三相异步电动机的工作原理与结构

三相异步电动机的工作原理与结构
三相异步电动机的工作原理与结构

三相异步电动机的工作原理与结构

————————————————————————————————作者:————————————————————————————————日期:

三相异步电动机的工作原理与结构异步电动机按电源相数分类可分为三相异步电动机与单相异步电动机。三相异步电动机使用三相交流电源,它具有结构简单、使用和维修方便、坚固耐用等优点,在工农业生产中应用极为广泛。

一、三相异步电动机的工作原理

在图1中,假设磁场的旋转是逆时针的,这相当于金属框相对于永久磁铁,以顺时针方

向切割磁力线,金属框中感生电流的方向,如图中

小圆圈里所标的方向。此时的金属框已成为通电导

体,于是它又会受到磁场作用的磁场力,力的方向

可由左手定则判断,即图中小箭头所指示的方向。

金属框的两边受到两个反方向的力f,它们相对转轴

产生电磁转矩 (磁力矩),使图1 闭合金属框中受力图1

示意图金属框发生转动,转动方向与磁场旋转方向一致,但永久磁铁旋转的速度n1要比金属框旋转的速度n大。从上述实验中可以看到,在旋转的磁场里,闭合导体会因发生电磁感应而成为通电导体,进而又受到电磁转矩作用而顺着磁场旋转的方向转动;实际的电动机中不可能用手去摇动永久磁铁产生旋转的磁场,而是通过其他方式产生旋转磁场,如在交流电动机的定子绕组(按一定排列规律排列的绕组)通入对称的交流电,便产生旋转磁场;这个磁场虽然看不到,但是人们可以感受到它所产生的效果,与有形体旋转磁场的效果一样。通过这个实验,可以清楚地看到,交流电动机的工作原理主要是产生旋转磁场。

为了更好的说明三相异步电动机的工作原理,用图2进一步进行说明,从中可以很清楚地看到三相交流电产生旋转磁场的现像。图中所示的3个绕组在空间上相互间隔机械角度

120°(实际的电动机中一般都是相差电角度

120°),3个绕组的尾端 (标有U2、V2、W2) 连

接在一起(3个绕组的这种连接称为星形(Y)接法。

常用接法还有三角形(△)接法,就是将3个绕组

首尾相连,在3个接点上分别引出3根引线的接

法。),将对称的三相交流电i U=I msinω t、

i V=I msin(ω t-120°)、i W=I msin(ω t-240°)从

3个绕组的首端(标有U1、V1、W1)通入,放在绕

组中心处的小磁针便迅速转动起来,由此可知旋转磁场的存在。图2三相交流电动机定子

三相交流电是怎样产生旋转磁场的呢?用图3进行分析。当3个绕组跟三相电源接通后,绕组中便通过三相对称的交流电流i U、i V、i W,其波形如图3图所示。现在选择几个特殊的运行时刻,看看三相电流所产生的合成磁场是怎样的。这里规定:电流取正值时,是由绕组始端流进(符号⊕),由尾端流出(符号⊙);电流取负值时,绕组中电流方向与此相

反。

(a) (b) (c) (d)

图3 三相交流电产生旋转磁场示意图

当ωt=ωt1=0,U相电流i U=0,V相电流取为负值,即电流由V2端流进,由V1端流出;W相电流i W为正,即电流从W1端流进,从W2端流出。在图3的定子绕组图中,根据电生磁右手螺旋定则,可以判定出此时电流产生的合成磁场如图3(a)所示,此时好像有一个有形体的永久磁铁的N极放在导体U1的位置上,S极放在导体U2的位置上。

当ω t=ω t2=2时,电流已变化了1/3周期。此时刻i为正,电流由U1端流入,从U2端流出,i V为零;i W为负,电流从W2端流入,从W1端流出。这一时刻的磁场如图3(b)所示。磁场方向较ωt=ωt1时沿顺时针方向在空间转过了120°。

用同样的方法,继续分析电流在ωt=ωt3、ωt=ωt4时的瞬时情况,便可得这两个时刻的磁场,如图3(c)、3(d)所示。在ωt=ωt3=4π/3 时刻,合成磁场方向较ωt2时刻又顺时针转过120°。在ωt=ωt4=2π时刻,磁场较ω t3时再转过120°,即自t1时刻起至t4时刻,电流变化了一个周期,磁场在空间也旋转了一周。电流继续变化,磁场也不断地旋转。从上述分析可知,三相对称的交变电流通过对称分布的3组绕组产生的合成磁场,是在空间旋转的磁场,而且是一种磁场幅值不变的圆形旋转磁场。

三相异步电动机的基本原理

把对称的三相交流电通入彼此间隔120°电角度的三相定子绕组,可建立起一个旋转磁场。根据电磁感应定律可知,转子导体中必然会产生感生电流,该电流在磁场的作用下产生与旋转磁场同方向的电磁转矩,并随磁场同方向转动

二、交流电动机中旋转速度的问题

1. 旋转磁场的旋转速度

旋转磁场的速度也称为“同步转速”,用n1表示,其单位是“r/min”。它的大小由交流

电源的频率及磁场的磁极对数决定。图3所举的例子是只能产生一对磁极的电动机,电流变

化一个周期,旋转磁场转一圈;若电源电流的频率为f(Hz),则一对磁极的旋转速度应为

n1=60f (r/min);我国电网供电电流的频率(即工频)为f =50 Hz(即每秒完成50个周期的

变化),则一对旋转磁场的转速就是50 r/min×60 r/min =3000 r/min。若定子绕组采用的

排列方式不同,那么产生的磁极对数也不同,依照前面分析产生一对磁极的方法,仍然选取

几个特殊的时刻,根据图3.3上图各相电流的正、负时刻,画出各个绕组中电流的流向,即

可判定出各时刻产生的磁场情况,如图4所示。ωt=ωt1=0时,i U=0,U相绕组内没有电

流;i V为负值,电流由端流进,由端流出,再由V2端流进,由V1端流出;i W为正值,电

流由W1端流进,由W2端流出再由W1’端流进。由W2’端流出。此时三相电流产生的合成

磁场如图4所示。前面讲过,每当交流电变化一个周期,两极旋转磁场就在空间转过360°

(即1转)机械角度。从图4中可以看出,四极的旋转磁场在电流变化一周中,在空间只转过

180°(即1/2转)机械角度。由此类推,当旋转磁场具有P对磁极时,交流电每变化一周,

磁场就在空间转过1/p转。故旋转磁场的转速(同步转速)n为

n1=60f/P (r/min)

式中f——电流的频率;

P——定子绕组产生的磁极对

数。

2. 旋转磁场的旋转方向

交流电动机旋转磁场的旋转方

向,一般与接入定子绕组的电流相序

有关。如前面举的两个例子(图3和图

4),磁场都是按顺时针方向旋转的,

这与三相电源通入三相绕组的电流相

序I U-I V-I W(正序电流)是一致的。

若要使磁场按逆

图4 三相交流异步电动机产生4个磁极旋转磁场

图5 三相绕组通入反(负)序电流时的旋转磁场

时针方间旋转,只需改变通入三相绕组中的电流相序,也就是说通入三相绕组的电流相序

为I U-I V-I W是反(负)序的,即只要把三相绕组的3根引出线头任意调换两根后再接电源

就可实现,如图5所示。在图4中,使i V流入W1W2绕组,i W流入V1V2绕组,i U仍流入U1U2绕组。三相绕组通入反(负)序电流后,所产生的旋转磁场分析如图5所示。从

图中可以明确看到,旋转磁场的旋转方向是逆时针的,与图3所示的旋转磁场的顺时针方向

相反。

3. 转子的旋转速度

转子的旋转速度一般称为电动机的转速,用n表示。根据前面的工作原理可知,转子是

被旋转磁场拖动而运行的,在异步电动机处于电动状态时,它的转速恒小于同步转速n1,

这是因为转子转动与磁场旋转是同方向的,转子比磁场转得慢,转子绕组才可能切割磁力线,

产生感生电流,转子也才能受到磁力矩的作用。假如有n = n1情况,则意味着转子与磁场

之间无相对运动,转子不切割磁力线,转子中就不会产生感生电流,它也就受不到磁力矩的

作用了。如果真的出现了这样的情况,转子会在阻力矩(来自摩擦或负载)作用下逐渐减速,

使得n

匀速转动。所以,异步电动机正常运行时,总是n

电动机的由来。又因为转子中的电流不是由电源供给的,而是由电磁感应产生的,所以这类

电动机也称为感应电动机。

4. 转差率

旋转磁场的同步转速与转子转速之差与同步转速的比值,称为异步电动机的转差率,即

s=(n1-n)/n1 式中s为转差率。当异步电动机刚要起动时,n = 0,s = 1;当n = n1时,s = 0。异步

电动机正常使用时,电动机转速略小于但接近同步转速,额定转差率一般小于5%。

5. 三相异步电动机的转速与运行状态

图6 异步电动机的3种运行状态

如果作用在异步电动机转子的外转矩使转子逆着旋转磁场的方向旋转,即n<0,s>1 如图6(a)中所示,此时转子导条中的电动势与电流方向仍和电动机时一样,电磁转矩方向仍与旋转磁场方向一致,但与外转矩方向相反。即电磁转矩是制动性质,在这种情况下,一方面电动机吸取机械功率,另一方面因转子导条中电流方向并未改变,对定子来说,电磁关系和电动机状态一样,定子绕组中电流方向仍和电动机状态相同,也就是说,电网还对电动机输送电功率,因此异步电动机在这种情况下,同时从转子输入机械功率、从定子输入电功率,两部分功率一起变为电动机内部的损耗。异步电动机的这种运行状态称为“电磁制动”状态,又称“反接制动”状态。

如果用一原动机,或者由其他转矩(如惯性转矩、重力所形成的转矩)去拖动异步电动机,使它的转速超过同步转速,这时在异步电动机中的电磁情况有所改变,因n>n1,s<0,旋转磁场切割转子导条的方向相反,导条中的电动势与电流方向都反向。根据左手定则所决定的电磁力及电磁转矩方向都是与旋转磁场及转子的旋转方向相反。这种电磁转矩是一种制动性质的转矩,如图6(c)所示,这时原动机就对异步电动机输入机械功率。以后会讲述,在这种情况下,异步电动机通过电磁感应由定子向电网输送电功率,电动机就处在发电动机状态。

三、三相异步电动机的结构

图7 封闭式三相异步电动机的结构

1—端盖 2—轴承 3—机座 4—定子绕组 5—转子

6—轴承 7—端盖 8—风扇 9—风罩 10—接线盒

异步电动机的结构也可分为定子、转子两大部分。定子就是电机中固定不动的部分,转子是电机的旋转部分。由于异步电动机的定子产生励磁旋转磁场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定、转子之间还必须有一定间隙(称为空气隙),以保证转子的自由转动。异步电动机的空气隙较其他类型的电动机气隙要小,一般为0.2 mm~2mm。

三相异步电动机外形有开启式、防护式、封闭式等多种形式,以适应不同的工作需要。在某些特殊场合,还有特殊的外形防护型式,如防爆式、潜水泵式等。不管外形如何电动机结构基本上是相同的。现以封闭式电动机为例介绍三相异步电动机的结构。如图7所示是一台封闭式三相异步电动机解体后的零部件图。

1. 定子部分

定子部分由机座、定子铁心、定子绕组及端盖、轴承等部件组成。

(1) 机座。机座用来支承定子铁心和固定端盖。中、小型电动机机座一般用铸铁浇成,大型电动机多采用钢板焊接而成。

(2) 定子铁心。定子铁心是电动机磁路的一部分。为了减小涡流和磁滞损耗,通常用0.5mm厚的硅钢片叠压成圆筒,硅钢片表面的氧化层(大型电动机要求涂绝缘漆)作为片间绝缘,在铁心的内圆上均匀分布有与轴平行的槽,用以嵌放定子绕组。

(3) 定子绕组。定子绕组是电动机的电路部分,也是最重要的部分,一般是由绝缘铜(或铝)导线绕制的绕组联接而成。它的作用就是利用通入的三相交流电产生旋转磁场。通常,绕组是用高强度绝缘漆包线绕制成各种型式的绕组,按一定的排列方式嵌入定子槽内。槽口用槽楔(一般为竹制)塞紧。槽内绕组匝间、绕组与铁心之间都要有良好的绝缘。如果是双层绕组(就是一个槽内分上下两层嵌放两条绕组边),还要加放层间绝缘。

(4) 轴承。轴承是电动机定、转子衔接的部位,轴承有滚动轴承和滑动轴承两类,滚动轴承又有滚珠轴承(也称为球轴承),目前多数电动机都采用滚动轴承。这种轴承的外部有贮存润滑油的油箱,轴承上还装有油环,轴转动时带动油环转动,把油箱中的润滑油带到轴与

轴承的接触面上。为使润滑油能分布在整个接触面上,轴承上紧贴轴的一面一般开有油槽。

2. 转子部分

转子是电动机中的旋转部分,如图7中的部件5一般由转轴、转子铁心、转子绕组、风扇等组成。转轴用碳纲制成,两端轴颈与轴承相配合。出轴端铣有键槽,用以固定皮带轮或联轴器。转轴是输出转矩、带动负载的部件。转子铁心也是电动机磁路的一部分。由0.5mm 厚的硅钢片叠压成圆柱体,并紧固在转子轴上。转子铁心的外表面有均匀分布的线槽,用以嵌放转子绕组。

三相交流异步电动机按照转子绕组形式的不同,一般可分为笼型异步电动机和绕线型异步电动机。

(1) 笼型转子线槽一般都是斜槽(线槽与轴线不平行),目的是改善起动与调速性能。其外形如图7中的第5部分;笼型绕组(也称为导条)是在转子铁心的槽里嵌放裸铜条或铝条,然后用两个金属环(称为端环)分别在裸金属导条两端把它们全部接通(短接),即构成了转子绕组;小型笼型电动机一般用铸铝转子,这种转子是用熔化的铝液浇在转子铁心上,导条、瑞环一次浇铸出来。如果去掉铁心,整个绕组形似鼠笼,所以得名笼型绕组,如图8所示。图8(a)为笼型直条形式,图8(b)为笼型斜条形式。

(a) 直条形式 (b) 斜条形式

图8 笼型异步电动机的转子绕组形式

(2) 绕线型转子绕组与定子绕组类似,由镶嵌在转子铁心槽中的三相绕组组成。绕组一般采用星形连接,三相绕组绕组的尾端接在一起,首瑞分别接到转轴上的3个铜滑环上,通过电刷把3根旋转的线变成了固定线,与外部的变阻器连接,构成转子的闭合回路,以便于控制,如图9所示。有的电动机还装有提刷短路装置,当电动机起动后又不需要调速时,可提起电刷,同时使用3个滑环短路,以减少电刷摩损。

图9 绕线式异步电动机的转子 两种转子相比较,笼型转子结构简单,造价低廉,并且运行可靠,因而应用十分广泛。绕线型转子结构较复杂,造价也高,但是它的起动性能较好,并能利用变阻器阻值的变化,使电动机能在一定范围内调速;在起动频繁、需要较大起动转矩的生产机械(如起重机)中常常被采用。

一般电动机转子上还装有风扇或风翼(如图7中部件8),便于电动机运转时通风

散热。铸铝转子一般是将风翼和绕组(导条)一起浇铸出来,如图8(b)所示。

3. 气隙δ

所谓气隙就是定子与转子之间的空隙。中小型异步电动机的气隙一般为0.2mm ~1.5mm 。气隙的大小对电动机性能影响较大,气隙大。磁阻也大,产生同样大小的磁通,所需的励磁电流I m 也越大,电动机的功率因数也就越低。但气隙过小,将给装配造成困难,运行时定、转子容易发生摩擦,使电动机运行不可靠。

四、三相异步电动机的铭牌数据

三相异步电动机在出厂时,机座上都固定着一块铭牌,铭牌上标注着额定数据。主要的额定数据为:

(1) 额定功率P N(kW):指电动机额定工作状态时,电动机轴上输出的机械功率。 N N N N N COS U I 3P η?=

(2) 额定电压U N(v):指电动机额定工作状态时,电源加于定子绕组上的线电压。

(3) 额定电流I N(A):指电动机额定工作状态时,电源供给定子绕组上的线电流。

(4) 额定转速门n N(r/min):指电动机额定工作状态时,转轴上的每分转速。

(5) 额定频率f N(Hz):指电动机所接交流电源的频率。

(6) 额定工作制:指电动机在额定状态下工作,可以持续运转的时间和顺序,可分为额定连续工作的定额S1、短时工作的定额S2、断续工作的定额S3等3种。

此外,铭牌上还标明绕组的相数与接法(接成星形或三角形)、绝缘等级及温升等。对绕线转子异步电动机,还应标明转子的额定电动势及额定电流。

三相感应电动机的定子绕组

一、对三相交流绕组的基本要求和分类

1.对三相交流绕组的基本要求

(1)每相绕组的阻抗要求相等,即每相绕组的匝数、形状都是相同的。

(2)在一定数目的导体下,能获得较大的电动势和磁动势。

(3)电动势和磁动时的波形力求接近正弦波,为此要求电动势和磁动势中的谐波分量应尽可能小。

(4)对基波而言,三相电动势和磁动势必须对称。

(5)用铜少,绝缘性能可靠,制造、维修方便。

2.三相交流绕组的分类

异步电动机定子绕组的种类很多,按相数分,有单相、二相和三相绕组;按槽内层数分,有单层、双层和单双层混合绕组;按绕组端接部分的形状分,单层绕组又有同心式、交叉式和链式之分;双层绕组又有叠绕组和波绕组之分;按每极每相所占的槽数是整数还是分数,有整数槽和分数槽绕组之分等等。但构成绕组的原则是一致的。本章仅以三相单层和双层绕组为例说明绕组的排列和连接。

3.关于交流绕组的一些基本量

(1)极距

相邻两个磁极轴线之间的距离,称为极距,用字母“τ”表示。极距的大小可以用长度表示,或用在铁心上线槽数表示,也可以用电角度表示。由于各磁极是均匀分布的,所以极距在数值上也等于每极所占有的线槽数,但极距与磁极所占有槽的空间位置不同。以24槽4极电动机为例,每极所占槽数是24/4=6槽,各极中心轴线到与它相邻的磁极中心轴线的距离,也就是极距,显然也是6糟。

一般地说,总槽数为Z1、有2P个磁极的电动机,其极距为

τ=Z1/2P

(2)电角度与槽距角α

一个圆周的机械角度是360°,在研究电动机问题时,把这种定义的角度称为空间机械角度,用θ表示。如果铁心圆周上分布有一对磁极,那么沿铁心圆周转1周,则经过了空间机械角360°,同时从磁场变化方面来说也完成了一个周期的变化,即N-S-N,或S-N-S,为了更加清晰地描述磁场,我们沿用机械角度变化1周为360°空间机械角的描述,就说磁场变化1周在电空间也变化360°电角度。这种情况(指有1对磁极情况)下,电角度(用α’表示)和空间机械角度数是相等的,即

α’ =θ

如果是四极电动机,就是定子内圆上均匀分布着两对磁极,沿铁心圆周转动,每经过1对磁极,从电的方面讲就完成了1对磁场周期的变化,也就是转过了360°电角度。沿铁心圆周转1周,转过的空间机械角仍是360°,但在电的方面完成了2周变化,转过的电角度就是α’=360°×2=720°。

对于有P对磁极的电动机来说,铁心圆周的空间机械角当然还是360°,而对应的电角度则是

α’=360°×P

需要注意的是,按式求得的电角度α是铁心整个圆周的电角度。在后面的分析中,更多用到的是“槽间电角度”,即铁心上相邻两槽中心间隔的电角度,它也等于每一个槽子所占据的电角度。槽间电角度的计算公式为

α=360°×P/Z1 式中Z1——电动机铁心总槽数。

(3)节距

一个绕组的两条有效边之间相隔的槽数称为节距(也有称跨距、开档的),用y表示,一般用槽数表示,y<τ的绕组绕组称为短距绕组,y =τ的称为整距绕组,y >τ的称为长距绕组。常用的是短距与整距绕组。

(4)每极每相槽数q

在交流电动机中,每个极距所占槽数一般要均等地分给所有的相绕组,每相绕组在每个磁距下所分到的槽数,称为“每极每相槽数”,用q表示。在三相交流电动机中,相数是3,而单相交流电动机的相数是2。每极每相槽数q的公式即

q=Z1/2Pm=τ/m

式中Z1——槽数; 2P——磁极数; m——相数;τ——极距。

(5)相带

每相绕组在每一对极下所连续占有的宽度(用电角度表示)称为相带。在三相交流电动机中,一般将每相所占有的槽数均匀地分布在每个磁极下,因为每个磁极所占有的电角度是180°,对三相绕组而言,每相占有60°的电角度,称为60°相带。由于三相绕组在空间彼此相距120°电角度,所以相待的划分延定子内圆瑛依次为U1、W1、V1、U2、W2、V2,只要掌握了相带的划分和线圈的节距,就可以掌握绕组的排列规律。

二、交流电动机绕组排列的基本原则

图10为三相交流电动机绕组展开图,如何绘制绕组展开图呢?由上一节电动机的工作原理,欲使电动机正常工作,必须要遵循一定的绕组排列原则,进行正确的绕组排列,否则电动机将不能正常的工作。对于普通电动机而言一般都要遵循下列原则。

1. 电动机绕组排列的原则

(1) 一个极距内所有导体的电流方向必须一致;

(2) 相邻两个极距内所有导体的电流方向必须相反;

(3) 若为双层绕组,以上层绕组为准,或以下层绕组为准。

2. 交流电动机绕组展开图绘制的操作步骤

图10 三相4极24槽交流电动机定子单层链式交叉绕组展开图

(a)—绕组的排列形式 (b)—槽中绕组边(导体)的位置 (c)—各绕组端部的连接

在交流电动机绕组嵌线排列原则的指引下,可以很方便的了解和掌握绕组嵌线排列技术;并且分解出绕组展开图绘制的绘制步骤,方便实际操作。

(1) 计算参数。根据电动机的相数m,已有的槽数Z1与极对数P,计算极距以及每极每相槽数q,即

极距(槽): =Z1/2P

每极每相槽数(槽/极?相):q=Z1/2Pm

关于绕组的节距以及绕组所采用的形式,可以根据原电动机或手册获得。

(2) 编绘电动机的槽号。根据电动机的槽数,按照展开的形式画出每个槽,即将所有线槽等距离地画出,每一小竖线(竖线中间空出)代表一个线槽(也代表该槽内的导体),并且按顺序在每个槽(竖线中间空出部分)编上相应的号码,在画槽的时候,一般要多画几个,编号时要考虑到电动机槽的圆周整体性,所以要在展开槽的两端,同时绘出首尾号码。注意在竖线中间上部留出每极每相槽数的位置。

(3) 划定极距。在已编绘好槽号的基础上,从第一槽的前面半槽地方起,到最后一槽后面半槽止,在槽的上面划一长线,并根据电动机极距的具体数值,将它分为2P份,每份下面的槽数就是一个极距。注意在划定极距的时候,要预留出一定空间,即为绕组展开图上部绕组绘制留出相应的位置。确定各极距相应的位置,为确定每极每相槽数的位置打下了基础。

(4) 确定每极每相槽的位置。在一个极距下,按照相数m,首先分成m等份(也称作整体分布绕组),然后根据每极每相槽数的具体数值,在已划定极距相应位置的基础上,确定每个槽属于哪相绕组的位置。三相单层绕组分别用“U”、“V”、“W”表示各槽相绕组边的位置;若为双层绕组,则只标上层边所在槽的位置。以为后期绕组嵌线,确定各相绕组具体绕组所嵌的位置提供方便,不至于搞混。

(5) 标定电流方向。按照交流电动机绕组排列原则的第(1)、(2)两条,即一个极距内所有导体的电流方向必须一致,相邻两个极距内所有导体的电流方向必须相反的原则。在已划分定各极距相应位置的基础上,标定出每个极距内各槽导体的电流方向。为后期各相绕组绕组与绕组间、绕组组与绕组组间的连接提供理论依据,以及操作上的便利。

(6) 绕组展开图成图。根据电动机的工作原理,一台交流电动机可以有很多中嵌排方式,但一般都要按照原电动机的绕组形式,即是单层绕组、还是双层绕组,以及叠式、还是波式,链式、还是交叉式等具体情况,先确定绕组的节距y,再绕制绕组。一组绕组之间的连接取决于同属绕组中电流的方向,绕组组之间的连接也取决于绕组中的电流方向,但同时也取决于同属一相绕组的并联支路数。在设计绕组排列时没有考虑电流的因素。有些电动机,尤其是大功率低速电动机,绕组中电流很大,这就要求选用很粗的绕组导线。但粗导线绕组嵌线很困难。为解决这一问题,可以将每相绕组分成两条支路并联起来,再接引出线。同一相绕组中各并联支路必须对称,也就是说各并联支路中串联的绕组数必须相等。

总的来说,在前面各步已绘好的基础上可完成绕组展开图。具体操作中,首先按照绕组的节距,把绕组展开图上部,同属于一相绕组的绕组边,有规则的连接起来构成绕组。然后在绕组展开图的下部,以确保绕组边中的电流方向,连接各相绕组端部线头,以及各相绕组组的端部线头。

例试绘制三相电动机4极24槽单层绕组展开图。

按照上面讲的绕组排列原则的前两条(1)、(2),以及绕组展开图形绘制操作步骤进行。第(1)步,参数计算。

极距: =Z/2P=24/4=6 槽

每极每相槽数:q=Z/2Pm=24/4×3=2 槽/极?相

在第一步的基础上,把第(2)~(5)步的操作内容绘在一起,如图11所示。

图11 三相24槽4极电动机单层绕组槽号绘编标定电流方向的排列展开图

第(6)步,绕组成图,如图12所示。本例采用的是同心交叉式,即大绕组套小绕组,按照电流示意的方向,进行一个绕组组内的连接,如1-8大绕组与2-7小绕组的连接;然后再进行绕组组与绕组组的连接,如U 相绕组的两个绕组组之间的连接。

图12 三相24槽4极电动机单层绕组展开图

绕组的感应电动势

三相异步电动机定子绕组接到三相电源后,气隙内即建立旋转磁场。这个磁场以同步转速n1旋转,幅值不变。其分布近乎正弦,好像一种旋转的磁极。它同时切割定、转子绕组,在其中产生感应电动势。虽然在定、转子绕组中感应电动势的频率有所不同,但两者定量计算的方法是一样的。本节讨论由正弦分布、以同步转速n1旋转的旋转磁场在定子绕组中所产生的感应电动势。

一、绕组的感应电动势及短矩系数

1. 导体的感应电动势

当磁场在空间作正弦分布,并以恒定的转速n1旋转时,导体感应的电动势为一正弦波,其最大值为

lv B E m m c 11=

导体电势的有效值为 τ

l fB lv

B E E m m m

C C 1111222===

而τπl B m 1211Φ=,所以有

11122.22Φ=Φ=f f E C π

2. 整距线圈的感应电动势

在图13(a)中,将相隔一个极距,即相差180°空间电角度的位置上放置两根导体U1和U2,并在上端用导线将它们连成一个整距线圈。线匝下面的两个端头分别称头和尾。由于两根导体在空间相间一个极距,则可知,若一根导体处在N 极极面下,另一根导体必定处在S 极极面下对应的位置,它们切割磁场所感应出的电动势必然大小相等、方向相反。即在时间相位上彼此相差180°时间电角度,每根导体的基波电动势相量则如图13(b)所示。每个线匝的电动势为

图13 匝电动势的计算

11112C C C t E E E E ='-= 有效值

11144.42Φ==f E E C t

在一个线圈内,每一匝电动势的大小和相位都是相同的,所以整距线圈的电动势为

11t C y E N E = 有效值

1144.4Φ=C y fN E 3. 短距绕组的感应电动势

这时线圈节距1y <τ,则电动势1C E 和1C E '

相位差不是180°,而是相差γ,γ是线圈节距1y 所对应的电角度。

??=

1801τγy 因此匝电势为 11)(1C C y t E E E '-= τ

有效值 1111)(122sin 22180cos 2y C C C y t K E E E E ==-?=γγτ 式中

1y K ——短距因数,2sin 1γ=y K 。则短距线圈的电动势为 11)(144.4y C y y K fN E Φ=τ

)(1)(11ττ==

y y y y Y E E K 短距系数的物理含义是:由于绕组短距后,两绕组边中感应电动势不再相等。求绕组电动势时不能像整矩绕组那样代数相加,而是相量相加,也就是把绕组看成是整距后所求绕组电动势再做折算。

二、线圈组的感应电动势及分布系数

线圈组是由q 个绕组串联组成的,若是集中绕组(q 个绕组均放在同一槽中),则每个绕组的电动势大小、相位都相同,对于分布绕组,q 个绕组嵌放在相邻α槽距角的q 个槽中,对每个绕组而言,它们切割旋转磁场所产生的感应电动势的大小应完全相同。但由于q 个绕组在定子空间分布而互差α,则磁场切割它们必然有先有后,这就使得q 绕组中产生的感应电动势在时间相位上有超前滞后。显而易见,q 个绕组中感应电动势在时间上依次相差α电角度,如图3.14(a)所示。线圈组电动势为q 个绕组电动势的相量和,即

2sin

21αq R E q =

2sin 21

α

y E R = 由于q 个相量大小相等,又依次位移角,所以它们依次相加就组成一个正多边形。所 以有

图14 分布绕组组基波电动势相量图

112sin sin 222sin sin 2

2q y

q q E qE q q αααα=

=

111112sin 2sin 2sin 2sin

q y Y y q K qE q qE q E E ===αααα式中 1q K ——分布因数,2sin 2sin 1ααq q K q = 线圈组的电动势为 11111144.444.4w C q y C q K fqN f K K qqN E Φ=Φ=

111q y w K K K =成为绕组因数。

三、一相绕组的基波感应电动势

一相绕组有a 条支路,一条支路由若干个绕组组串联组,因此一相绕组的电动势等于每一条并联支路的电动势。一般情况下,每条支路中所串联的几个绕组组的电动势都是大小相等、相位相同的,因此,可将该相一条支路所串的几个绕组组电动势直接相加。对于单层绕组,每条支路由P/a 个绕组组串联而成。对于双层绕组,每条支路由2p/a 个绕组组串联而成。所以每相绕组电动势为

双层绕组 111244.4w C

q K a p fqN E Φ= 单层绕组

11144.4w C q K a p fqN E Φ= 以上两式中 C qN a p 2和 C qN a p 分别表示双层绕组和单层绕组每条支路的串联匝数,统一

用有效匝数N 表示,这样就可得到绕组相电动势的一般公式

11144.4w q K fN E Φ=

式中 N ——每相绕组的串联匝数。

上式是计算交流绕组每相电动势有效值的一个普遍公式。它与变压器中绕组感应电动势的计算公式十分相似,仅多一项绕组系数1w K 。事实上,因为变压器绕组中每个线匝的电动势大小、相位都相同,因此变压器绕组实际上是一个集中整距绕组。

绕组的磁动势

在阐述三相异步电动机的工作原理时,曾指出,在三相异步电动机中,实现能量转换的前提是需要产生一种旋转磁场。实际上,这种旋转磁场是由该电动机定子上的对称三相绕组中通入对称三相交流电流时产生的磁动势建立的。因为此旋转磁动势是对称三相绕组中通入对称三相交流电流时所形成的总磁动势,所以这个总磁动势肯定既是空间的函数,又是时间的函数。本节从分析一个绕组的磁动势开始,进而分析一个绕组组以及一个相绕组的磁动势。然后把3个相绕组的磁动势叠加起来,便可得出三相绕组的合成磁动势。

一、单相绕组的磁动势——脉振磁动势

组成相绕组的单元是绕组,那么合成为单相绕组磁动势的单元就是绕组的磁动势,下面

先分析一个绕组所产生的磁动势。

图15 整距绕组产生的磁动势

1. 整距线圈的磁动势

图15(a)所示为一台两极异步电动机的磁场分布示意图,定子上有一个匝数为Ny 的整距绕组U1-U2,绕组中有电流通过,从U2流入,从U1流出。电流所建立的磁场的磁力线分布如图中虚线所示,为二极磁场。

根据全电流定律,每根磁力线所包围的全电流为 ?∑=∑=?C N I dl H

式中 C N ——绕组匝数,即绕组中每一有效边的导体数。

设想将电动机在放置U1绕组边的地方切开并展平,如图15(b)所示,如确定磁极轴线为y 轴,定子内圆周为x 轴。若绕组中通入交流电流, t I i C c ωcos 2=

,因为电流是随时间变化的,这里选择 0=t ω,C c I i 2=这一个合适的时间来分析。在讨论直流电动机电枢磁动势时,分析过这种整距绕组(直流电动机中称为元件)磁动势的分布情况,已确定这种整距线圈所产生的磁动势在空间分布波形是一个矩形波,其周期为两个i 极距,其幅值等于磁力

线所包围的全电流的一半为C IN 21,周期为2τ。则磁动势矩形波幅值的一般表达式为

t I N t x f C C ωcos 22),(= 它随时间的变化作正弦变化,当电流为最大值时,矩形波的高度也为最大值,当电流改变方向时,磁动势也随之改变方向。图16表示不同瞬时矩形波幅值随时间变化的关系。这种从空间上看位置固定,从时间上看大小在正负最大值之间变化的磁动势,称之为脉振磁动势。脉振的频率就是交流电流的频率。

2.整距线圈组的磁动势

定子三相对称绕组不论是双层还是单层,

每个绕组组都是由q 个相同的绕组串联起来,

各绕组之间依次相差一个槽距角α。以q=3的

整距绕组组为例,3个绕组产生的磁动势矩形

波大小相等,在空间依次相隔α电角度。 此

线圈组的基波合成磁动势的相量就可用q 个

(3个)依次相差α电角度的基波磁动势相量之

和来表示,幅值为

t qK N I K qF F q C C q y q ωcos 9.01111==

式 2sin 2sin 1ααq q K q =

成为基波的分布因数。

它表明具有同样匝数的分布绕组,其基波磁动

势比具有同样匝数集中绕组(q 个绕组集中在

一个槽内的绕组)的基波磁动势减小的倍数,

图16 不同瞬间的脉振磁动势

或者可理解为把绕组中的各绕组排列成分布以后所引起基波磁动势的一个折扣。

同理对于高次谐波其分布因数为 2sin

2sin

ναναν=

q K

高次谐波磁动势的幅值为

t qK N I F q C C q ωνννcos 9.01= 采用分布绕组可以削弱磁动势的高次谐波,改善磁动势的波形,使之接近于正弦波。

3.短距线圈组的磁动势

双层绕组中常采用短矩绕组。由于是短距绕组,所以同一相上、下层导体要移开一个距

离,这个距离即是绕组节距所缩短的电角πτβ??? ??-

=11y ,y1为绕组节矩。由于磁动势大小和波形只取决于槽内线圈组边的分布及电流的情况,而与各线圈组边的连接次序无关。因此可将上层线圈组边等效地看成是一个单层整距分布线圈组,下层线圈组边等效地看成是另一个单层整距分布线圈组上、下两线圈组在空间相差电角度,因此双层短距分布绕组基波磁动势如同电动势一样,其大小为两个等效线圈基波磁动势的相量和,因此,又可引入短距系

三相异步电动机的结构与其作用

三相异步电动机结构的各部件起什么作用? 异步电动机的结构主要由两个基本部分组成,即定子(静止部分)和转子(旋转部分)。 一.定子它由定子铁心、定子绕组和机座等部分组成。 (1)定子铁心。它是电动机磁路的一部分,由0.35~0.5mm厚表面涂有绝缘漆或氧化膜的薄硅钢片叠压而成,固定在机座内。定子铁心的内圆冲有均匀分布的槽口,用来嵌放三相定子绕组。 绕组与铁心之间是互相绝缘的。 (2)定子绕组。由于它是能量转换的“枢纽”,又称电枢绕组。它是异步电动机的电路部分,通入三相电源后,就会产生三相旋转磁场。三相定子绕组是3个彼此独立、按一定方式连接的对称绕组,它们按一定的空间角度依次嵌在定子槽内。为了便于变换接法,绕组6个端头都引到接线盒内。 (3)机座。它一般由铸铁或铸钢制成。其作用是固定定子铁心和定子绕组。机座两端的两个端盖,以支承转子轴。 二.转子它是异步电动机的旋转部分,电动机的工作转矩就是从转子轴上输出的。它由转子铁心、转子绕组和转轴3部分组成。 (1)转子铁心。它是电动机磁路的一部分,是由圆形薄硅钢片叠装而成。在硅钢片外圆上冲有均匀分布的槽口,用来嵌放转子绕组。转子铁心压装在轴上。 (2)转子绕组。它又分为笼型和线绕式两种。目前中小型异步电动机的笼型转子,一般都用熔化的铝浇入转子铁心槽内,并将两个端环(短路环)与冷却用风扇浇铸在一起而成。由于转子绕组形状像鼠笼,故称为笼型异步电动机。线绕式转子绕组和定子绕组相似,也是三相对称绕组,一般都接成星形。3个出线端通过转轴内孔分别接到与转轴固定的3个铜制互相绝缘的滑环上(集电环),滑环靠电刷与外接变阻器电路相连接,接入变阻器主要是为了改善电动机的起动性能或调节电动机的转速。

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

光刻原理

光 刻 工 艺 一、目的: 按照平面晶体管和集成电路的设计要求,在SiO 2或金属蒸发层上面刻蚀出与掩模板完全相对应的几何图形,以实现选择性扩散和金属膜布线的目的。 二、原理: 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO 2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO 2层或金属蒸发层进行选择性化学腐蚀,从而在SiO 2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 (一)光刻胶的特性: 1.性能,光致抗蚀剂是一种对光敏感的高分子化合物。当它受适当波长的光照射后就能吸收一定波长的光能量,使其发生交联、聚合或分解等光化学反应。由原来的线状结构变成三维的网状结构,从而提高了抗蚀能力,不再溶于有机溶剂,也不再受一般腐蚀剂的腐蚀. 2.组成:以KPR 光刻胶为例: 感光剂--聚乙烯醇肉桂酸酯。 溶 剂--环己酮。 增感剂--5·硝基苊, 3.配制过程: 将一定重量的感光剂溶解于环己酮里搅拌均匀,然后加入一定量的硝基苊,再继续揖拌均匀,静置于暗室中待用。 感光剂聚乙烯醇肉桂酸酯的感光波长为3800?以内,加入5·硝基苊后感光波长范围发生了变化从2600—4700 ?。 (二)光刻设备及工具: 在SiO 2层上涂复光刻胶膜 将掩模板覆盖 在光刻胶膜上 在紫外灯下曝光 显影后经过腐蚀得到光刻窗口

1.曝光机--光刻专用设备。 2.操作箱甩胶盘--涂复光刻胶。 3.烘箱――烤硅片。 4.超级恒温水浴锅--腐蚀SiO2片恒温用。 5.检查显为镜――检查SiO2片质量。 6.镊子――夹持SiO2片。 7.定时钟――定时。 8.培养皿及铝盒――装Si片用。 9.温度计――测量温度。 图(二)受光照时感光树脂分子结构的变化 三、光刻步骤及操作原理 1.涂胶:利用旋转法在SiO2片和金属蒸发层上,涂上一层粘附性好、厚度适当、均匀的光刻胶。 将清洁的SiO2片或金属蒸发片整齐的排列在甩胶盘的边缘上,然后用滴管滴上数滴光刻胶于片子上,利用转动时产生的离心力,将片子上多余的胶液甩掉,在光刻胶表面粘附能力和离心力的共同作用下形成厚度均匀的胶膜。 涂胶时间约为1分钟。 要求:厚度适当(观看胶膜条纹估计厚薄),胶膜层均匀,粘附良好,表面无颗粒无划痕。 图(三)光刻工艺流程示意图

高压中大型三相异步电机基本知识

三相异步电动机基本知识 1电机概述 电机的型式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,电机构造的一般原则是:用适当的有效材料(导磁和导电材料)构成能互相进行电磁感应的磁路和电路,以产生电磁功率和电磁转矩,达到转换能量形态的目的。 为了减少激磁电流和旋转磁场在铁心中产生的涡流和磁滞损耗,铁心有0.5mm厚的 硅钢片叠压而成。硅钢片绝缘层的作用?笼型转子结构简单、制造方便。对要求启动电流小、启动转矩大的电机,可以采用绕线式电机。 按电机功能来分,可分为: ①发电机——把机械能转换成电能; ②电动机——把电能转换成机械能; ③变压器、变频机、变流机、移相器——分别用于改变电压、频率、电流相位。 ④控制电机——作为控制系统中的元件。 又可按以下方法分类: 下面主要讲述高压中大型三相异步电机 S=ns-n/ns 2电机型号、结构及分类 2.1分类

a)按中心高分类 可分为微型电机、小型电机、中型电机、大型电机。一般来说,H80以下的称为 微型电机(也叫分马力电机,功率在1kW以下),H80?H315的称为小型电机,H355?H630的称为中型电机,H710?H1000的称为大型电机。 b)按防护等级分类 基本上可分为开启式、防护式和封闭式电机。开启式电机的常用结构是IP11,防护式电机的常用结构是和IP22、IP23,封闭式电机的常用结构是IP44和IP54。 IP是International Protection的意思,紧跟其后的第一个数字表示电机防护固体的能力(0-无防护;1-防护大于50mm的固体;2-防护大于12mm的固体;3-防护大于2.5mm 的固体;4-防护大于1mm的固体;5-防尘。),第二个数字表示电机防水的能力(0-无防护电机;1-防滴电机;2-15°防滴电机;3-防淋水电机;4-防溅水电机;5-防喷水电机;6-防海浪电机;7-防浸水电机;8-潜水电机)。 请参考标准GB4942.1-85《电机外壳防护分级》。 c)按安装方式分类 总体上可分为卧式电机和立式电机。 卧式电机的典型结构是IMB3,其余派生结构有IMB35、IMB5等。立式电机的典型结构是IMV1(把IMB5立起来装即可,轴伸朝下),其余派生结构有IMV15(把IMB35 立起来装即可,轴伸朝下)等。 IM 即International Mounting。 请参考标准GB997-2008《电机结构及安装型式代号》。(IEC60034-7:2001) 旋转电机的结构形式、安装形式及接线盒位置---IM代码。 结构形式:有关固定用构件、轴承装置和轴伸等电机部件的构成形式。 1根据负载类型选择不同的冷却方式

三相异步电动机的七种调速方法及特点

三相异步电动机分类特点以及调速方法 三相异步电动机分类: 1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。不改变同步转速的调速方法在生产机械中广泛使用。 2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 我们清楚三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。 一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 特点如下:1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、 调速范围大,特性硬,精度高;4、 技术复杂,造价高,维护检修困难。 三、串级调速方法 :串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为

喷砂系统工作原理

喷砂系统工作原理 全自动机械回收式喷砂房是根据产品加工工艺流程及产品本身特性而设计的,适用于大型铸件锻件、焊接钢结构、工程机械、工业锅炉、化工机械、船舶修造等表面去氧化皮、除锈、强化,提高涂料的附着力等。其结构及配套设备主要由喷砂室、喷砂系统、磨料回收系统、通风和除尘系统、照明和电气控制系统六大部分组成 一、喷砂室 喷砂室是喷砂工人面对工件进行喷砂清理的地方。 喷砂室采用砖墙结构,防水性能好,且具有很好的防震效果。 室内采用耐磨橡胶皮保护,能有效保护室内设施。喷砂室地面铺设钢格栅,防止磨料在操作平台上积聚,对喷喷砂工人的安全造成威胁。磨料回收斗铺设钢板网,防止杂物进入喷丸系统。 为了喷砂工人的安全,喷砂室的两侧均设计有安全门,这是喷砂工人在遭遇危险时能及时逃生的需要。喷砂室两侧布置有观察窗,方便随时了解喷砂工人的作业情况。 该喷砂室建在室外,因此一定要注意做好防风挡雨的工作,防止雨水进入喷砂室,防止被雨淋湿的工件进入喷砂室。 二、喷砂系统 喷砂系统由喷砂机和喷砂工人的专用防护用具组成。 喷砂作业的工作效率和作业安全都与喷砂 作业机具有着密不可分的关系。该喷砂系统采用双腔连续工作型喷砂机为喷砂清理机具。 1、设备结构: (1)桶体 由二级料仓组成,上仓与下仓,以保证连续加砂。 (2)自动加砂: 由上仓料位感应器、下仓料位感应器及加料阀等组成。 (3喷砂部分 由进气阀、磨料阀、喷砂管、喷嘴等组成。 (4)控制部分 由电控箱及电缆线、气动遥控开关等组成。 2、设备工作原理; 该机为自动添料可供两人连续工作的喷砂机。 连续工作型喷砂机在上下两仓分别配有满仓料位仪和空仓料位仪。当下仓内的磨料料位下降到空仓料位仪的感应杆以下时,料位仪发出空仓信号,使上仓升压,控制上仓内的磨料流入下腔。在设定时间内,上仓进气阀自动关闭,上仓排气阀自动打开,上仓排气卸压,上仓加料阀打开(气缸控制),上仓添料备用。 连续工作型喷砂机与磨料储砂箱配套使用,当上仓料位升高到满仓料位仪感应杆的高度时,料位仪发出满仓信号,将加料阀关闭,停止加料。 3、设备性能特点 (1)该设备采用双仓结构,因此,可达到连续作业的要求,喷砂工作可连续作业,不需一般喷砂机的停机加砂,大大提高了喷砂效率。 (2)该设备配置了下仓空仓料位仪和上仓满仓料位仪,并与储砂箱加料阀、进气电气控制联动,以保证当下仓无料时,始终能得到补充;上仓料满时,加料阀会自动关闭。控制系统中设置了延时继电器,按照实际工作情况,延时继电器可调,以满足各种工况条件下使用。(3)该系统的气动遥控阀件都采用了汤姆森磨料阀,动作灵活、反应灵敏、耐磨性强,特别是气动遥控磨料阀采用超耐磨复合材料,寿命长、流量调节方便,磨料阀采用斜体45°结

三相异步电动机结构详细图解

三相异步电动机结构详细图解 图1封闭式三相异步电动机的结构 1—端盖2—轴承3—机座4—定子绕组5—转子 6—轴承7—端盖8—风扇9—风罩10—接线盒 异步电动机的结构也可分为定子.转子两大部分。定子就是电机中固定不动的部分,转子是电机的旋转部分。由于异步电动机的定子产生励磁旋转磁场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定.转子之间还必须有一定间隙(称为空气隙),以保证转子的自由转动。异步电动机的空气隙较其他类型的电动机气隙要小,一般为~2mm。 三相异步电动机外形有开启式.防护式.封闭式等多种

形式,以适应不同的工作需要。在某些特殊场合,还有特殊的外形防护型式,如防爆式.潜水泵式等。不管外形如何电动机结构 基本上是相同的。现以封闭式电动机为例介绍三相异步电动机的结构。如图1所示是一台封闭式三相异步电动机解体后的零部件图。 1.定子部分 定子部分由机座.定子铁心.定子绕组及端盖.轴承等部件组成。 (1)机座。机座用来支承定子铁心和固定端盖。中.小型电动机机座一般用铸铁浇成,大型电动机多采用钢板焊接而成。 (2)定子铁心。定子铁心是电动机磁路的一部分。为了减小涡流和磁滞损耗,通常用厚的硅钢片叠压成圆筒,硅钢片表面的氧化层(大型电动机要求涂绝缘漆)作为片间绝缘,在铁心的内圆上均匀分布有与轴平行的槽,用以嵌放定子绕组。 (a)直条形式(b)斜条形式

图2 笼型异步电动机的转子绕组形式 (3)定子绕组。定子绕组是电动机的电路部分,也是最重要的部分,一般是由绝缘铜(或铝)导线绕制的绕组联接而成。它的作用就是利用通入的三相交流电产生旋转磁场。通常,绕组是用高强度绝缘漆包线绕制成各种型式的绕组,按一定的排列方式嵌入定子槽内。槽口用槽楔(一般为竹制)塞紧。槽内绕组匝间.绕组与铁心之间都要有良好的绝缘。如果是双层绕组(就是一个槽内分上下两层嵌放两条绕组边),还要加放层间绝缘。 (4)轴承。轴承是电动机定.转子衔接的部位,轴承有滚动轴承和滑动轴承两类,滚动轴承又有滚珠轴承(也称为球轴承),目前多数电动机都采用滚动轴承。这种轴承的外部有贮存润滑油的油箱,轴承上还装有油环,轴转动时带动油环转动,把油箱中的润滑油带到轴与轴承的接触面上。为使润滑油能分布在整个接触面上,轴承上紧贴轴的一面一般开有油槽。 2.转子部分 转子是电动机中的旋转部分,如图中的部件5。一般由

三相异步电动机的使用、维护和检修教案

教案(首页) 授课班级机电高职1002 授课日期 课题序号 3.5 授课形式讲授授课时数 2 课题名称三相异步电动机的使用、维护和检修 教学目标1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 3.熟悉三相异步电动机的定期检修内容。 4.了解三相异步电动机的常见故障以及处理方法。 教学重点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教学难点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教材内容更 新、补 充及删减 无 课外作业补充 教学后记无 送审记录 课堂时间安排和板书设计

复习5 导 入 5 新 授 60 练 习 15 小 结 5 一、电机选择原则 1、电源的原则 2、防护形式的选择 3、功率的选择 4、起动情况选择 5、转速的选择 二、电机的安装原则 三、电机的接地装置 四、电机的定期检查和保养 五、三相异步电机的常见故障及处理方法 课堂教学安排

课题序号课题名称第页共页教学过程主要教学内容及步骤 导入新授三相异步电动机在生产设备中长期不间断地工作,是目前工矿企业的主要动力装置,电动机的使用寿命是有限的,因为电动机轴承的逐渐磨损、绝缘材料的逐渐老化等等,这些现象是不可避免的。但一般来说,只要选用正确、安装良好、维修保养完善,电动机的使用寿命还是比较长的。在使用中如何尽量避免对电动机的损害,及时发现电动机运行中的故障隐患,对电动机的安全运行意义重大。因此,电动机在运行中的监视和维护,定期的检查维修,是消灭故障隐患,延长电动机使用寿命,减小不必要损失的重要手段。 一、电动机的选择原则 合理选择电动机是正确使用电动机的前提。电动机品种繁多,性能各异,选择时要全面考虑电源、负载、使用环境等诸多因素。对于与电动机使用相配套的控制电器和保护电器的选择也是同样重要的。 1.电源的选择 在三相异步电动机中,中小功率电动机大多采用三相380V电压,但也有使用三相22OV电压的。在电源频率方面,我国自行生产的电动机采用50Hz的频率,而世界上有些国家采用60Hz的交流电源。虽然频率不同不至于烧毁电动机,但其工作性能将大不一样。因此,在选择电动机时应根据电源的情况和电动机的铭牌正确选用。 2.防护型式的选择 由于工作环境不尽相同,有的生产场所温度较高、有的生产场所有大量的粉尘、有的场所空气中含有爆炸性气体或腐蚀性气体等等。这些环境都会使电动机的绝缘状况恶化,从而缩短电动机的使用寿命,甚至危及生命和财产的安全。因此,使用时有必要选择各种不同结构形式的电动机,以保证在各种不同的工作环境中能安全可靠地运行。电动机的外壳一般有如下型式: (1)开启型外壳有通风孔,借助和转轴连成一体的通风风扇使周围的空气与电动机内部的空气流通。此型电动机冷却效果好,适用于干燥无尘的场所。 (2)防护型机壳内部的转动部分及带电部分有必要的机械保护,以防止意外的接触。若电动机通风口用带网孔的遮盖物盖起来,叫网罩式;通风口可防止垂直下落的液体或固体直接进入电动机内部的叫防漏式;通风口可防止与垂直成100o范围内任何方向的液体或固体进入电动机内部的叫防溅式。(3)封闭式机壳严密密封,靠自身或外部风扇冷却,外壳带有散热片。适用于潮湿、多尘或含酸性气体的场合。 (4)防水式外壳结构能阻止一定压力的水进入电动机内部。 (5)水密式当电动机浸没在水中时,外壳结构能防止水进入电动机内部。 (6)潜水式电动机能长期在规定的水压下运行。 (7)防爆式电动机外壳能阻止电动机内部的气体爆炸传递到电动机外部,从而引起外部燃烧气体的爆炸。 3.功率的选择 课堂教学安排 课题序号课题名称第页共页

投影光刻机对准系统功能原理

投影光刻机对准系统功能原理 投影光刻机对准系统功能原理 1 对准系统简介 对准系统的主要功能就是将工件台上硅片的标记与掩膜版上的标记对准,其标记的对准精度能达到±0.4μm(正态分布曲线的3σ值)。因为一片硅片在一个工艺流程中的曝光次数可能达到30次,而对准精度直接影响硅片的套刻精度,所以硅片的对准精度非常的关键。 由于对准系统对硅片标记的搜索扫描有一定的范围,它在X方向和Y方向都只能扫描 ±44μm,所以硅片被传送到工件台上进行对准之前,需要在预对准工件台上先后完成两次对准,即机械预对准和光学预对准,以便满足精细对准的捕捉范围。注意:本文所提到的对准都是所谓的精细对准。 PAS2500/10投影光刻机对准系统主要由三个单位部分构成:照明(对准光源)部分,双折射单元和对准单元。这三个单元与掩膜版、硅片、以及投影透镜的相对位置如图1所示,在图中可以看出,对准系统中用了两个完全相同的光路,这是为了满足对准功能的需要。 1.1 对准系统的光学结构和功能 由于对准系统中的两条完全相同,所以在下面的介绍中只详细地阐述了其中的一条光路。在对准系统中,照明部分的主要部件就是激光发射器,它产生波长为633nm的线性极化光,避免在硅片对准的过程中使硅片被曝光(硅片曝光用的光为紫外光)。然后对准激光将通过一系列的棱镜和透镜进入双折射单元,该激光将从双折射单元底部射出,通过曝光的投影透镜照到硅片的标记上;而经过硅片表面的反射后由原路返回,第二次经过双折射单元,由双折射单元的顶部射出,再经过聚焦后对准到掩膜版的标记上。 在对准单元内,硅片的标记图象和掩膜版标记的图象同时通过一个调制器后,将被聚焦到一个Q-CELL光电检测器上。此调制器是用来交替传送两个极化方向的硅片标记图象,Q-CELL 光电检测器将对硅片的标记的每个极化方向图象分别产生一个电信号,由此产生的电信号的振幅取决于该极化方向硅片标记的图象与掩膜版标记图象在Q-CELL的显示比例。 硅片上的对准标记如图2所示,标记分为四个象限,每个象限有8μm或8.8μm的对准条,其中有两个象限的对准条用来对准X向,另外两个象限用来对准Y向。而Q-CELL光电检测器的每一个单元对应标记的一个象限,当在Q-CELL检测器的每一个单元中,两个极化方向的标记图象的能量都相等的时候,就表明硅片与掩膜版的标记完全对准了。从图1中可以看到对准光束在经过对准单元的时候被分成了两束,一束激光将通过调制器到达Q-CELL 光电检测器,而另一束激光则以视频的形式反馈到操作台。通过操作台上的视频监视器可以直观的看到标记的移动和对准不同标记时位置的相对变化。虽然是两个不同极化方向的硅片标记与掩膜版标记同时对准,但是由于它们是同步的,彼此之间几乎看不到有何不同,所以只有一个极化图象被显示。 1.2 对准系统的电路部分 对准系统的电路部分主要的功能是: 1、产生一个信号去驱动光学调制器。 2、处理Q-CELL光电检测器产生的信号。 光学调制器的驱动:该调制器信号要求频率为50Hz的正弦信号,其振幅要求能满足对最大的Q-CELL检测信号起调制作用。 Q-CELL检测信号的处理:在对准的时候,工件台将首先沿X轴向缓慢地带动E-CHUCK上的硅片移动,进行X轴向对准,当硅片标记上X向光栅与对应的掩膜版上X向光栅对准时,

三相异步电动机结构和铭牌参数

三相异步电动机结构和铭牌参数 三相异步电动机的额定值刻印在每台电动机的铭牌上,一般包括下列几种: 1.型号:为了适应不同用途和不同工作环境的需要,电动机制成不同的系列,每种系列用各种型号表示。例如Y 132 M- 4 Y →三相异步电动机,其中三相异步电动机的产品名称代号还有:YR为绕线式异步电动机;YB为防爆型异步电动机;YQ为高起动转距异步电动机。 132→机座中心高(mm) M →机座长度代号 4 →磁极数 2.接法:这是指定子三相绕组的接法。一般鼠笼式电动机的接线盒中有六根引出线,标有U1、V1 、W1、U2、V2、W2。其中:U1 U2是第一相绕组的两端;V1 V2是第二相绕组的两端;W1 W2是第三相绕组的两端。 如果U1、V1 、W1分别为三相绕组的始端(头) ,则U2、V2、W2是相应的末端(尾)。这六个引出线端在接电源之前,相互间必须正确联接。联接方法有星形(Y)联接和三角形()联接两种(下图所示)。通常三相异步电动机自3kW以下者,联接成星形;自4kW以上者, 联接成三角形。 3.额定功率PN:是指电动机在制造厂所规定的额定情况下运行时, 其输出端的机械功率,单位一般为千瓦(kW)。 对三相异步电机,其额定功率:PN=UNINηNcosN 式中ηN和cosN分别为额定情况下的效率和功率因数。 4.额定电压UN:是指电动机额定运行时,外加于定子绕组上的线电压,单位为伏

(V)。 一般规定电动机的工作电压不应高于或低于额定值的5%。当工作电压高于额定值时,磁通将增大,将使励磁电流大大增加,电流大于额定电流,使绕组发热。同时,由于磁通的增大,铁损耗(与磁通平方成正比)也增大,使定子铁心过热;当工作电压低于额定值时,引起输出转矩减小,转速下降,电流增加,也使绕组过热,这对电动机的运行也是不利的。 我国生产的Y系列中、小型异步电动机,其额定功率在3kW以上的,额定电压为3 80 V,绕组为三角形联接。额定功率在3 kW及以下的,额定电压为380/220V,绕组为Y/联接(即电源线电压为380 V时,电动机绕组为星形联接;电源线电压为220 V时,电动机绕组为三角形联接)。 5.额定电流IN:是指电动机在额定电压和额定输出功率时,定子绕组的线电流,单位为安(A)。 当电动机空载时,转子转速接近于旋转磁场的同步转速,两者之间相对转速很小,所以转子电流近似为零,这时定子电流几乎全为建立旋转磁场的励磁电流。当输出功率增大时,转子电流和定子电流都随着相应增大,如下图中的I1=f(P2)曲线所示。图中是一台l0kW三相异步电动机的工作特性曲线。 6.额定频率fN:我国电力网的频率为50赫兹(Hz),因此除外销产品外,国内用的异步电动机的额定频率为50赫兹。 7.额定转速nN:是指电动机在额定电压、额定频率下,输出端有额定 功率输出时, 转子的转速,单位为转/分(r/min)。由于生产机械对转速的要求不同,需要生产不同磁极数的异步电动机,因此有不同的转速等级。最常用的是四个极的异步电动机(n0=l500 r/min)。 8.额定效率ηN:是指电动机在额定情况下运行时的效率, 是额定输出功率与额定输入功率的比值。即 ηN=×100%=×100%

光刻机和光掩膜版

十三章 光刻II 光刻机和光掩膜版 前几章讲述了光刻胶材料的性质和工艺技术。在这一章里,我们介绍如何将图形转移到硅片表面上,包括以下内容:a)将图形投影到硅片表面的装置(即光刻对准仪或光刻翻版机),由此使得所需图形区域的光刻胶曝光。 b)将图形转移到涂有光刻胶的硅片上的工具(即光掩模版和中间掩模版)。在介绍光刻机或掩模版之前,把用以设计和描述操作光刻机的光学原理简要地说明一下。它们是讲明光掩模板和中间掩模版的基础。 在讨论光学原理之前,有必要介绍一下微光刻硬件的关键。那就是把图形投影到硅表面的机器和掩模版的最重要的特征:a)分辨率、b)图形套准精度、c)尺寸控制、d)产出率。 通常,分辨律是指一个光学系统精确区分目标的能力。特别的,我们所说的微图形加工的最小分辨率是指最小线宽尺寸或机器能充分打印出的区域。然而,和光刻机的分辨率一样,最小尺寸也依赖于光刻胶和刻蚀的技术。关于分辨率的问题将在微光刻光学一章中更彻底的讲解,但要重点强调的是高分辨率通常是光刻机最重要的特性。 图形套准精度是衡量被印刷的图形能“匹配”前面印刷图形的一种尺度。由于微光刻应用的特征尺寸非常小,且各层都需正确匹配,所以需要配合紧密。

微光刻尺寸控制的要求是以高准度和高精度在完整硅片表面产生器件特征尺寸。为此,首先要在图形转移工具〔光刻掩模版〕上正确地再造出特征图形,然后再准确地在硅片表面印刷出〔翻印或刻蚀〕。 加工产率是重要但 不是最重要加工特征。例 如,如果一个器件只能在 低生产率但高分辨率的 光刻机制版,这样也许仍 然是经济的。不过,在大 部分生产应用中,加工和 机器的产率是很重要的, 也许是选择机器的重要因素之一。 1.微光刻光学 在大规模集成电路的制造中。光刻系统的分辨率是相当重要的,因为它是微器件尺寸的主要限制。在现代化投影光刻机中光学配件的质量是相当高的,所以图形的特征尺寸因衍射的影响而受限制,而不会是因为镜头的原因(它们被叫做衍射限制系统)。因为分辨率是由衍射限度而决定的,那就必须弄明白围绕衍射限度光学的几个概念,包括一致性、衍射、数值孔径、调频和许多重要调节转换性能。下几节的目的就是要简要和基本地介绍这些内容。参考资料1·2讲得更详细。 衍射·一致性·数值孔径和分辨率 图(1):一束空间连续光线经过直的边缘时的光强 a)依据几何光学b)散射

三相异步电动机的结构与工作原理

三相异步电动机的结构与工作原理 5.1 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。 对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 5.1.1 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 图5-1 三相电动机的结构示意图 1).定子 三相异步电动机的定子由三部分组成:

2).转子 三相异步电动机的转子由三部分组成: 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用 得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm 之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图 5-2 三相异步电动机工作原理

(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。 (3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。 2).旋转磁场 (1).产生 图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。并接成星形与三相电源U 、V 、W 相联。则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。 00sin sin(120)sin(120)U m V m W m i I t i I t i I t ωωω=??=-??=+? 图 5-3 三相异步电动机定子接线 当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流 出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。 当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。 当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。 可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间 旋转一周。随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地 B

低压电器的分类及三相异步电动机的控制电路

低压电器 第一节低压电器的分类 第二节低压配电电器 一、熔断器(FU) 1)型号及含义 2)熔断器的选用 二、刀开关与转换开关 1、刀开关 1)开启式负荷开关(磁底胶盖闸刀开关) 开启式负荷开关安装时注意: ①、手柄要朝上,不能倒装或平装,防止震动而造成下落现象; ②、接线时,电源接上端,负载解下端; ③、拉闸时操作要迅速,一次到位,保证与电源的良好接触; ④、带负载运行时不能进行合分闸。

2)自动空气断路器(自动开关) 可实现电路的短路、过载或失电压与欠电压保护,能自动分段故障电路。 3)封闭式负荷开关(铁壳开关) 优势:①采用储能机构进行合分闸操作,当扳动操作手柄时,通过弹簧储蓄能量,扳到一定位时,弹簧储存能量瞬时爆发出来,推动触点合分闸。 ②具有连锁机构,当铁盖打开时,不能进行合分闸,对于操作者而言,避免了人身安全。 使用铁壳开关应注意外壳要可靠接地,以防止意外漏电造成触电事故。 2)转换开关(组合开关) 转换开关用于照明电路中,额定电流应大于被控制电路中各负载电流的总和;用于设备电源引入开关时也应大于负载电流的总和;用于电动机中,额定电流是电动机额定电流的2~3倍;也可用于5KW以下小容量电动机的启停和正反转控制,以及机床照明电路中的开关控制。 三、按钮 安装:①按钮安装在面板上时,应布置整齐,排列合理, 如根据电动机启动的先后顺序,从上到下或从左到 右排列; ②同一机床运动部位有几种不同的工作状态时(如 上、下、前、后、松、紧等),应使每一对相反状态的按钮安装在

一起; ③按钮的安装应牢固,安装按钮的金属板或金属按钮盒必须可靠接地。 按钮常见故障及处理方法故障现象故障原因处理方法 触点接触不良触点烧损 触点表面有尘垢 触点弹簧失效 修理触点或更换产品 清理触点表面 重绕弹簧或更换产品 触点间短路塑料受热变形,导致接线螺钉相碰 短路 杂物或油污在触点间形成通路 更换产品,并查明发热原因,如白炽灯发热所 致,可降低电压 清洁按钮内部 低压控制电器 四、接触器 交流接触器直流接触器作用通断交流电路通断直流电路 结构铁芯用硅钢片叠加而成,减少涡流和磁滞损 耗, 铁芯用整块钢板制造 端面装有短路环不装短路环 线路短而粗,呈圆筒状,铁心发热为主线圈薄而长,呈圆筒状,以线圈发热为主 灭弧栅片灭弧磁吹式灭弧 操作频率启动电流大,操作频率不能太高,600次/ 小时 无启动电流,操作频率较高,1200次/小时 Ⅰ、当交流接触器的额定值与直流接触器相同时,能否互换使用? 答:不能,交流接触器线圈匝数少,直流接触器线圈匝数多,直流电阻较大,若将交流接触器用于直流,其线圈电流将大大超过正常值,导致线圈过热损坏,若将直流接触器用于交流,因电阻过大,线圈电流远小于额定值,衔铁难于吸合,无法正常工作。 Ⅱ、如果交流接触器在工作时噪声过大的原因有哪些? 答:①电源电压过低;②触头弹簧压力过大;③铁芯或衔铁歪斜,造成机械卡住;④铁芯或衔铁端面有油污、灰尘或其他异物;⑤短路环断裂。 Ⅲ、接触器在运行过程中不能切断短路电流,所以必须与熔断器配合使用。 Ⅳ、交流接触器通电后,若衔铁因故卡住,不能吸合,

带钢抛丸机结构及工作原理

结构及工作原理 1. 本机主要由下列部件组成 抛丸室与室体防护板、抛丸器、弹丸循环系统、托辊机构、转刷、吹刮丸机构、气动系统、电气控制系统等。 2. 机器的工作原理 被清理的工件由用户提供的动力压辊机构拉紧送至抛丸室,由两台清理机组成,第一台粗抛、第二台精抛,抛丸机每台设4台抛丸器分别对着带钢的上表面或下表面),将清理工件的弹丸加速,击打带钢的外表面。使带钢在运行过程中将带钢表面上的氧化皮或锈斑清除掉,清理后的混合弹丸由两套纵、横向螺旋输送器送至提升机下部,经提升机由螺旋输送器将弹丸送入分离器内,分离器将锈氧化皮等混合物分开,合格弹丸经闸门进入抛丸器继续使用;中间弹丸(未完全分离干净)回室体内再循环;破碎弹丸及灰尘排出并进入废料箱(用户自备)。 3. 各部件主要结构 3.1抛丸器由钢板焊接而成,采用无型钢骨架结构,室体内衬有金属防护板,用耐磨的包铸螺母固定在室体上。 室体上共设八扇维修工作门,门体上侧设有触点开关,无论那扇门开启时,抛丸器都不启动。结构及工作原理 1. 本机主要由下列部件组成 抛丸室与室体防护板、抛丸器、弹丸循环系统、托辊机构、转刷、吹刮丸机构、气动系统、电气控制系统等。 2. 机器的工作原理

被清理的工件由用户提供的动力压辊机构拉紧送至抛丸室,由两台清理机组成,第一台粗抛、第二台精抛,抛丸机每台设4台抛丸器分别对着带钢的上表面或下表面),将清理工件的弹丸加速,击打带钢的外表面。使带钢在运行过程中将带钢表面上的氧化皮或锈斑清除掉,清理后的混合弹丸由两套纵、横向螺旋输送器送至提升机下部,经提升机由螺旋输送器将弹丸送入分离器内,分离器将锈氧化皮等混合物分开,合格弹丸经闸门进入抛丸器继续使用;中间弹丸(未完全分离干净)回室体内再循环;破碎弹丸及灰尘排出并进入废料箱(用户自备)。 3. 各部件主要结构 3.1抛丸器由钢板焊接而成,采用无型钢骨架结构,室体内衬有金属防护板,用耐磨的包铸螺母固定在室体上。 室体上共设八扇维修工作门,门体上侧设有触点开关,无论那扇门开启时,抛丸器都不启动。 结构及工作原理 1. 本机主要由下列部件组成 抛丸室与室体防护板、抛丸器、弹丸循环系统、托辊机构、转刷、吹刮丸机构、气动系统、电气控制系统等。 2. 机器的工作原理 被清理的工件由用户提供的动力压辊机构拉紧送至抛丸室,由两台清理机组成,第一台粗抛、第二台精抛,抛丸机每台设4台抛丸器分别对着带钢的上表面或下表面),将清理工件的弹丸加速,击打带钢的外表面。使带钢在运行过程中将带

三相异步电动机的分类(很详细的资料)

三相异步电动机的分类、结构、铭牌 一、三相异步电动机的分类 1、按三相异步电动机的转子结构形式 可分为鼠笼式电动机和绕线式电动机。 2、按三相异步电动机的防护型式 可分为开启式(IP11)三相异步电动机、防护式三相异步电动机(IP22及IP23)、封闭式三相异步电动机(IP44)、防爆式三相异步电动机。 开启式(IP11):价格便宜,散热条件最好,由于转子和绕组暴露在空气中,只能用于干燥、灰尘很少又无腐蚀性和爆炸性气体的环境。 防护式(IP22及IP23):通风散热条件也较好,可防止水滴、铁屑等外界杂物落入电动机内部,只适用于较干燥且灰尘不多又无腐蚀性和爆炸性气体的环境。 封闭式(IP44):适用于潮湿、多尘、易受风雨侵蚀,有腐蚀性气体等较恶劣的工作环境,应用最普遍。 3、按三相异步电动机的通风冷却方式 可分为自冷式三相异步电动机、自扇冷式三相异步电动机、他扇冷式三相异步电动机、管道通风式三相异步电动机。 4、按三相异步电动机的安装结构形式 可分为卧式三相异步电动机、立式三相异步电动机、带底脚三相异步电动机、带凸缘三相异步电动机。 5、按三相异步电动机的绝缘等级 可分为E级、B级、F级、H级三相异步电动机。 6、按工作定额 可分为连续三相异步电动机、断续三相异步电动机、间歇三相异步电动机。 二、三相异步电动机的结构 (一)定子(静止部分) 1、定子铁心 作用:电机磁路的一部分,并在其上放置定子绕组。 构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。 定子铁心槽型有以下几种: 半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小型低压电机中。

Y系列三相异步电动机的技术参数54876

Y系列三相异步电动机的技术参数 1、Y系列(IP44)三相异步电动机: Y系列三相异步电动机是全国统一设计的新系列产品,将取代JO系列电动机,Y系列三相异步电动机具有高效、节能、噪音低、震动小等特点。 2、Y系列(IP23)三相异步电动机: Y系列(IP23)三相异步电动机,机座号为160 - 315,其防护结构形式不同于IP44的封闭式,但比防滴式优越,其体积比Y系列(IP44)分别减少20%和15%。 Y系列(IP44)的技术参数见下表: 型号功率 ( KW) 电流 (A) 转速 r/min 铁芯 长度 定子 外径 定子 内径 输出 轴径 Y801 - 2 0.75 1.8 2830 65 120 67 Y8012- 2 1.1 2.5 2830 80 120 67 Y801- 4 0.55 1.5 1390 65 120 75 Y802- 4 0.75 2.0 1390 80 125 75 Y90S- 2 1.5 3.4 2840 80 130 72 Ф24 Y90S- 4 1.1 2.8 1400 90 130 80 Y90L- 4 1.5 3.7 1400 120 130 80 Y90S- 6 0.75 2.3 910 100 130 86 Y90L-6 1.1 3.2 910 125 130 86 Y100L-2 3.0 6.4 2870 100 155 94 Y100L1-4 2.2 5.0 1430 105 155 98

Y100L2-4 3.0 6.8 1430 135 155 98 Ф28 型号功率 ( KW) 电流 (A) 转速 r/min 铁芯 长度 定子 外径 定子 内径 输出 轴径 Y100L-6 1.5 4.0 940 100 155 160 Y112M-2 4.0 8.2 2890 105 175 98 Y112M-4 4.0 8.8 1440 135 175 110 Y112M-6 2.2 5.6 940 110 175 120 Y132S1-2 5.5 11 2900 105 210 116 Y132S2-2 7.5 15 2900 125 210 116 Y132S-4 5.5 12 1440 115 210 136 Ф38 Y132M-4 7.5 15 1440 160 210 136 Ф38 Y132S-6 3.0 7.2 960 110 210 148 Y132M1-6 4.0 9.4 960 140 210 148 Y132M2-6 5.5 13 960 180 210 148 Y132S-8 2.2 5.8 710 110 210 148 Y132M-8 3.0 7.7 710 180 210 148 Y160M1-2 11 22 710 125 260 150 Ф42 Y160M2-2 15 29 2930 155 260 150 Ф42 Y160L-2 18.5 36 2930 155 260 150 Ф42 Y160M-4 11 23 1460 195 260 170 Ф42 Y160L-4 15 30 1460 195 260 170 Ф42 Y160M-6 7.5 17 970 145 260 180 Ф42

相关文档
最新文档