第十章三角形的有关证明复习讲义(教师版 )

第十章三角形的有关证明复习讲义(教师版 )
第十章三角形的有关证明复习讲义(教师版 )

三角形的有关证明

三角形、矩形、平行四边形约好去XX上课,三角形迟到了,其他人都在等他。这种情况被称为:全等三角形!【知识梳理】

【答案】见解析

【总结】考察了全等三角形的性质,通过性质求出相关量。

【变式训练】如图,在△ABC中,D、E分别是AC、AB上的点,在△ADE≌△BDE≌△BDC,则∠A的度数是()

A.15°B.20°C.25°D.30°

【答案】D

【解析】解:∵△ADE≌△BDE≌△BDC,

∴∠ADE=∠BDE=∠BDC,∠AED=∠BED,

又∵∠ADE+∠BDE+∠BDC=180°,∠AED+∠BED=180°,

∴∠ADE=60°,∠AED=90°

∴∠B=30°.故选D

考点二:全等三角形的判定

【例题】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

【答案】见解析

【解析】解:(1)证明:∵AE和BD相交于点O,

∴∠AOD=∠BOE.

在△AOD和△BOE中,

∠A=∠B,∴∠BEO=∠2.

又∵∠1=∠2,

∴∠1=∠BEO,

∴∠AEC=∠BED.

在△AEC和△BED中,

∴△AEC≌△BED(ASA).

(2)∵△AEC≌△BED,

∴EC=ED,∠C=∠BDE.

在△EDC中,

∵EC=ED,∠1=42°,

∴∠C=∠EDC=69°,

∴∠BDE=∠C=69°.

【总结】考察了三角形全等的条件。

【变式训练】如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D. E,AD. CE交于点H,已知EH=EB=3,AE=4,则CH的长是()

A.4B.5C.1D.2

【答案】C

【解析】解:∵AD⊥BC,CE⊥AB,

∴∠ADB=∠AEH=90°,

∵∠AHE=∠CHD,

∴∠BAD=∠BCE,

∵在△HEA和△BEC中,

∴△HEA≌△BEC(AAS),

∴AE=EC=4,

则CH=EC﹣EH=AE﹣EH=4﹣3=1.故选C

考点三:等腰三角形和等边三角形

【例题】如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.

求证:△BDE是等腰三角形.

【答案】见解析

【解析】解:(1)∵AD平分∠BAC,DE∥AC,

∴∠EAD=∠CAD,∠EDA=∠CAD,

∴∠EAD=∠EDA,

∵BD⊥AD,

∴∠EBD+∠EAD=∠BDE+∠EDA

∴∠EBD=∠BDE,

∴DE=BE,

∴△BDE是等腰三角形.

【变式训练】如图,在等边三角形ABC中,D为AC边的中点,E为BC边的延长线上一点,CE=CD,DM⊥BC于点M.下列结论错误的是()

A.BM=3CM B.BM=EM C.CM=CE D.DM=2CM

【答案】见解析

【解析】解:∵三角形ABC是等边△ABC,

∴∠ACB=∠ABC=60°,

又∵CE=CD,

∴∠E=∠CDE,

又∵∠ACB=∠E+∠CDE,

∴∠E=∠ACB=30°,

连接BD,

∵等边△ABC中,D是AC的中点,

∴∠DBC=∠ABC=×60°=30°,

∴∠DBC=∠E=30°,

∴DB=DE,

又∵DM⊥BC,

∴BM=EM,故B正确;

∵CM=CD=CE,故C正确;故D错误,

∴ME=3CM,

∴BM=3CM,故A正确;

故选:D.

考点五:直角三角形

【例题】如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;

(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;

(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.

【答案】见解析

【解析】(1)证明:∵BD⊥DE,CE⊥DE,

∴∠ADB=∠AEC=90°,

在Rt△ABD和Rt△ACE中,

∵,

∴Rt△ABD≌Rt△CAE.

∴∠DAB=∠ECA,∠DBA=∠ACE.

∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,

∴∠BAD+∠CAE=90°.

∠BAC=180°﹣(∠BAD+∠CAE)=90°.

∴AB⊥AC.

(2)AB⊥AC.理由如下:

同(1)一样可证得Rt△ABD≌Rt△ACE.

∴∠DAB=∠ECA,∠DBA=∠EAC,

∵∠CAE+∠ECA=90°,

∴∠CAE+∠BAD=90°,即∠BAC=90°,

∴AB⊥AC.

【总结】一般直角三角形的问题,都是通过直角来证明,另外会有相关几何问题结合,综合性较强。

【变式训练】如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()

A.50 B.62 C.65 D.68

【答案】A

【解析】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH?∠EAB=∠EFA=∠BGA=90°,

∠EAF+∠BAG=90°,∠ABG+∠BAG=90°?∠EAF=∠ABG,

∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG?△EFA≌△ABG

∴AF=BG,AG=EF.

同理证得△BGC≌△DHC得GC=DH,CH=BG.

故FH=FA+AG+GC+CH=3+6+4+3=16

故S=(6+4)×16﹣3×4﹣6×3=50.故选A.

考点六:垂直平分线

【例题】如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结OB,OC,若△ADE的周长为6cm,△OBC的周长为16cm.

(1)求线段BC的长;

(2)连结OA,求线段OA的长;

(3)若∠BAC=120°,求∠DAE的度数.

【答案】见解析

【解析】解:(1)∵l1是AB边的垂直平分线

∴DA=DB,

∵l2是AC边的垂直平分线,

∴EA=EC,

BC=BD+DE+EC=DA+DE+EA=6cm;

(2)∵l1是AB边的垂直平分线,

∴OA=OB,

∵l2是AC边的垂直平分线,

∴OA=OC,

∵OB+OC+BC=16cm,

∴OA=0B=OC=5cm;

(3)∵∠BAC=120°,

∴∠ABC+∠ACB=60°,

∵DA=DB,EA=EC,

∴∠BAD=∠ABC,∠EAC=∠ACB,

∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.

【变式训练】如图,在△ABC中,∠ACB=90°,D是BC的延长线上一点,EH是BD的垂直平分线,DE交AC 于F,求证:E在AF的垂直平分线上.

【答案】见解析

【解析】证明:∵EH垂直平分BD,

∴BE=DE,

∴∠BEH=∠DEH,

∵∠ACB=90°,

∴EH∥AC,

∴∠BEH=∠BAC,∠DEH=∠AFE,

∴∠EAF=∠AFE,

∴AE=EF,

∴点E在AF的垂直平分线上.

考点七:角平分线

【例题】14、如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且AE=(AD+AB).问:

∠1和∠2有何关系?

【答案】见解析

【解析】略证:∠1与∠2互补.

作CF⊥AN于F(如图),

∵∠3=∠4,CE⊥AM,

∴CF=CE,∠CFA=∠CEA=90°,

Rt△ACF≌Rt△ACE,

∴AF=AE.

∵AE=(AD+AB)=(AF﹣DF+AE+EB)=AE+(BE﹣DF),

∴BE﹣DF=0,

∴BE=DF,

∴△DFC≌△BEC(SAS),

∴∠5=∠2,

∵∠1+∠5=180°,

∴∠1+∠2=180°;

1.如图,∠C=∠D,DE=EC,则以下说法错误的是().

A. AD=BC

B. OA=AC

C. ∠OAD=∠OBC

D. △OAD≌△OBC 【答案】B

【解析】∵∠D=∠C,DE=CE,∠BED=∠AEC,

∴△BDE≌△ACE,

∴BE=AE,

∴BE+CE=AE+DE,即BC=AD,

又∵∠O=∠O,

∴△ADO≌△BCO,

∴∠OAD=∠OBC.

由上述证明可知,四个选项中,A、C、D中的结论是成立的,但B中的结论不一定成立.故选B.

2. 如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C 分别在线段BE,BD的中垂线上,则∠ADC的度数为()

A. 75°

B. 65°

C. 63°

D. 61°

【答案】B

【解析】∵点A,C分别在线段BE,BD的中垂线上,

∴AE=AB,BC=DC.

∵∠A=58°,∠C=100°,

∴∠ABE=18058

2

?-?

=61°,∠CBD=

180100

2

?-?

=40°.

∵∠EBD=36°,

∴∠ABC=∠ABE+∠EBD+∠CBD=61°+36°+40°=137°,

∴∠ADC=360°-∠A-∠C-∠ABC=360°-58°-100°-137°=65°.故选B.

3、已知:如图,△ABC中,∠ABC=60°,∠ACB=80°,延长CB至D,使BD=BA,延长BC至E,使CE=CA,连结AD、AE,则∠DAE的度数是()

A.90° B.100°C.110°D.120°

【答案】C

全等三角形中等腰三角形证明题专训

全等三角形、等腰三角形 1、已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC .,求证:BD =CE . 2、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点, BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 4、如图:AE=BD ,AB=DE ,求证:∠A=∠D 5、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .试问DE ,AD ,BE 具有怎样的等量关系?并加以证明. 6、已知:如图,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作等边三角形 △ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:CP=CQ . 7、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。求证:∠C=∠F 。 A B C D E F A B C D E F

9、如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB ,求∠A 的度数。 10、如图,在Rt △ABC 中,在斜边AB 上截取AE=AC ,BD=BC ,求∠DCE 的度数。 11、在△ABC 中,∠A =90°,AB=AC ,D 为BC 的中点. (1)如图1,E ,F 分别是AB ,AC 上的点,且BE=AF ,求证:△DEF 为等腰直角三角形;(2)如图2,若E ,F 分别是AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,?那么△DEF 是否仍为等腰直角三角形?证明你的结论. 12、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE⊥DF,交AB 于点E ,连结EG 、EF.(1)求证:BG =CF. (2)请你判断BE+CF 与EF 的大小关系,并说明理由. 13、如图,已知∠BAC=90o,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,求证:FM=FD 。 图1 图2 F E D C B A G C B

等腰三角形计算和证明题集锦(全)

一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180°AD、BC的延长线交于点F,DC、AB的延长线交于点E,∠E、∠F的平分线交于点H 求证:EH⊥FH

等腰三角形的证明习题及答案

M E D C B A 等腰三角形 一、选择题 1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33 (C )34 (D )36 2. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CD BC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个 3. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形 的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 二、填空题 1. 边长为6cm 的等边三角形中,其一边上高的长度为________. 2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 . 4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80o ,则∠EGC 的度数为 5. 如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6, 则AD=_______. 6.如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

与等腰三角形有关的证明题

与等腰三角形有关的证明题 例1.如图,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE,DE交BC于F。 求证:DF=EF 分析:要证DF=EF,只需设法证明DF与EF所在的三角形全等, 但由于DF所在的△DFB比EF所在的△EFC显然大,故应考虑添加 辅助线。 作DG∥AC,交BC于G,则∠DGB=∠ACB 从而∠DGF=∠ECF(等角的补角相等) 由AB=AC,得∠B=∠ACB 从而∠DGB=∠B,DG=BD=CE 在△DFG与△EFC中,∠DGF=∠ECF,∠DFG=∠EFC(对顶角相等) 故∠GDF=∠FEC 又DG=CE,所以△DFG≌△EFC 所以DF=EF 例2.如图,等腰△ABC中,AB=AC,D是BC上任一点,DE⊥AB于E, DF⊥AC于F。 求证:为定值。 分析:所谓定值是指不论点D在底边BC的何处,DE+DF的大小总是 等于已知的或隐含的某条线段的长,也就是说定值是一个常量。那么本题的 定值究竟是多少呢?我们可以考虑点D所在的特殊位置,当点D与点B重 合时,DE的长度为0,DF等于AC边上的高,可见,(DE+DF)的定值是腰上的高,因此,作△ABC的高BG,然后只需证明DE+DF=BG即可。 要证,可在BG上截取GH=DF,然后只需证BH=DE。连接DH,则只需证明△BDE≌△DBH。易知四边形DFGH是矩形,从而DH∥AC,∠BDH=∠C,∠BHD=∠DHG=90°=∠BED。又AB=AC,∠EBD=∠ABC=∠C,所以∠BDH=∠EBD。所以∠EDB=∠DBH。又BD为公共边,所以△BDE≌△DBH。 如果注意到高,联想到三角形面积,则 可采用如下简单的证法: 连接AD 则由,得: 又AB=AC 边上的高=定值

相似三角形的判定及证明技巧讲义

- 1 - / 4 相似三角形(三) 知识点(一):相似三角形的证明技巧 1.相似三角形的基本图形 2.相似三角形判定定理(3条) 3.相似三角形的具体解题方法 1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE?AB=AC?AF.(判断“横定”还是“竖定”?) 例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DE·DF。

A D E F B C

2.过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. (1)等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的 延长线于E.求证:DE2=BE·CE. - 2 - / 4 (2)等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代

北师大版三角形的证明(全章节复习题)

等腰三角形(基础)知识讲解 【学习目标】 1.了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性; 2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图. 3.理解并掌握等腰三角形、等边三角形的判定方法及其证明过程.通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力. 4. 理解反证法并能用反证法推理证明简单几何题. 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线.

(4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝 角(或直角).∠A=180°-2∠B,∠B=∠C=180 2 A ?-∠ . (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。 (2)等腰三角形两底边上的中点到两腰的距离相等. (3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等. (4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等. 要点三、等腰三角形的判定定理 1.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边. 要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. 2.等边三角形的判定定理 三个角相等的三角形是等边三角形. 有一个角是60°的等腰三角形是等边三角形. 3. 含有30°角的直角三角形

等腰三角形及全等三角形的中难题证明

1、(1)如图表示长方形纸片ABCD沿对角线BD进行折叠后的情况,图中有没有关于某条直线对称的图形?如图,请作出对称轴;图中是否有相等的线段、相等的角(不含直角)?如有,请写出相等的线段、相等的角; (2)在(1)中,连接AC,那么AC与BD平行吗?为什么? 2、如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,BD=DF。证明: (1)CF=EB;(2)AB=AF+2EB. 3、在Rt三角形中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直于线段AB。 (1)试找出图中相等的线段,并加以证明; (2)若DE=1cm,BD=2cm.

4、如图,在Rt△ABC中,AD是∠BAC的平分线,DF⊥AC于点F,且DE=DC.试比较BE 和FC的大小关系并说明理由。 5、已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数。 6、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA。 (1)DE平分∠BDC吗?为什么? (2)若点M在DE上,且DC=DM,那么ME与BD相等吗?请证明你的结论. 7、如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A 运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是。

8、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F. (1)求证:DE=EF; (2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC. 9、如图,在△ABC中,AE平分∠BAC,BE⊥AE,∠ABE=2∠C. 求证:AC-AB=2BE. 10、如图,D为等边△ABC内一点,且DB=DA,BP=BA,∠DBP=∠DBC,求∠BPD的大小.

三角形的证明讲义

小巨人学科教师辅导讲义

D C B A F E 121、等腰三角形的两边分别是7 cm 和3 cm ,则周长为 ____ 。 2、如图在△ABC 中,AB = AC ,AD ⊥AC ,∠BAC = 100°。求:∠1、∠B 的度数。 3、如图,已知∠D =∠C ,∠A =∠B ,且AE = BF 。求证:AD = BC 。 4、如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠ C = 29°,求∠A 。 5.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,且DE ⊥AB ,DF ⊥ AC 。 求证:∠1 =∠2。 总结一下: 1、等腰三角形性质定理: (简称“等边对等角”); 2、推论(三线合一): 第二篇章 1、 如图,E 是△ABC 内的一点,AB = AC ,连接AE 、BE 、CE ,且BE = CE ,延长AE ,交BC 边于点D 。求证:AD ⊥BC 。 2、已知:如图,点D,E 在三角形ABC 的边BC 上,AD=AE,AB=AC,求证:BD=CE 3、已知:如图,在△ABC 中,∠B=∠C,求证:AB=AC (提示:构造两个全等三角形证明) 归纳:1、有两个角相等的三角形是______三角形。(简称“等角对等边”) 推理格式:∵∠B=∠C,∴___________(等角对等边) 2、反证法证明问题的一般步骤: 从结论的 _ 出发,先假设命题的结论 __ ,然后推出与定义、公理、已证定理或已知条件相 __ 的结果,从而证明命题的结论一定成立。这种证明方法称为 ____ 。 1、用反证法证明:在一个三角形中,至少有一个内角小于或等于60°。 2.如图,在△ABC 中,AB = AC ,DE ∥BC ,求证:△ADE 是等腰三角形。 321A B C D A B C D E F D C B A C B A E A B C D

第一章三角形的证明复习资料

精品文档 《第1章三角形的证明》复习资料 知识点: 一、全等三角形的判定及性质 性质:全等三角形对应角相等、对应边相等 判定:①判定一般三角形全等:(SSS、SAS、ASA、AAS). ②判定直角三角形全等独有的方法:有斜边和一条直角边对应相等的两个直角三角形全等,即HL 二. 等腰三角形 性质:等腰三角形的两个底角相等(等边对等角). 判定:有两个角相等的三角形是等腰三角形(等角对等边). 推论:等腰三角形顶角平分线、底边中线、底边上的高互相重合(即“三线合 一”). 等边三角形的性质及判定定理 性质:等边三角形的三个角都相等,每个角都等于 60°;等边三角形是轴对图形,有 3 条对称轴. 判定:(1)有一个角是60°的等腰三角形是等边三角形;(2)三个角都相等的三角形是等边三角形. 三.直角三角形 1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 222a?bc。tp://w ww.xk =、b、c,则如果直角三角形的两直角边长和斜边分别为为a222a?bc,那么这个=a、b、c满足关系勾股定理的逆定理:如果三角形的三边长三角形是直角三角形。常见的勾股数有:(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17 2.含30°的直角三角形的边的性质 在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半. 3.直角三角形斜边上的中线等于斜边的一半。 四. 线段的垂直平分线 性质:线段垂直平分线上的点到线段两端点的距离相等. 精品文档. 精品文档 . 垂直平分线上判定:到一条线段两个端点距离相等的点在这条线段的 . 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等角平分线五. 的距离相等;角两边性质:角平分线上的点到 . 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

等腰三角形证明专题(汇编)

《等腰三角形》练习题 1、如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠AED=_______________ 2、如图,在直角三角形ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=___________ 3、如图,点D是△ABC的边BC上一点,且AB=AC,AD=AE,∠BAD=30°,则∠EDC=__________ 4、如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数. 5、已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明. 6、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE. (1)求证:△DEF是等腰三角形; (2)当∠A=50°时,求∠DEF的度数.

7、如图,已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数. 8、已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC. 9、如图,D是△ABC中∠ABC和∠ACB的平分线交点,过D作与BC平行的直线,分别交AB、AC于E、F,求证:EB+FC=EF. 10、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.

《等边三角形》练习题 1、已知,等边三角形ABC,D是AB上一点,DE⊥BC,垂足为E,EF⊥AC,垂足为F,FD⊥AB.求证:△DEF为等边三角形的理由; 2、已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形. 3、如图,A、B、C三点在同一直线上,△ABM和△BCN是正三角形,P是AN中点,Q 是CM中点.求证:△BPQ是正三角形.

相似三角形详细讲义

知识梳理 相似三角形的概念 对应角相等,对应边成比例的三角形,叫做相似三角形. 相似用符号“∽”表示,读作“相似于”. 相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 注意: ①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易 找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对 应边成比例. 相似三角形的基本定理 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原 三角形相似. 定理的基本图形: 用数学语言表述是:

BC DE // , ADE ∽ABC . 相似三角形的等价关系 (1)反身性:对于任一ABC 有ABC ∽ABC . (2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC . (3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法 1、定义法:对应角相等,对应边成比例的两个三角形相似. 2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似. 3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似. 4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似) 6、判定直角三角形相似的方法: (1)以上各种判定均适用. (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. (3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式 如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下: (1)(AD )2=BD ·DC , (2)(AB )2=BD ·BC , (3)(AC )2=CD ·BC 。 证明:在 △BAD 与△ACD 中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC ,又∵∠ BDA=∠ADC=90°,∴△BAD ∽△ACD 相似,∴ AD/BD =CD/AD ,即 (AD )2=BD ·DC 。其余类似可证。 注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得: (AB )2+(AC )2=BD ·BC+CD ·BC =(BD+CD)·BC=(BC )2, 即 (AB )2+(AC )2=(BC )2。 这就是勾股定理的结论。 判断相似三角形的几条思路: 1 条件中若有平行线,可采用相似三角形的基本定理 2 条件中如果有一对等角,可再找一对等角(用判定1)或再找夹边成比例。(用判定2)3条件中若有两边对应成比例,可找夹角相等(直角可以直接得出相似)4条件中若有一对直角,可考虑在找一对等角或证明斜边,直角边对应成比例。5条件中若

等腰三角形证明以及辅助线做法

巧用“两线合一”构建且证明等腰三角形问题 学习了等腰三角形的三线合一后,笔者认为,可以根据学生的实际情况,补充“三线合一”的逆命题的教学,因为这种逆命题虽然不能作为定理用,但它在解题中非常常见的。掌握了它,可以为我们解题增加一种重要思路。它有以下几种形式: ①一边上的高与这边上的中线重合的三角形是等腰三角形.(线段垂直平分线的性质) ②一边上的高与这边所对角的平分线重合的三角形是等腰三角形. ③一边上的中线与这边所对角的平分线重合的三角形是等腰三角形. 因此,三角形“一边上的高、这边上的中线及这边所对角的平分线”三线中“两线合一”就能证明它是等腰三角形. 为了便于记忆,笔者简言之:两线合一,必等腰。 本文重点利用该逆命题作为一种思路正确地添加辅助线,构建等腰三角形且证明之来解决问题。 一、我们先来证明“三线合一”性质的逆命题三种情形的正确性: 证明①:已知:如图1,△ABC中,AD是BC边上的中线,又是BC边上的高。 求证:△ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,利用线段垂直平分线的性质,可以推出AB=AC,所以△ABC是等腰三角形。具体证明过程略。 证明②:已知:如图1,△ABC中,AD是∠BAC的角平分线,AD是BC边上的高。 求证:△ABC是等腰三角形。 分析:利用ASA的方法来证明△ABD≌△ACD,由此推出AB=AC得出△ABC是等腰三角形。具体证明过程略。 证明③:已知:如图2,△ABC中,AD是∠BAC的角平分线, AD是BC边上的中线。 求证:△ABC是等腰三角形。 方法一: 分析:要证△ABC是等腰三角形就是要证AB=AC,直接通过证明这两条线段所在的三角形全等不行,那就换种思路,经验告诉我们,在有中点的几何证明题中常用的添辅助线的方法是“倍长中线法”(即通过延长三角形的中线使之加倍,以便构造出全等三角形来解决问题的方法),即延长AD到E点,使DE=AD,由此问题就解决了。 证明:如图2,延长AD到E点,使DE=AD,连接BE

北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义

北师版八年级数学下册第一章三角形的证明易 错题进阶辅导讲义 北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义1 【第一阶梯】 【专题一】等腰三角形的内角 题目 1.(2021秋?农安县期末)等腰三角形的一个角是50°,则它的底角是() A.50° B.50°或65° C.80° D.65° 2.(2021秋?平南县期末)等腰三角形的一个角为50°,则它的底角为() A.50° B.65° C.50°或65° D.80° 3.(2021秋?昆山市校级期末)已知等腰三角形的一个外角等于100°,则它的顶角是() A.80° B.20° C.80°或20° D.不能确定 4.(2021秋?连城县期末)等腰三角形的一个角为40°,则它的顶角为.【专题二】等腰三角形的边的 题目

5.(2021秋?太仓市期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是() A.7cm B.9cm C.9cm或12cm D.12cm 6.(2021秋?顺义区期末)若等腰三角形的两边长分别为4和9,则它的周长为() A.22 B.17 C.13 D.17或22 7.(2021春?洛宁县期末)等腰三角形两边长分别为5和7,则它的周长是() A.19 B.11 C.17 D.17或19 8.(2021秋?余干县期末)如果等腰三角形两边长是9cm和4cm,那么它的周长是() A.17cm B.22cm C.17或22cm D.无法确定 9.(2021春?道里区期末)如果等腰三角形两边长是8cm和4cm,那么它的周长是() A.20cm B.16cm C.20cm或16cm D.12cm 10.(2021秋?如东县期末)已知等腰三角形的一边长为3,另一边长为2,则它的周长等于() A.8 B.7 C.8或5 D.8或7

等腰三角形计算和证明题集锦全.docx

等腰三角形计算和证明题集锦 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

等腰三角形计算和证明题集锦11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点, 且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上 的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180° AD、BC的延长线交于点F,DC、AB的延长线交于点 E,∠E、∠F的平分线交于点H 求证:EH⊥FH

初二三角形的证明培优同步讲义

学科教师辅导讲义 体系搭建 一、知识梳理 1、等腰三角形的性质定理 (1)两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS) (2)等腰三角形的两底角相等。即等边对等角。 (3)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。即三线合一。 (4)等边三角形的三个内角都相等,并且每个角都等于60°。 2、等腰三角形的判定定理

(1)有两条边相等的三角形是等腰三角形。 (2)有两个角相等的三角形是等腰三角形。即等角对等边。 (3)三个角都相等的三角形是等边三角形。 (4)有一个角等于60°的等腰三角形是等边三角形。 3、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。 4、直角三角形的性质和判定方法 定理:直角三角形的两个锐角互余。 定理:有两个角互余的三角形是直角三角形。 5、勾股定理:勾股定理:直角三角形两条直角边的平方和等于斜边的平方。 6、勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 7、逆命题、逆定理 互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。 互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。 8、斜边、直角边定理 定理:斜边和一条直角边分别相等的两个直角三角形全等。简述为“斜边、直角边定理”或“HL”定理。 9、线段垂直平分线的性质定理:定理:线段垂直平分线上的点到这条线段两个端点的距离相等。 10、线段垂直平分线性质定理的逆定理(判定定理) 定理:到一条线段的两个端点距离相等的点,在这条线段的垂直平分线上。 11、三角形三条边的垂直平分线的性质 性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个定点的距离相等。 12、角平分线的性质定理:定理:角平分线上的点到这个角的两边的距离相等。 13、角平分线性质定理的逆定理(判定定理):定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上。 14、三角形三内角的角平分线性质:性质:三角形的三条角平分线交于一点,并且这一点到三边的距离相等。

人教版八年级上册全等三角形证明过程训练(讲义及答案)

全等三角形证明过程训练(讲义) ? 课前预习 1. 判定三角形全等的方法有______,______,______,______. 要证三角形全等需要找_____组条件,其中必须有_____. 2. 在做几何题时,我们往往借助对图形的标注来梳理信息,进而把条件直观化, 请学习下图中的标注. ①如图1,在四边形ABCD 中,AB ∥CD ,AD ∥BC . ②如图2,在四边形ABCD 中,连接BD ,∠ABD =∠CDB ,∠ADB =∠CBD ,∠A =∠C . ③如图3,在四边形ABCD 中,连接AC ,BD 相交于点O ,AO =OC ,BO =DO . D C B A × ×A B C D O A B C D 图1 图2 图3 3. 数学推理中,有理有据地思考和表达是一项基本的数学素养,请走通思路后, 完整书写过程. 如图是一个易拉罐的纵截面示意图,易拉罐的上下底面互相平行(AB ∥CD ),用吸管吸饮料时,若∠1=110°,求∠2的度数. 321 D C B A

? 知识点睛 1. 直角三角形全等的判定定理:_________________________. 2. 已知:如图,在△ABC 与△A′B′C′中,∠C =∠C′=90°,AB =A′B′,AC =A′C′. 求证:△ABC ≌△A′B′C′. C' B'A' C B A 证明:如图, 在Rt △ABC 和Rt △A′B′C′中 AB A'B' AC A'C' =?? =?(已知)(已知) ∴Rt △ABC ≌Rt △A′B′C′(HL ) ? 精讲精练 1. 如图,AC =AD ,∠C ,∠D 是直角,将上述条件标注在图中,则___________ ≌___________,从而BC ________BD .

专题16等腰三角形的性质[002]

专题16 等腰三角形的性质 例1 45° 例2 提示:过点A作∠A的平分线BD交于G,先证明△ABG≌△ACF,再证明△AGD≌△CFFD 例3 提示:延长BC,AE交于一点.、 例4 提示:如图,作BD⊥AC于D,则∠OCD=∠OAD=30°,∴∠BA0=44°-30°=14°,∠MAO=∠OAC-∠MAC=14°,∴∠BAO=∠MAO,又∵∠AOD=∠COD=90°-30°=60°,∴∠AOB=∠AOM=120°,∴OB=OM.又∵AO=AO,∴△AOB≌△AOM 又∵∠BOM=120°,∴∠OMB=30°,故∠BMC=180°-∠OMB=150°. 例5 如图,在AC延长线上截取CM1=BM,由Rt△BDM≌Rt△CDM1,得MD=M1D,∠MDB= ∠M1DC.∴∠MDM1=120°-∠MDB+∠M1DC=120°,又∠MDN=60°,∴∠NDM1=60°,∵MD=MD1,∠MDN=∠NDM1=60°,DN=DN,∴△MDN≌△M1DN,得MN=NM1,故△AMN周长:AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2. 例6 解法1 如图a,作△ABD关于AD的轴对称图形△ADC,则∠EAD=21°,AE=AB,∴DE=BD,又∠ADC=21°+46°=67°,故∠ADE=∠ADB=180°-67°=113°,∠CDE=113°-67°=56°,连CE,可证△CDE≌△ABD≌△AED,∠ODE=∠OED=46°,得OD=OE,又DC=AE,则AO=CO,∠OCA=∠OAC,∠COE=2∠ACO,∠COE=2×46°=92°=2∠ACO.从而∠ACO=46°=∠OAC,∴∠DAE+∠EAC=67°. 解法2 如图b,过A点作AE∥BC.过D作DE∥AB,连接EC.

巧用等腰三角形性质证明

巧用等腰三角形性质证明 等腰三角形是一种特殊的三角形,也是常见的一种基本图形。它除具有三角形的一切性质外,还有其特殊性质,这就是 1.等腰三角形的两个底角相等; 2.等腰三角形的顶角平分线、底边上的高、底边上的中线相互重合。 灵活巧用这些性质,可帮我们迅捷地证明一些几何问题。 例1如图1,AE是△ABC外角∠DAC的平分线,且AB=AC。求证:AE∥BC。 证明:∵AB=AC, ∴∠B=∠C。 ∴∠DAC=∠B+∠C=2∠B。 ∵AE平分∠DAC, ∴∠DAC=2∠1。 ∴2∠B=2∠1,∠B=∠1。 ∴AE∥BC。 F B B C C D 图1图2 例2如图2,AD是△ABC的角平分线,DE、DF分别是△ABD、△ACD 的高,连EF交AD于G。求证:EG=FG,AD⊥EF。 证明:∵DE、DF分别是△ABD、△ACD的高, ∴∠DEA=∠DFA=90°。 ∵∠1=∠2,AD=AD, ∴△ADE≌△ADF(AAS)。 ∴AE=AF。 ∵AD是△ABC的角平分线,

∴ AG 是等腰三角形△AEF 的顶角平分线。 ∴ AG 是等腰三角形△AEF 的底边上的高和底边上的中线。 ∴ EG =FG ,AD ⊥EF 。 例3 如图3,AB =AC ,D 是AB 上一点,延长CA 到E ,使AE =AD 。求证:ED ⊥BC 。 证明:过A 作AF ⊥BC 于F 。 ∵ AB =AC ,AF ⊥BC 于F , ∴ AF 是等腰△ABC 的底边上的高。 ∴ AF 是等腰△ABC 的顶角平分线。 ∴ ∠BAC =2∠1。 ∵ AE =AD , ∴ ∠2=∠E 。 ∴ ∠BAC =∠E +∠2=2∠2。 ∴ ∠1=∠2,ED ∥AF 。 ∴ ED ⊥BC 。 E B F B C C D 图3 图4 例4 如图4,△ABC 中,AD ⊥BC 于D ,AB +BD =DC 。求证:∠B =2∠C 。 证明:在DC 上截取ED =BD ,连AE 。 ∵ ∠ADE =∠ADB =90°,AD =AD, ∴ △ADE ≌△ADB (SAS )。 ∴ ∠1=∠B ,AE =AB 。 ∵ AB +BD =DC , CE +ED =DC , ∴ AB =CE 。 ∴ AE =CE ,∠2=∠C 。

相关文档
最新文档