()mod a b k ≡.

定理8显然可以推广到任意k 个同余式的情形.

例2 求4063的个位数.

解:由()2391mod10≡≡-,得()()()203203406233119mod10≡≡-≡-≡.

三、整除性检验

利用同余可以导出整数的一些整除特征.设N 为正整数,则N 可表示为

110110101010n n n n n n N a a a a a a a ---==?+++?+L ,其中,09,0,1,2,0.i i n a a i n a ∈N ≤≤=≠L ① 被2的幂整除的检验:()*1202|,N 2|j j j j N j a a a --∈?L ;

② 被5的幂整除的检验:()*1205|,N 5|j j j j N j a a a --∈?L ;

③ 被3,9整除的检验:1103,9|3,9|n n N a a a a -?++++L ;

④ 被11整除的检验:()011|11|1n

i i

i N a =?-∑; ⑤ 被7,11,13整除的检验:012345678910117,11,13|7,11,13|N a a a a a a a a a a a a ?-+-+L .

四、 弃九验算法

在公元9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土版上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式就是采用弃九验算法.实际上,弃九验算法就是利用同余来验算正整数进行算术四则运算的计算结果.下面以乘法为例.

设a ,b 都是正整数,且ab=p , 不妨记

()1110101010,09,0,1,2,0,n n n n i n a a a a a a i n a --=?+++?+≤≤=≠L L

()1110101010,09,0,1,2,0,m m m m j m b b b b b b j m b --=?+++?+≤≤=≠L L

()1110101010,09,0,1,2,0,s s s s k s p c c c c c k s c --=?+++?+≤≤=≠L L

()10mod9n n a a a a -≡+++L ,

()110mod9m m b b b b b -≡++++L ,

()110mod9s s p c c c c -≡++++L ,

所以

()()

()10110110mod 9n n m m s s a a a b b b b c c c c ---+++++++≡++++L L L

当上述同余式不成立时,求得的乘积p 就是错误的结果.在实际计算时,还可以利用同余式()90mod9≡进行简化.

例5 验算下列算式是否正确 28947345781001865676?=.

解:因为 ()28947289473mod9≡++++≡,

()34578345780mod9≡++++≡,

()1001865676118656764mod9≡+++++++≡,

而()3004mod9?≡≡/,所以上述算式不正确.

注意:弃九验算法只能知道原题一定是错的或有可能正确,但不能保证一定正确.

例如:检验算式 999?=时,等式两边除以9的余数都是0,但是显然算式是错误的.但是,反过来,如果一个算式一定正确,那么它的等式两端一定满足弃九验算法的规律.这个思想往往可以帮助我们解决一些较复杂的数字谜问题.

另外,可以类似地用此法来检验加法、减法、乘方等算式的计算结果.

习题2.1

1.计算m 取何值时,下列各式成立:

()()83211(mod );(2)10011(mod );348026(mod );(2)21(mod ).

1m m m m ≡≡≡≡ 2.计算m 取何值时,下列两式同时成立:

()3211(mod );(2)10011(mod ).1m m ≡≡一般地,若

(mod ),(mod )a b m c d m ≡≡同时成立,则m 要满足什么条件?

3.证明对一切整数x 都有

24325(152********)(733)(mod8)x x x x x x x ++-+-≡++

4.证明:70!61!(mod71)≡.

48100505.(1)求13除6的余数;

(2)求3模10的余数;(3)求3的十进制数表示中最末两位数.

6.99141283,,.x y x y 已知求

7.用弃九法验算下列算式是否有错:

+===1=?÷(1)152434564880;

(2)3596-23461340;(3)432832944246432;

(4)2263801651432.

8.在算式中=843685?W 31452653中遗漏了一个数字,如果其他数字都是正确的,求遗漏的数字。

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

高次方程及解法

高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。由两个或两个以上高次方程组成的方程组,叫做高次方程组。对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。 一、±1判根法 在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则 -1是方程的根。求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者( x+1),降低方程次数后依次求根。“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。 例1解方程x4+2x3-9x2-2x+8=0 解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1), (x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8 观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根 -1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷ (x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4 点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。 二、常数项约数求根法 根据定理:“如果整系数多项式a n x n+a n-1x n-1+ +a1x+a0可分解出 Q(P、Q 是因式P x-Q,即方程a n x n+a n-1x n-1+ +a1x+a0=0有有理数根 P 互质整数),那么,P一定是首项系数a n 的约数,Q一定是常数项 a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。 “常数项约数求根法”分为两种类型: 第一种类型:首项系数为1。对首项(最高次数项)系数为1的

初等数论 第五章 同余方程

第五章同余方程 本章主要介绍同余方程的基础知识,并介绍几类特殊的同余方程的解法。 第一节同余方程的基本概念 本节要介绍同余方程的基本概念及一次同余方程。 在本章中,总假定m是正整数。 定义1设f(x) = a n x n a1x a0是整系数多项式,称 f(x) 0 (mod m) (1)是关于未知数x的模m的同余方程,简称为模m的同余方程。 若a n≡/0 (mod m),则称为n次同余方程。 定义2设x0是整数,当x= x0时式(1)成立,则称x0是同余方程(1)的解。凡对于模m同余的解,被视为同一个解。同余方程(1)的解数是指它的关于模m互不同余的所有解的个数,也即在模m的一个完全剩余系中的解的个数。 由定义2,同余方程(1)的解数不超过m。 定理1下面的结论成立: (ⅰ) 设b(x)是整系数多项式,则同余方程(1)与 f(x) b(x) b(x) (mod m) 等价; (ⅱ) 设b是整数,(b, m) = 1,则同余方程(1)与 bf(x) 0 (mod m) 等价; (ⅲ) 设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是整系数多项式,又设x0是同余方程(1)的解,则x0必是同余方程 g(x) 0 (mod m) 或h(x) 0 (mod m)

的解。 证明 留做习题。 下面,我们来研究一次同余方程的解。 定理2 设a ,b 是整数,a ≡/0 (mod m )。则同余方程 ax b (mod m ) (2) 有解的充要条件是(a , m )b 。若有解,则恰有d = (a , m )个解。 证明 显然,同余方程(2)等价于不定方程 ax my = b , (3) 因此,第一个结论可由第四章第一节定理1得出。 若同余方程(2)有解x 0,则存在y 0,使得x 0与y 0是方程(3)的解,此时,方程(3)的全部解是 ??? ????-=+=t m a a y y t m a m x x ),(),(00,t Z 。 (4) 由式(4)所确定的x 都满足方程(2)。记d = (a , m ),以及 t = dq r ,q Z ,r = 0, 1, 2, , d 1, 则 x = x 0 qm r d m x r d m +≡0(mod m ),0 r d 1。 容易验证,当r = 0, 1, 2, , d 1时,相应的解 d m d x d m x d m x x )1(20000-+++,,,,Λ 对于模m 是两两不同余的,所以同余方程(2)恰有d 个解。证毕。 在定理的证明中,同时给出了解方程(2)的方法,但是,对于具体的方程(2),常常可采用不同的方法去解。 例1 设(a , m ) = 1,又设存在整数y ,使得a b ym ,则 x a ym b +(mod m ) 是方程(2)的解。 解 直接验算,有 ax b ym b (mod m )。

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

数论算法讲义 3章(同余方程)

第 3 章 同余方程 (一) 内容: ● 同余方程概念 ● 解同余方程 ● 解同余方程组 (二) 重点 ● 解同余方程 (三) 应用 ● 密码学,公钥密码学 3.1 基本概念及一次同余方程 (一) 同余方程 (1) 同余方程 【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式 ()0111a x a x a x a x f n n n n ++++=--Λ 其中i a 是正整数(n a ≠0(mod m )),则 f (x)≡0(mod m ) (1) 叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。 (2) 同余方程的解 若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。 (3) 同余方程的解数 若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。即剩余类

a C ={x |x ∈Z ,x ≡a (mod m )} 中的每个剩余都是解。故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为 x ≡a (mod m ) 当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。显然 ()m f T ;≤m (4) 同余方程的解法一:穷举法 任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。 【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程 15++x x ≡0(mod 7) 的不同的解,故该方程的解数为2。 50+0+1=1≡3 mod 7 51+1+1=3≡3 mod 7 52+2+1=35≡0 mod 7 53+3+1=247≡2 mod 7 54+4+1=1029≡0 mod 7 55+5+1=3131≡2 mod 7 56+6+1=7783≡6 mod 7 【例2】求同余方程122742 -+x x ≡0(mod 15)的解。 (解)取模15的绝对最小完全剩余系:-7,-6,…,-1,0,1,2,…,7,直接计算知x =-6,3是解。所以,该同余方程的解是 x ≡-6,3(mod 15)

《数论算法》教案4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α ααΛ2121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论以下同余方程 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

一元高次方程的求解

一元高次方程 一元三次方程求解 320x ax bx c +++= 其中,,a b c 是任意复数 ② 若令3 a x y =- ,则三次方程简化为 3 0y py q ++= ③ 其中33a p b =-,3 2327 ab a q c =-+ , 设123,,y y y 表示简化方程③的根,则据根与方程系数的关系,得1230y y y ++=。 若令3242712u p q v ?=--? ?=-??,2 11232 2123 z y v y vy z y vy v y ?=++??=++??。 对于适当确定的立方根,卡当公式是1z = 2z = 求解线性方程组123212312 12320y y y y v y vy z y vy v y z ++=??++=??++=?,得到11221 21212 3121() 31()31()3y z z y v z v z y v z v z ----?=+?? ?=+???=+?? , 于是,原三次方程的三个根为1y = 2y ω= ,3y ω= 其中23 427 q p ?=+ ,12ω=- (i =。 C 、一元四次方程求解 3. x 4 +bx 3+cx 2+dx+e =0. 设方程为x 4 +bx 3 +cx 2 +dx+e =0. (4)

移项,得x 4+bx 3=-cx 2-dx -e , 右边为x 的二次三项式,若判别式为0,则可配成x 的完全平方. 解这个三次方程,设它的一个根为y 0,代入(5),由于两边都是x 的完全平方形式,取平方根,即得 解这两个关于x 的二次方程,便可得到(4)的四个根.显然,若把(6)的其他根代入(5),会得出不同的方程,但结果是一样的. 高中阶段对于三次四次方程的求解很少涉及,我们遇到的一般是比较有规律的高次方程。当高次不等式 数学家们当然应当给出完美的理论来解决高次方程的求解问题。有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 1 01100,0,n n n n a x a x a x a a --++???++=≠ 而1 011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a

《数论算法》教案5章(二次同余方程与平方剩余)

第5章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 5.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简 设m =k k p p p αααΛ2 121,则方程(1)等价于同余方程组 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ ?2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp ) 变量代换, y =2ax +b (3) 有

2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论方程2x ≡a (mod αp ) (5) 【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9)) (四) 平方剩余 【定义5.1.1】设m 是正整数,a 是整数,m a 。若同余方程 2x ≡a (mod m ) (6) 有解,则称a 是模m 的平方剩余(或二次剩余);若无解,则称a 是模m 的平方非剩余(或二次非剩余)。

任意高次方程求解方法

任意高次方程求解方法 对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理。但经常会遇到高次方程的问题,如何通过一种简便的方法快速得到高次方程的解,成为一个迫切的需求。本人发现了数列与高次方程的关系,可以通过数列与高次方程的关系可以得到高次方程的一个解。这种方法适用于任意高次有解的方程。任一高次方程: 可以变化为: 以上方程可以产生一个数列,通过数列前后项相除可以得到方程的近似解。 以下为求解结论: 二次方程: 所对应的数列为:方程有解的情况下对应的一个解为: 三次方程:所对应的数列为: 方程有解的情况下对应的一个解为: ???+?????+?????+?+??+?=0????+??????+??????+?+???=1 ????+???= 1 ???=? ??=???=??????+?????? ?=lim ?→?(??????) 0

依次类推 n次方程:所对应的数列为:方程有解的情况下对应的一个解为: 以上求解的方法基本为,将通用方程转化为数列对应方程,再由方程产生一个对应的数列,数列前项除后项可以得到方程的近似解,数列的项越靠后,这个近似解不断逼近方程的解.当迭代次数m趋向于无穷大时,这个值为方程的一个解,这个解大于0小于1.当方程无解时,方程对应的数列会循环或前后项相除的结果比较离散,不会逼近一个值. 以上的求解方法可以通过Execl去验算,目前只是发现了这个现象还没有很好证明,至于方程是否有解,也只能从演算的结果去判断。有兴趣的朋友可以一起(159探5246讨5840)。 但在实际应用中,迭代次数m取一定的值就可以得到方程的近似解,在要求不高时,可以很快得到方程的一以下为一个五次的方程,得到对应的数列,数列的前五位全选1,数列生成到12位。下面为数列前项除以后项得到的结果,发现这个结果是不断逼近方程的解X,精确到小数点后面五位为X=0.12497。再向后迭代会产生更精确的解。????+??????+??????+?+???=1 ??=???=?……??=?? ?=??????+????????+?+?????? ?=lim ?→?(??????)0

线性同余方程组的解

线性同余方程组的解 学生:罗腾,江汉大学数计学院(数学与应用数学系) 指导老师:许璐,江汉大学 摘要 “孙子算经”一书中写于公元前三世纪,这个谜题如下:有堆东西不知道有多少,如果三个三地数,最后余下两个;五个五个的数,最后余下三个;七个七个的数,最后余下二个,问这堆东西共有多少?我们可以把这个问题用数学符号表示成同余式的形式: ()()().7mod 3,5mod 2,3mod 1≡≡≡x x x 定理1 设,,,,,a b c d e f 和m 均为整数,0m >,若(,)1m ?=,其中ad bc ?=-.则 线性同余方程组(mod ) (mod )ax by e m cx dy f m +≡??+≡? ,有唯一一组关于模m 的解为 ()(mod ) ()(mod ) x de bf m y af ce m ?≡?-?? ≡?-??, 其中?是?关于模m 的逆,即1(mod )m ??≡. 证 首先,将同余式(mod )ax by e m +≡两边都乘以d ,将同余式(mod )cx dy f m +≡两边都乘以b ,得到 (mod )(1) (mod )(2)adx bdy de m bcx bdy bf m +≡?? +≡? ()()12-得到 ()()mod ad bc x de bf m -≡- 令ad bc ?=-,则()mod x de bf m ??≡-.下面我们把同余式两边都乘以?,其中 1(mod ) m ??≡ ∴()()mod x de bf m ≡?- 同理,将同余式(mod )ax by e m +≡两边都乘以c ,将同余式(mod )cx dy f m +≡两边

二次互反律

高斯二次互反律 主讲:李宗儒 在正式介绍高斯二次互反律之前,我们先简单的介绍一下同余方程式 同余方程式 给定正整数m 及n 次整系数多项式 1 110 ()...n n n n f x a x a x a x a --=++++ 我们讨论这样的问题:求出所有的整数x ,使同余式 ()0f x ≡ (mod m ) (1) 成立,这就是所谓的解同余方程式。而上式称为模m 的同余方程式。若(1)式在x=c 时同余式成立,称c 是(1)式的解。显然,这时剩余类 c (mod m ) 中的任意整数也都是解,我们把这些解看作是相同的,并说剩余类 c (mod m ) 是(1)中的一个解,我们把它记为 x c ≡ (mod m ) 当12,c c 均为(1)式的解,且模m 不同余,我们就称它是同余方程式(1)的不同解,所有模m 两两不同余的解的个数,称为是同余方程式(1)的解数。 模为质数的二次同余方程 在此节,由于2p =的情形是显然的,所以下面我们假定p 是奇质数。假设p 不整除a ,二次同余方程的一般形式是 2 0a x b x c ++≡ (mo d p ) (2) 但是因为p 不整除a ,所以p 不整除4a ,所以(2)的解跟 ()240a ax bx c ++≡ (mod p ) (3) 的解相同,上式可以改为 ()2 2 24ax b b ac +≡- (mod p) (4) 透过变量变换,我们可以得到下列式子 224y b ac ≡- (mod p ) (5) (4)与(5)是等价的,也就是说,两者同时无解或有解。若有解,对于(5)的每个解 0y y ≡ (mod p ),通过变数变换2y ax b =+(因为这是x 的一次同余方程, (,2)1p a =,所以解数为1),我们可以解出一个0x x ≡ (mod p ),由以上的讨论可

小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程) 一、基本性质的复习 1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到: (1)b>r 除数大于余数 (2)a-r=b×q 被除数减去余数则会出现整除关系, 则带余数问题就可以转化为整数问题。 2、余数的性质: (1)可加性:和的余数等于余数的和。 即:两数和除以m 的余数等于这两个数分别除以m 的余数和。 例:7÷3=2……1 5÷3=1……2, 则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。 (2)可减性:差的余数等于余数的差。 即:两数差除以m 的余数等于这两个数分别除以m 的余数差。 例:17÷3=5……2 5÷3=1……2, 则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。 (3)可乘性:积的余数等于余数的积。 即:两数积除以m 的余数等于这两个数分别除以m 的余数积。 例:64÷7=9……1 45÷7=6……3, 则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。 二、同余式 在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。即:a 与b 同余于模m。意思就是自然数a 和b 关于m 来说是余数相同的。用同余式表达为:a≡b(modm).

注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。(余数的可减性) 三、例题。 例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个? 例2、(1)求多位数1234567891011…20102011除以9的余数? (2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几? (3)一个多位数1234567……979899,问除以11 的余数是多少? 例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数? (2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。现在要把这四个旅行团分别进行分组,使每组有A名游客,以便乘车前往参观游览,已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?

元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 20,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为x =. 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程.于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题.有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠.当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式.如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根. 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根. 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算.这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积.” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法. 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ② 的求解公式,如二次方程①的求根公式那样.众所周知,方程①的解早在古代的巴比伦、埃

《数论算法》教案 4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α αα 2 121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

一元高次方程的求解

一元高次方程的求解 求解一元高次方程曾是数学史上的难题。让你去求解一个一元一次,二次方程方程也许是简单的,但三次,四次或者更高次的方程呢?为了解决这一问题,数学家们奋斗了几个世纪。让我们一起来看一下数学努力的成果。 n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式。如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一个根,或称为n 次多项式()f x 的一个根。 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根。 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算。这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积。” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法。 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++=① 的求解公式,如二次方程20(0)ax bx c a ++=≠②的求根公式那样。众所周知,方程②的解早在古代的巴比伦、埃及、中国、印度、希腊等国的数学著作中,都有不同的表述方式。一个n 次方程①的求根公式是指,①的根通过其系数经由加、减、乘、除以及乘方、开方的表示式,也称这种情况为方程有根式解。

一次同余方程精品教案

一次同余方程 【教学目标】 1.掌握一次同余方程的概念。 2.熟练运用一次同余方程解决实际问题。 3.亲历解一次同余方程的探索过程,体验分析归纳得出一次同余方程解的个数规律,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握一次同余方程的概念的运用。 难点:一次同余方程解的个数规律。 【教学过程】 一、直接引入 师:今天这节课我们主要学习一次同余方程,这节课的主要的内容有一次同余方程的概念,解一次同余方程,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解一次同余方程内容,形成初步感知。 (2)首先,我们来学习一次同余方程的概念,它的具体内容是: 通常我们把含有未知数的同余式叫做同余方程.一次同余方程的一般形式为 ,其中为正整数,为整数,且不等于零. ()mod ax b n ≡n ,a b a 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:判断是否是一次同余方程。 ()53mod 6x ≡解析:是 根据例题的解题方法,让学生自己动手练习。 练习:写出一个一次同余方程。 解:() 74mod 2x ≡(3)接着,我们再来看下一次同余方程解得个数内容,它的具体内容是: 若存在整数,使得同余式成立,则把叫做一次同余方程 c ()mo d ac b n ≡()mod x c n ≡

的解. ()mod ax b n ≡一次同余方程有解,则.反过来,当时,一次同余方程()mod ax b n ≡(),a n b |(),a n b |恰有个解. ()mod ax b n ≡(),a n 它是如何在题目中应用的呢?我们通过一道例题来具体说明。例:解一次同余方程. ()96mod15x ≡解析:注意到,且,故同余方程有3个解.原方程可化简为.由()9,153=36|()32mod5x ≡于,故,所以,原同余方程三个解分别为()321mod5?≡()224mod5x ≡?≡,,()4504mod15x ≡+?=()4519mod15x ≡+?=() 45214mod15x ≡+?=根据例题的解题方法,让学生自己动手练习。 练习:判断一次同余方程有几个解。 ()618mod 27x ≡解:注意到,且,故同余方程有3个解. ()6,27=33|18三、课堂总结 (1)这节课我们主要讲了一次同余方程概念以及解法。 (2)它们在解题中具体怎么应用? 四、习题检测 1.判断一次同余方程有几个解。 ()1575mod 25x ≡2.解一次同余方程。 ()122mod 28x ≡

解 二 元 一 次 方 程 — — — 拓 展 欧 几 里 得 算 法

二次同余方程的解 今天要讨论的问题是解方程,其中是奇质数。 证明:由费马小定理, 引理:方程有解当且仅当 定理:设满足不是模的二次剩余,即无解,那么是二次 ?剩余方程的解。 证明:由,前面的等号用二项式定理和,后面的等 ? 号用了费马小定理和是模的二次非剩余。然后 在算法实现的时候,对的选择可以随机,因为大约有一半数是模的二次非剩余,然后快速幂即可。 题目:http:--acm.timus.ru-problem.aspx?space=1num=1132 题意:求二次同余方程的解。 #include stdio.h #include stdlib.h #include string.h #include algorithm #include iostream #include math.h using namespace std; typedef long long LL; LL quick_mod(LL a, LL b, LL m)

LL ans = 1; while(b) ans = ans * a % m; a = a * a % m; return ans; --二次域乘法 T multi_er(T a, T b, LL m) ans.p = (a.p * b.p % m + a.d * b.d % m * w % m) % m; ans.d = (a.p * b.d % m + a.d * b.p % m) % m; return ans; --二次域上快速幂 T power(T a, LL b, LL m) ans.p = 1; ans.d = 0; while(b) ans = multi_er(ans, a, m); a = multi_er(a, a, m); return ans; --求勒让德符号 LL Legendre(LL a, LL p) return quick_mod(a, (p-1)1, p); LL mod(LL a, LL m)

第二讲-同余(数论复赛辅导)

第二讲 同余 一.基础知识 1.定义1. 设m 是正整数,若用m 去除整数b a ,,所得的余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,否则称a 与b 关于模m 不同余,记作a )(mod m b .例如:)15(mod 434≡, )7(mod 11000-≡,98(mod 2) 等等。 当m b <≤0时,)(mod m b a ≡,则称b 是a 对模m 的最小非负剩余。 对于固定的模m ,通常有下面的性质: 性质1. )(mod m b a ≡的充要条件是,a mt b t Z =+∈也即)(|b a m -。 性质2.同余关系满足以下规律: (1)(反身性))(mod m a a ≡; (2)(对称性)若)(mod m b a ≡,则)(mod m a b ≡; (3)(传递性)若)(mod m b a ≡,)(mod m c b ≡,则)(mod m c a ≡; (4)(同余式相加)若)(mod m b a ≡,)(mod m d c ≡,则)(mod m d b c a ±≡±; (5)(同余式相乘)若)(mod m b a ≡,)(mod m d c ≡,则)(mod m bd ac ≡; 注意:① 反复利用(4)(5),可以对多于两个的(模相同的)同余式建立加、减和乘法的运算公式 ; ② 特别地,由(5)易推出:若)(mod m b a ≡,c k ,为整数且0>k ,则)(mod m c b c a k k ≡; ③ 同余式的消去律一般并不成立,即从)(mod m bc ac ≡未必能推出)(mod m b a ≡,可是我们却有以下结果:若)(mod m bc ac ≡,则??? ? ?? ≡),(mod c m m b a . 由此可以推出: (6)若,1),(=m c )(mod m bc ac ≡,则有)(mod m b a ≡,即在c 与m 互素时,可以在原同余式两边约去c 而不改变模. (7)若)(mod m b a ≡,d |m ,则)(mod d b a ≡; (8)若)(mod m b a ≡,0≠d ,则)(mod dm db da ≡; (9)若(mod )(1,2,,)i a b m i k ≡=L ,则12(mod [,,,])k a b m m m ≡L , 特别地,若12,,,k m m m L 两两互素时,则有12(mod )k a b m m m ≡???L ;

论文关于一次同余方程组的历史研究

天津师范大学本科毕业论文(设计)题目:关于一次同余方程组的历史研究 学院:初等教育学院 学生姓名:刘润杰 学号:09514105 专业:小学教育专业 年级:2009级 完成日期:2013年3月 指导教师:张悦

一次同余方程组的历史研究 摘要:一次同余方程组从古到今,从小学到大学的数学教学中都有涉及。一次同余方程组是同余问题之一,它具有很强的应用价值。本课题基于对中国剩余定理、秦九韶的大衍求一术和欧拉解法理解和对比,从中发现它们的局限性,进而介绍解一次同余方程组的新方法,使学生能系统全面的掌握一次同余方程组。同时希望通过本课的研究能够展现数学的文化价值,为学生展现数学的文化内涵,也提醒教师们在教学时应有意识的向学生渗透一些与课程有关的数学史,激发学生的学习兴趣,扩宽学生的思维。 关键字:一次同余方程组;中国剩余定理;大衍求一术;欧拉

Historical Research on the System of Linear Congruence Equations Abstract: a Congruence Equations since ancient times, ranging from primary school to university mathematics teaching in. A congruence equation group is a congruence problem, it has very strong application value. The subject of the Chinese remainder theorem, Qin Jiushao's big Yan Shu and Euler method based on a understanding and comparison, find their limitations from, and then introduces the solution of system of Linear Congruence Equations, so that the students can systematically grasp a congruence equations. At the same time, hope that through the study of this class to show the value of mathematics culture, mathematics for the students to show the cultural connotation, but also to remind the teachers in teaching should have the awareness of the infiltration to the students and curriculum history of mathematics related, stimulate students interest in learning, broaden the students' thinking. Keywords: Linear Congruence Equations; Chinese remainder theorem; Dayan a Shu; Euler

初等数论总复习题及知识点总结

初等数论学习总结 本课程只介绍初等数论得得基本内容。由于初等数论得基本知识与技巧与中学数学有着密切得关系, 因此初等数论对于中学得数学教师与数学系(特别就是师范院校)得本科生来说,就是一门有着重要意义得课程,在可能情况下学习数论得一些基础内容就是有益得.一方面通过这些内容可加深对数得性质得了解,更深入地理解某些她邻近学科,另一方面,也许更重要得就是可以加强她们得数学训练,这些训练在很多方面都就是有益得.正因为如此,许多高等院校,特别就是高等师范院校,都开设了数论课程。 最后,给大家提一点数论得学习方法,即一定不能忽略习题得作用,通过做习题来理解数论得方法与技巧,华罗庚教授曾经说过如果学习数论时只注意到它得内容而忽略习题得作用,则相当于只身来到宝库而空手返回而异。 数论有丰富得知识与悠久得历史,作为数论得学习者,应该懂得一点数论得常识,为此在辅导材料得最后给大家介绍数论中著名得“哥德巴赫猜想”与费马大定理得阅读材料。 初等数论自学安排 第一章:整数得可除性(6学时)自学18学时 整除得定义、带余数除法 最大公因数与辗转相除法 整除得进一步性质与最小公倍数 素数、算术基本定理 [x]与{x}得性质及其在数论中得应用 习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。 第二章:不定方程(4学时)自学12学时 二元一次不定方程c by ax =+ 多元一次不定方程c x a x a x a n n =++Λ2211 勾股数 费尔马大定理。 习题要求29p :1,2,4;31p :2,3。 第三章:同余(4学时)自学12学时 同余得定义、性质

相关文档
最新文档