流化床工作原理

流化床工作原理
流化床工作原理

流化床工作原理

工作原理:

物料自进料口进入机内,在振动力作用下,物料沿水平流化床抛掷,向前连续运动,热风向上穿过流化床同湿物料换热后,湿空气经旋风分离器除尘后由排风口排出,干燥物料由排料口排出。

应用领域:

◆ 医药化工:各种压片颗粒、硼酸、硼砂、苯二酚、苹果酸、马来酸等。

◆ 食品建材:酒槽、味精、砂糖、食盐、矿渣、豆瓣、种籽等。

◆ 还可用于物料的冷却、增湿等。

特点:

●物料受热均匀,热交换充分,干燥强度高,比普通干燥机节能30%左右。

●振动源是采用振动电机驱动,运转平稳、维修方便、噪音低、寿命长。

●流态化稳,无死角和吹穿现象。

●可调性好,适应面宽,料层厚度和在机内移动速度以振幅变更均可实现无级调节。

●对物料表面损伤小,可用于易碎物的干燥,物颗粒不规则时亦不影响工作效果。

●采用全封闭式的结构,有效的防止了物料与空气间的交叉污染,作业环境清洁。结构示意图:

作者:热风循环烘箱https://www.360docs.net/doc/c513896202.html,

好氧生物流化床设计方案

好氧生物流化床技术研究 生物流化床技术是70年代初发展起来的污水处理的新兴技术,根据反应器内是否需氧,可将其分为厌氧生物流化床和好氧生物流化床。好氧生物流化床是将传统活性污泥法与生物膜法有机结合并引入化工流态化技术的一种新型生化污水处理装置。由于它具有处理效率高、容积负荷大、抗冲击能力强、设备紧凑、占地少等优点,因而引起了环境工程界的极大兴趣和广泛研究,被认为是最具发展前途的生物处理工艺之一。目前研究和应用最普遍的是好氧生物流化床,因此本文将主要介绍和讨论好氧生物流化床。 1. 好氧生物流化床特点 1.1 比表面积大 由于采用了小粒径固体作为载体并且载体呈流化状态,提供了巨大的表面积,因此流化床的比表面积比一般生物膜法大得多,几种生物膜法比表面积见表1[1]。比表面积大是生物流化床具有高负荷、高去除率的根本原因。 表1 几种生物膜法比表面积 处理工艺比表面积(m2/m3) 普通生物滤池40-120 生物转盘120-180 接触氧化130-1600 好氧生物流化床3000-5000 1.2 容积负荷率与污泥负荷率高 由于生物流化床的容积负荷率α值是普通活性污泥法的13倍以上,阶段曝气池的10倍以上,生物滤池的38倍以上[2],因此在相同进水浓度下,采用生物流化床处理污水,可以使反应装置的容积大量减小,从而显著地降低占地面积及工程投资。 表2 不同处理工艺的α,β值比较[2] 工艺名称α(kgBOD/m?d)β(kgBOD/kgVSS?d) 普通活性污泥法0.264-0.720 0.216-0.456 阶段曝气法0.360-1.272 0.192-0.360

生物滤池0.090-0.360 -- 好氧生物流化床 3.635-9.192 0.204-4.320 1.3 耐冲击负荷能力强 由于生物流化床采用填料载体微生物膜与活性污泥双重作用,其生物量非常大,载体与混合污泥的流化状态提高了有机物和氧气的传质效果并保持流化床内良好的混台流态,使废水一旦进入,就能很快得到混合、稀释,从而对负荷突然变化的影响起到缓冲作用,这是普通活性污泥法和生物膜法所不及之处。 2. 好氧生物流化床的研究与应用进展 2.1 外循环好氧生物流化床 外循好氧生物环流化床(如图1)的底部由气体分布器和液体分布器组成,气、液、固三相混合物向上流动。在给定气速下,液体速度超过一定值,颗粒被夹带到流化床顶部的分布器。在此,气体自动溢出,液固混合物经分离器分离后,液体流回到储水槽,固体颗粒进人到颗粒储料罐。反应器的流化受水流和气体流速的控制。 焦伟堂[3]等人运用外循环好氧生物流化床处理污水,结果显示,在水利停留时间为3h时,反应器的CODcr和NH3-N的去除率分别达91%和96.6%。

锅炉的工作原理及工作特性

仅供参考[整理] 安全管理文书 锅炉的工作原理及工作特性 日期:__________________ 单位:__________________ 第1 页共4 页

锅炉的工作原理及工作特性 锅炉由锅和炉以及相配套的附件、自控装置、附属设备组成。锅是指锅炉接受热量,并将热量传给水的受热面系统,是锅炉中储存或输送锅水或蒸汽的密闭受压部分。锅主要包括:锅筒(或锅壳)、水冷壁、过热器、再热器、省煤器、对流管束及集箱等。炉是指燃料燃烧产生高温烟气,将化学能转化为热能的空间和烟气流通的通道炉膛和烟道。炉主要包括:燃烧设备和炉墙等。 2)工作特性 (1)爆炸的危害性。锅炉具有爆炸性。锅炉在使用中发生破裂,使内部压力瞬时降至等于外界大气压的现象叫爆炸。 (2)易于损坏性。锅炉由于长周期运行在高温高压的恶劣工况下,因而经常受到局部损坏,如不能及时发现处理,会进一步导致重要部件和整个系统的全面受损。 (3)使用的广泛性。由于锅炉为整个社会生产、生活提供能源和动力,因而其应用范围极其广泛。 (4)连续运行性。锅炉一旦投用,一般要求连续运行,不能任意停用;否则,会影响一条生产线、一个厂,甚至一个地区的生活和生产,其间接经济损失巨大,有时还会造成恶劣的后果。 3)锅炉的分类 (1)按用途分为:电站锅炉、工业锅炉、生活锅炉、机车锅炉,船舶锅炉等。 (2)按锅炉产生的蒸汽压力和蒸发量分为:高压锅炉、中压锅炉、低压锅炉及大型、中型、小型锅炉。工业锅炉一般是小型低压锅炉,电站锅炉一般为大中型、中高压锅炉。 第 2 页共 4 页

(3)按载热介质分为:蒸汽锅炉、热水锅炉和有机热载体锅炉。 (4)按热能来源分为:燃煤锅炉、燃油锅炉、燃气锅炉、废热锅炉。 (5)按锅炉结构分为:锅壳式锅炉、水管锅炉。 (6)在燃煤锅炉中按燃烧方式分为:层燃炉、沸腾炉、煤粉炉(室燃炉)。层燃炉又分手烧炉、链条炉、往复炉、抛煤机炉、振动炉排炉。 (7)按蒸发段工质循环动力分为:自然循环锅炉、强制循环锅炉和直流锅炉。 第 3 页共 4 页

详解热水锅炉的主要组成部分以及运行工作过程

详解热水锅炉的主要组成部分以及运行工作过程 本文转自河南太康银晨锅炉厂 热水锅炉的构成以及工作过程: 热水锅炉有主要部件和辅助设备两大部分组成。大型热水锅炉的主要部件有; 1,炉膛:保证燃料燃尽,并以辐射换热的方式使高温烟气冷却至一定的温度后流出炉膛。 2.燃烧设备:将燃料和热水所需空气送入炉膛,并保证燃料温度着火,燃烧完全。 3,锅筒:储存热水的容器,并于受热面管件及下降管等组成水循环回路。 4,水冷壁:是热水锅炉的辐射受热面,吸收炉膛内高温烟气的辐射热,加热工质,并起到包含炉墙的作用。5,对流管束:是热水锅炉的主要对流受热面,与流出炉膛的热烟气进行对流热交换,以此来加热工质。 6,省煤器:是利用热水锅炉尾部烟气的热量加热回水,以降低排烟温度,提高锅炉的热效率。 7,空气预热器:利用锅炉尾部烟气的热力来加热燃烧用的空气,有利于燃料的着火和燃烧,并能有效的减少热损失。 8,炉墙构架:炉墙度锅炉起着密封和保护的作用。构架就是支撑和固定锅炉各个部件并保持其相对位置的机构件。 大型热水锅炉的辅助设备主要有: 1,燃料供应系统:储存和运输燃料,供给锅炉燃烧。例如卧式链条燃煤热水锅炉的上煤机,燃油热水锅炉的重油轻油燃烧机,燃气热水锅炉的天然气、煤气燃烧器等都属于锅炉的燃料供应系统。

2,制粉系统:对于燃用煤粉的锅炉,依靠制粉系统将燃料磨制成煤粉,输送至锅炉燃烧。3,送风装置:依靠鼓风机将空气送入空气预热器加热后送入炉膛或者直接将空气送入炉膛与燃料混合燃烧。4,引风装置,依靠引风机和烟囱将锅炉排出的烟气送入大气; 5,热水循环系统:依靠热水循环泵把在采暖系统中冷却的回水送入锅炉再进行二次加热。6,补给水系统:把经过水处理的水送入锅炉,以补充采暖系统中水的流失。 7,除灰除渣系统:从锅炉中去除燃料燃烧后产生的灰渣。 8,除尘设备:去除锅炉排出烟气中的飞灰,减少对环境的污染。 9,安全附件:保证锅炉安全运行所需的各种附件。包括安全阀,水位计,排污装置以及报警和连锁保护装置等(压力表通常用于蒸汽锅炉)。 10.自动控制装置:自动检测、程序控制、自动调节以保证锅炉在最经济的状态下运行。 下面讲解热水锅炉的工作过程: 以卧式双锅筒热水锅炉为例子,煤自煤斗进入连续转动的链条炉排上,随着炉排由前向后移动,于此同时,煤在锅炉内被加热,着火,燃烧,直至燃尽。空气由鼓风机通过风道分仓送至炉排下部,根据煤在炉排上燃烧时的各个阶段对空气需要量的不同,各个风仓进入的空气量也不同。煤燃烧后产生的火焰以及高温烟气在炉膛内通过辐射热交换,把热量传递给炉膛周围的水冷壁,提高了水冷壁的管内额工质温度,并使烟气温度降低,随后烟气进入冷却室,与冷却室周围的水冷壁进行辐射换热。此后烟气依次冲刷第一和第二对流管束,经由除尘器,引风机和烟囱排入大气。从热用户来的回水由热水循环泵送入上锅筒,分成几个循环回路(前、左、右水冷壁及对流管束)被加热,热水由上锅筒顶部送往用热用户。 河南太康银晨锅炉有限公司是国内首批获得锅炉资质的厂家之一,并且是河南省省级定点锅炉企业。本厂生产的锅炉种类齐全,主要锅炉产品:

锅炉原理及基础知识

锅炉基础知识及锅炉结构 第一章锅炉基础知识 第一节锅炉概述 锅炉由“锅”和“炉”两个部分组成; “锅”是锅炉中盛水和汽的部分,他的作用是吸收“炉”放出来的热量,使水加热到一定的温度和压力(热水锅炉),或者转变为蒸汽(蒸气锅炉)。 “炉”是锅炉中燃烧燃料的部分,他的作用是尽量地把燃料的热能释放出来,传递给锅内介质,产生热量供“锅”吸收。 锅炉的分类方法,大体有以下几种: 1、按用途分类: 有电站锅炉,工业锅炉和生活用锅炉等; 2、按输出介质分类: 有蒸汽锅炉、热水锅炉和汽水两用锅炉等; 3、按使用燃料分类: 有燃油锅炉、燃煤锅炉和燃气锅炉等; 4、按蒸发量分类: 有 小型锅炉(蒸发量小于20吨/时) 中型锅炉(蒸发量20~75吨/时) 大型锅炉(蒸发量大于75吨)等; 5、按压力分类: 有 低压锅炉(工作压力小于等于2.5MPa) 中压锅炉(工作压力大于等于3.8MPa,小于5.3MPa) 高压锅炉(工作压力大于等于5.3MPa)等 6、按锅炉结构形式分类: 有 水管锅炉(火包水) 火管锅炉(水包火)等 第二节锅炉参数 表示锅炉工作特性的基本参数,主要有锅炉的出力、压力和温度三项。 1、锅炉出力 锅炉出力又称锅炉容量,蒸汽锅炉用蒸发量表示,热水锅炉用供热量表示。

1.1 蒸发量 蒸汽锅炉连续运行时每小时所产生蒸汽的数量。用符号“D”表示, 常用单位:吨/小时(t/h)。锅炉马力(BHP),千瓦(Kw); 1吨/时=64马力=628Kw 1.2 供热量 热水锅炉连续运行时每小时出水有效带热量,用符号Q“表示”, 常用单位:万大卡/时(104kal/h),千瓦(Kw),英热单位/时Btu/h; 1万大卡/时=0.01163 Kw=39.7英热单位/时 2、压力 垂直均匀作用在物体表面上的力,称为压力。用符号“F”表示,单位是牛顿; 垂直作用在物体单位面积上的压力,称为压强,用符号“P”表示,单位是兆帕(MPa)。在习惯上,常把压强称为压力,在工程技术上所提到的压力,实际上压强。测量压力有2种标准:一种是以压力等于0作为测量起点,称为绝对压力;另一种是以当时当地的大气压作为测量起点,也就是压力表测出的压力数值,称为表压力或相对压力。绝对压力等于表压力加上当时当地的大气压力(大气压力一般取近似值0.1MPa)。 即:P绝=P表+0.1MPa P表=P绝-0.1MPa 锅炉内的压力是怎样产生的 蒸汽锅炉是因为锅内的水吸收热量后,由液体状态变为气体状态,其体积增大很多,例如在一个绝对大气压力下,其体积将增大1650倍。由于锅炉是密闭的容器,因而限制了水汽的自由膨胀,结果就使锅炉个受压部件受到了水汽压力的作用。 热水锅炉内压力的产生分2种情况,自然循环采暖系统的热水锅炉,其压力来自于高水位形成的静压力;强制循环采暖系统的热水锅炉,其压力来自于循环泵的压力。 锅炉产品铭牌上标示的压力,是这台锅炉的设计工作压力,单位是MPa(表压力)。表示锅炉内部水或汽的最大允许压力值。 锅炉设计工作压力又称为额定出口压力。对有过热蒸汽的锅炉,是指过热器出口处的蒸汽压力;对无过热器的蒸汽锅炉,是指锅筒主汽阀出口处的蒸汽压力,对热水锅炉,是指锅炉出口出的水压力。 3、温度 标志物体冷热的程度,称为温度,用符号“t”表示。温度是物体内部所拥有能量的一种体现方式,温度越高,能量越大。因此,在同一压力下,过热蒸汽就比饱和蒸汽能够做出更多的功。 要了解物体温度的高低,需用温度计来测量。温度计上的刻度常用摄氏温标来表示,即在一个标准大气压下,把水开始结冰的温度(冰点)定为零度,把水沸腾时的温度(沸点)

生物流化床知识总结

生物流化床 一、简述 生物流化床,也简称MBBR,也称移动床生物膜反应器。因其兼有生物接触氧化法和传统的流化床技术的优点而得名。MBBR工艺原理是:通过向反应器中投加一定数量的悬浮载体,采用机械搅拌、曝气或者回流水作为动力,使流体内的载体流化,载体上附着大量微生物,这样微生物与水中的营养物质就能充分接触,从而达到高效率的去除的效果。生物流化床工艺有两大技术点:反应器,填料。 二、生物流化床反应器 MBBR根据生物膜特性可分为好氧和厌氧两大类;按循环方式分为内循环和外循环;按床内物相分为两相和三相。 1、厌氧生物流化床(AFB) 厌氧生物流化床(AFB)与UASB同属于第二代厌氧反应器,依靠载体表面形成的生物膜来保留厌氧污泥,提高反应器内的生物量。反应器内载体呈流化状态,可以有效避免滤料堵塞。载体的流化状态可采用两种方式维持:①机械搅拌;②通过回流提高废水的上升流速。缺点:①维持载体流化的能耗较大;②系统的设计及运行要求较高。 厌氧生物流化床工艺图 2、好氧生物流化床——内循环式三相生物流化床 关于好氧生物流化床目前开发和应用较多的是带导流筒的三相生物流化床反应器,也称内循环式三相生物流化床。为规范其应用,环保部已经制定了内循环好氧

生物流化床污水处理工程技术规范(HJ 2021-2012)。 三相生物流化床工艺流程图 表1 内循环好氧生物流化床处理工艺的污染物去除率 3、曝气生物流化池 在固定床的基础上改变而来,所选用的固定微生物的载体平均密度与水十分接近,载体在水中呈悬浮状态。该成果列入2002年国家重大科技成果推广计划、2002年国家技术创新计划。 适用范围:炼油、化工、煤化工、印染、酿造波革和造纸等高浓度有机废水(合高中浓度有机物、氨氮、硫化物等污染物和城市生活污水处理、旧城市与工业污水厂出水水质不达标的改造以及河湖微污染水体的就地修复。

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

燃气锅炉的工作原理

燃气锅炉的工作原理 锅炉是一种供暖、提供工业用途的特种设备。在家用供暖方面,主要有提供热水和蒸汽两种,例如家用生活热水、洗浴用水。工业主要提供蒸汽为其他设备提供制冷、动力等服务,例如船舶、机车、矿场等场所。锅炉工作原理比较复杂,主要有燃料系统、烟风系统、汽水系统等构成。不同类型的锅炉其工作原理也是不同的。 下面就为您介绍燃气锅炉的工作原理。 图1-1给出了燃气锅炉系统的原理图。水通过进水口进入锅炉,经过锅炉加热后的符合供热标准的水质通过循环水泵送入室内散热器,通过辐射和对流换热来供暖。流过散热器的水重新回到锅炉里面进行加热,然后重新流入散热器,如此循环往复的进行。用户还可以根据供热范围的大小,选择合适的循环水泵,比较经济方便。而且锅炉系统还可以供给用户热水,满足用户基本的热水需求,损失的水量可以通过进水口自动添加。锅炉内水质的温度和室内温度经过温度传感器处理后,把温度信号传送给单片机,通过相应的驱动电路来调节相应管道阀门的大小,进而通过控制水量来控制水温,达到供暖的目的。 图 1-1 燃气锅炉总体系统图 燃气锅炉的进水口的阀门是单向阀,是为了避免锅炉内的热水倒流回自来水管道,影响经济效率。

炉温和室温的测量都采用集成的温度传感器,集成温度传感器测量比较方便,精确度也比较高,测温范围也符合本次设计的要求。 燃烧器里的进气量由控制器发出的控制信号通过固体继电器的动作来控制进气阀门的大小来保证天然气充分的燃烧。 散热器可以根据自己个人的喜好选择,选择外形美观便于清扫的散热器,一般为了三个效果比较好可以选择铝制的散热器,散热器的入水口的强制循环水泵保证了散热器内的水压,从而也保证了散热片的散热效果。

锅炉基础知识大全,涵盖各方面

锅炉基础知识大全,涵盖各方面 锅炉的用途及工作原理: 锅炉是国民经济中重要的热能供应设备。电力、机械、冶金、化工、纺织、造纸、食品等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。) 锅炉是利用燃料燃烧释放出的热能或其他能量将工质( 中间载热体) 加热到一定参数的设备。应用于加热水使之转变为蒸汽的锅炉称为蒸汽锅炉,也称为蒸汽发生器。应用于加热水使之提高温度转变为热水的锅炉, 称为热水锅炉;而应用于加热有机热载体的锅炉称为有机热载体锅炉。 从能源利用的角度看,锅炉是一种能源转换设备。在锅炉中,一次能源( 燃料) 的化学贮藏能通过燃烧过程转化为燃烧产物( 烟气和灰渣) 所载有的热能,然后又通过传热过程将热量传递给中间载热体( 例如水和蒸汽), 依靠它将热量输送到用热设备中去。 这种传输热量的中间载热体属于二次能源,因为它的用途就是向用能设备提供能量。 当中间载热体用于在热机中进行热一功转换时, 就叫做“工质“。如果中间载热体只是向热设备传输、提供热量以进行热利用,则通常被称为“热媒“。 锅炉按其用途可以分为电站锅炉、工业锅炉、船舶锅炉和机车锅炉等四类。前两类又称为固定式锅炉,因为是安装在固定基础上而不可移动的。后两类则称为移动式锅炉。本文介绍的是固定式工业锅炉。 在锅炉中进行着三个主要过程: (1)、燃料在炉内燃烧,其化学贮藏能以热能的形式释放出来,使火焰和燃烧产物( 烟气和灰渣) 具有高温。

(2)、高温火焰和烟气通过“受热面“向工质( 热媒) 传递热量。(3)、工质(热媒) 被加热,其温度升高或者汽化为饱和蒸汽,或再进一步被加热成为过热蒸汽。 以上三个过程是互相关联并且同时进行的,实现着能量的转换和传递。 伴随着能量的转换和转移还进行着物质的流动和变化: (1) 工质,例如给水( 或回水〉进入锅炉,最后以蒸汽( 或热水) 的形式供出。 (2) 燃料,例如煤进入炉内燃烧,其可燃部分燃烧后连同原含水分转化为烟气,其原含灰分则残存为灰渣。 (3) 空气送入炉内,其中氧气参加燃烧反应,过剩的空气和反应剩余的惰性气体混在烟气中排出。 水一汽系统、煤一灰系统和风二烟系统是锅炉的三大主要系统, 这三个系统的工作是同时进行的。 通常将燃料和烟气这一侧所进行的过程( 包括燃烧、放热、排渣、气体流动等) 总称为“炉内过程“; 把水、汽这一侧所进行的过程( 水和蒸汽流动、吸热、汽化、汽水分离、热化学过程等) 总称为“锅内过程“。 第二章 锅炉的分类 一、按用途分类: 1. 电站锅炉:用于发电,大多为大容量、高参数锅炉,火室燃烧,效率高,出口工质为过热蒸汽。

TBF三相生物流化床

TBF三相生物流化床 三相好氧生物流化床是以生物膜法为基础,吸取了化工操作中的流态化技 术,形成了一种高效的废水处理工艺,是生物膜法的重要突破。其基本特征是以砂、陶粒、活性碳、焦碳等颗粒状物质作为载体,为微生物生长提供巨大的表面积,一般可达到2000-3000m2/m3。废水或废水和空气的混合液由下而上以一定的速度通过床层时使载体流化,生物栖息于载体表面,形成由薄薄的生物膜所覆盖的生物粒子,生物固体浓度可达普通活性污泥的5-10倍。由于生物载体、废水、空气三相间的密切接触,大大改善了传质状态,使有机物去除速率增快,所需反应器容积减小。 多管气提生物流化床是内循环三相流化床的一种,是在外循环床的基础上发展起来的,将升流区和降流区组合在一起,使反应器结构更紧凑。迄今为止,已应用于石化废水、生活污水、淀粉废水、含酚废水、制药废水、针织废水、煤气化废水、含铜废水、丙烯酸废水等多种废水处理,取得了不少喜人的成果,显示了内循环流化床反应器的优越性。 多管气提生物流化床不仅保持了传统三相生物流化床所具有的:反应器内混合性能好、传质速率快、污泥浓度大、有机物负荷高的优点,同时具有以下新特点: 1)可控制生物膜厚度的过度增长。 在传统三相生物流化床中,气速和液速均不能很大,如果大大地超过载体的终端沉降速度,则由于载体只作单项上流运动,生物粒子将大量进入沉淀分离区,因此极易带出反应器外。为了防止载体的流失,反应器内流体的剪切力不能有效地控制过度增长的生物膜。而在循环式流化床中,由于气、液、固在升流区和降流区之间循环流动,循环速度很大,载体却不易被带出反应器外,在一般情况下,循环速率远大于载体终端沉速,流体造成的剪切作用可有效地控制生物膜厚度,以避免过厚的生物膜引起的内传至阻力增大,使循环式流化床中生物膜保持较高的活性。 2)载体流失量少。 由于循环式流化床的紊动剪切及摩擦可使过厚的生物膜自行脱落,因此可防止载体的大量流失。 3)载体流化性能好。 传统三相生物流化床为保证载体的充分流化,在不进行回流的情况下必须采用较大的高径比,即反应器的直径必须较小,高度较大,而循环式生物流化床只要升流筒直径合适(过小会引起气泡聚合),并保证一定的表观气速,就可实现

燃气锅炉的工作原理

燃气锅炉的工作原理 燃气锅炉是一种供暖、提供工业用途的特种设备。在家用供暖方面,主要有提供热水和蒸汽两种,例如家用生活热水、洗浴用水。工业主要提供蒸汽为其他设备提供制冷、动力等服务,例如船舶、机车、矿场等场所。锅炉工作原理比较复杂,主要有燃料系统、烟风系统、汽水系统等构成。不同类型的锅炉其工作原理也是不同的。下面就为您介绍燃气锅炉的工作原理。图1-1给出了燃气锅炉系统的原理图。水通过进水口进入锅炉,经过锅炉加热后的符合供热标准的水质通过循环水泵送入室内散热器,通过辐射和对流换热来供暖。流过散热器的水重新回到锅炉里面进行加热,然后重新流入散热器,如此循环往复的进行。用户还可以根据供热范围的大小,选择合适的循环水泵,比较经济方便。而且锅炉系统还可以供给用户热水,满足用户基本的热水需求,损失的水量可以通过进水口自动添加。锅炉内水质的温度和室内温度经过温度传感器处理后,把温度信号传送给单片机,通过相应的驱动电路来调节相应管道阀门的大小,进而通过控制水量来控制水温,达到供暖的目的。

燃气锅炉的进水口的阀门是单向阀,是为了避免锅炉内的热水倒流回自来水管道,影响经济效率。

炉温和室温的测量都采用集成的温度传感器,集成温度传感器测量比较方便,精确度也比较高,测温范围也符合本次设计的要求。燃烧器里的进气量由控制器发出的控制信号通过固体继电器的动作来控制进气阀门的大小来保证天然气充分的燃烧。散热器可以根据自己个人的喜好选择,选择外形美观便于清扫的散热器,一般为了三个效果比较好可以选择铝制的散热器,散热器的入水口的强制循环水泵保证了散热器内的水压,从而也保证了散热片的散热效果。

生物流化床技术的发展现状与革新

生物流化床技术的发展现状与革新 生物流化床具有处理效率高,抗冲击负荷能力强等优点,在污水处理领域应用十分广泛。本文介绍了近年来生物流化床工艺流程和充氧方式的发展情况,并总结了目前生物流化床工艺的革新情况,为生物流化床的发展提供支持。 标签:生物流化床;工艺流程;充氧方式;革新 生物流化床应用广泛,可用于厌氧脱出废水中的氨氮,也可好氧去除废水中的有机物质,包括生活污水,制药废水,印染废水,水厂、肉厂、粮食加工厂废水等。基本上具有可生化性的废水都适合。 1 生物流化床不同工艺流程的研究 依据流化床中附着生长不同类型的微生物,生物流化床可分为好气床、兼气床和厌气床三类。主要工艺流程有以下几类: 1.1 以氧气为氧源的生物流化床 以氧气为氧源的生物流化床有机负荷可以提高到27kg/m3,但是由于反应器需要大量的纯氧且回流比较大,因而在纯氧制造和回流电力部分会消耗很多能源。如果要使用空气作为氧气流化床的氧源,为使流化床的进水能够获得足够的溶解氧,就需要加大回流比。根据研究显示,对BOD5为214mg/L的生活污水,若采用空气充氧来保持系统对BOD5的去除率维持在85%以上,其循环比需提高至34:1,而纯氧气生物流化床的循环比则只需要3:1即可达到此效果。所以,虽然以空气为氧源的二相流化床在充氧时可避免生产纯氧的难题,但在其后面运行时需要在循环泵上消耗大量的电力资源进行回流。近年,国外氧气流化床处理工业废水和城市污水已经在实际中应用,在美国纽约州已建造了一套氧气流化床的二级处理设备,其设计规模为37850m3/d。 1.2 以空气为氧源的三相流化床 三相流化床的供氧方式是通过反应器底部或器壁输入空气,在流化床内部形成气液固三相。相对比两相流化床,三相流化床的操作条件更加剧烈,其充氧情况与活性污泥法比较相当,这样可以强化空气在反应器内的转移,增强微生物反应速率。可在三相流化床反应器内部,气液不能得到很好的分离,气泡容易在床体内部聚集无法散开而形成巨大的鼓泡,这些情况的出现会导致部分区域的氧吸收效果变差,而且气泡在反应器内的搅动也会使得载体随之流失,微生物的附着载体减少,从而降低出水水质,还容易使水质变得浑浊不清。目前三相流化床的研究在国内还比较少,基本上都是小试或者中试阶段,只在日本有一座较大规模的处理设备。 1.3 兼气生物流化床

生物流化床的类型及特点secret

生物流化床的类型及特点 摘要:应用生物流化床处理废水日益得到国内外研究者的高度重视,这是由于该法具有如下特点[1]:带出体系的微生物较少;基质负荷较高时,污泥循环再生的生物量最小,不会因为生物量的累积而引起体系阻塞;生物量的浓度较高并可以调节;液一固接触面积较大;BOD容积负荷高;占地面积小。 关键字:生物流化床流化床生物量 Types and Characteristics of Biological Fluidized Beds Abstract:Different biological fluidized beds used in wastewater treatment are presented and their construction,characteristics,applications as well as effects of treatment are described in detail,which are centering on summing up the general situation of development of aerobic biological fluidized beds and anaerobic biological fluidized beds,with the way forward for further development and application of biological fluidized beds in future pointed out. Key word: biological fluidized bed; wastewater treatment; biomembrane;fluidization 应用生物流化床处理废水日益得到国内外研究者的高度重视,这是由于该法具有如下特点[1]:带出体系的微生物较少;基质负荷较高时,污泥循环再生的生物量最小,不会因为生物量的累积而引起体系阻塞;生物量的浓度较高并可以调节;液一固接触面积较大;BOD 容积负荷高;占地面积小。 用于处理废水的生物流化床,按其生物膜特性等因素可分为好氧生物流化床和厌氧生物流化床两大类,随着对流化床的不断研究与开发,当前已出现了许多新类型的流化床,本文总结了国内生物流化床的研究成果,以期对工程技术人员有所帮助。 1 好氧生物流化床 1.1 好氧生物流化床的结构组成 好氧生物流化床是以微粒状填料如砂、焦炭、活性炭、玻璃珠、多孔球等作为微生物载体,以一定流速将空气或纯氧通人床内,使载体处于流化状态,通过载体表面上不断生长的生物膜吸附、氧化并分解废水中的有机物,从而达到对废水中污染物的去除[2]。

生物流化床工艺优缺点

一、生物流化床工艺优缺点 生物流化床技术起始于20世纪70年代初,是一种新型的生物膜法工艺,生物流化床将普通的活性污泥法和生物膜法的优点有机结合在一起,并引入化工领域的流化技术处理有机废水。生物流化床是以微粒状填料如砂、活性炭、焦炭、多孔球等作为微生物载体,将空气(或氧气)、废水同时泵入反应器,使载体处于流化状态,反应器内固、液、气充分传质、混合,污水充氧和载体流化同时进行,通过载体表面上不断生长的生物膜吸附、氧化并分解废水中的有机物,颗粒之间剧烈碰撞,生物膜表面不断更新,微生物始终处于生长旺盛阶段,高效地对废水中污染物进行生物降解。 容积负荷高,占地面积小 由于BFB采用颗粒、甚至粉末填料,比表面积大,故流化床内能维持极高的微生物量(40-50g/l);由于生物膜表面不断更新,微生物始终处于高活性状态,加之良好的传质条件,废水中的基质在反应器中与均匀分散的生物膜充分接触而被快速降解去除。BFB容积负荷可高达6-10kgBOD/m3.d,是一般活性污泥法高10~20倍。 耐冲击负荷能力强,能适应各种污水 在BFB中,污水和填料之间充分循环流动、传质混合,使反应器具有极大的稀释扩散能力,废水进入反应器后被迅速地混合和稀释;BFB生物膜更新速度快,使其保持着良好的生物活性,废水中的基质在反应器中与均匀分散的生物膜充分接触而被迅速降解而被稀释,从而对负荷突然变化的影响起到缓冲作用;微生物主要以生物膜形式存在,对原水中毒性物质抵抗能力强,从而使系统具有很强的抗冲击复合能力,当出现冲击负荷时,COD去除率开始可能会下降,但很快就恢复正常,通常情况下不需要设调节池。 氧传质效率高: 氧是一种难溶性气体,其从气相向液相转移过程中,传质阻力主要来自于液膜,液膜厚度是氧向水相转移的主要限制因素,BFB通过填料对气体切割,大气泡被切割成无数的小气泡或微小气泡,增加接触比表面积,延长气体在水相停留时间,明显压缩液膜和气膜厚度,大大提高氧船只效率;和普通接触氧化生物膜相比,BFB载体表面的生物膜较薄,有利于氧气和有机物等的传质,提高氧利用率;和活性污泥法相比,载体的投加降低反应器悬浮污泥浓度和粘度,使系统氧转化效率提高。在正常的载体填充量范围内,随着载体填充量及生物浓度增加微生物耗氧速率加快,可随氧气向水中的传递系数增大得到补偿,避免由于生物浓度增加而造成好氧废水生物处理中溶解氧不足的不利影响。但如果填料投放量过大,填料在水中流化效果差,紊动程度也降低,使得氧传递速率下降,氧利用率降低,加上填料本身对水中溶解氧的有一定吸附作用,这会造成水中溶解氧减少。 生物膜厚度可控,系统更稳定: BFB可通过曝气量控制填料剪切力,而控制生物膜厚度,而接触氧化生物膜厚度不可控; BFB结合了载体的流化机理、吸附机理、生物化学机理,将传统的活性污泥法和生物膜法优势结合起来,使系统既具有接触氧化法高生物量和微生物活性、高容积负荷、强抗冲击负荷能力、占地面积小,又具有活性污泥法的高传质效率,系统稳定,同时还具有氧转化效率高,生物膜厚度可控等优点,可适应不同浓度,不同种类的污水处理。 BFB始于70年代初,推广远不如活性污泥和接触氧化,原因在于其自身的一些瓶颈问题:如能耗大,虽然氧传质效率高,但曝气不仅是要生物降解提供溶氧,还必须保持载体流化状态;流化床内部的流态化特性十分复杂,对其流体力学特征研究严重不足,给放大设计造成了困难;泥水分离靠重力作用,载体易流失,出水水质较差。

锅炉的构成和工作过程

锅炉的构成和工作过程 ㈠(锅炉的构成) 锅炉的核心构成部分是“锅”和“炉”是容纳水和蒸汽的受压部件,也包括锅筒(也叫汽包)或锅壳、受热面急箱(也叫联箱)、管道等,组成完整的水汽系统,其中进行着过内过程—水的加热和气化、水和蒸汽的流动汽水分离等,炉是燃料燃烧后的场所。即燃烧设备和燃烧室(也叫炉膛)。广义的“炉”是指燃料、烟气的这一侧的空间。 锅和炉是通过传热过程相互联系在一起的。锅和炉的分界面就是受热面。通过受热面进行着放热介质(火焰、烟气)向受热介质放出热量。 ㈡锅炉的工作过程 ①在锅炉中主要进行着三个主要过程: a.在锅炉内燃烧,其化学贮藏能以热能的形式释放出来,使火焰和燃烧产物(烟气或灰渣)具有高温。 b.火焰和烟气通过“受热面”向工质(热媒)传递热量。 c.热媒被加热,其温度升高或者气化为饱和蒸汽,或再进一步加热为过热蒸汽。 以上三个过程是相互关联的并同时进行的,实现着能量的转换和传递。 ②伴随着能量的转换和转移还进行着物质的流动和变化: a.列如给水(或回水)进入锅炉、最后以蒸汽(或热水)的形式公出。 b.例如煤进入锅炉内燃烧,其可燃部分燃烧后连同原含水分转化为烟气,其原含灰分则存为灰渣。 c.进入炉内参加燃烧反应,过剩的空气量也混在烟气中排出。水汽系统、烟灰系统和风-烟系统是锅炉的三大主要系统这三个系统的工作也是同时地连续地进行的。 通常将燃料和烟气这一侧所进行的过程(包括燃烧、放热、排渣、气体流动等)总称为“炉内过程”;把水汽这一侧进行的过程(水和蒸汽流动、吸热、气化、汽水分离、热化学过程等)总称为“锅内过程”。 锅炉的结构和工作过程暂时就介绍到这里了,若您还有什么不明白的地方需要提问的,您可以拨打我们的在线电话,我们的客服会在第一时间给您答复。我们的热线电话是:400-8476-519。

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫 1、循环流化床锅炉工作原理 煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。 燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。 煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。循环流化床锅炉在煤种变化时,会对运行调节带来影响。试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。 加入石灰石的目的,是为了在炉内进行脱硫。石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的NOx 气体也会大大减少硝酸类酸性气体。 2、循环流化床锅炉的特点 可燃烧劣质煤 因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

MBBR生物流化床工艺说明

MBBR?生物流化床工艺说明 MBBR?生物膜工艺运用生物膜法的基本原理,充份利用了活性污泥法的优点,又克服了传统活性污泥法及固定式生物膜法的缺点。技术关键在于研究和开发了比重接近于水,轻微搅拌下易于随水自由运动的生物填料。生物填料具有有效表面积大,适合微生物吸附生长的特点。填料的结构以具有受保护的可供微生物生长的内表面积为特征。当曝气充氧时,空气泡的上升浮力推动填料和周围的水体流动起来,当气流穿过水流和填料的空隙时又被填料阻滞,并被分割成小气泡。在这样的过程中,填料被充分地搅拌并与水流混合,而空气流又被充分地分割成细小的气泡,增加了生物膜与氧气的接触和传氧效率。在厌氧条件下,水流和填料在潜水搅拌器的作用下充分流动起来,达到生物膜和被处理的污染物充分接触而生物分解的目的。流动床TM 生物膜反应器工艺由此而得名。其原理示意图如图1所示。因此,流动床TM生物膜工艺突破了传统生物膜法(固定床生物膜工艺的堵塞和配水不均,以及生物流化床工艺的流化局限)的限制,为生物膜法更广泛地应用于污水的生物处理奠定了较好的基础。 专利技术的Kaldnes悬浮填料工艺打开了污水生物 处理工艺的新领域。该工艺是基于一种生物膜技术,

其实质是微生物以膜状生长悬浮填料上。该悬浮填料由聚乙烯材料制成,在水中自由飘动。在悬浮填料上没有附着生物膜的情况下,其比重接近于1g/cm3。在好氧反应器中由于曝气器的曝气以及缺氧单元中的机械搅拌而不断运动。悬浮填料反应器内最大填料填充率可以达到67%,其有效生物膜面积可以达到350m2/m3反应器容积。 该工艺可以通过硝化和反硝化作用完成生化好氧降解有机污染物(如BOD,COD)或完成生物脱氮,后者适用于预反硝化或后反硝化或者两者结合。在后反硝化过程中在反应器中的总水力停留时间只要2.5-3小时就可以使脱氮率达到70%。Kaldnes工艺与传统活性污泥法相比优点很多,例如具有高容积利用率,反应器形状灵活,无污泥回流的优点。 生物膜填料通过装在反应器出口的定固的不锈钢筛网保留在反应器中。 MBBR技术规格及特性 MBBR之接触滤材经过特殊设计,及

循环流化床锅炉的原理及结构

循环流化床锅炉的原理及结构 循环流化床锅炉是在炉膛里把燃料控制在特殊的流化状态下燃烧产生蒸汽的设备。 循环流化床锅炉工作原理及特点: 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其锅炉称为流化床锅炉。 循环流化床锅炉是在鼓泡流化床锅炉技术的基础上发展起来的新炉型,循环流化床锅炉炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。 循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、省煤器和空气预热器等,与其它常规锅炉相近。 循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。炉膛内燃烧所产生的大量烟气携带物料经分离器入口加速段加速进入分离器,将烟气和物料。物料经料斗、料腿、返料阀再返回炉膛;烟气自中心筒进入分离器出口区,流经转向室、进入尾部烟道。 锅炉给水经省煤器加热后进入汽包,汽包内的饱和水经集中下降管、分配管进入水冷壁下集箱,加热蒸发后流入上集箱,然后进入汽包;饱和蒸汽流经顶棚管、后包墙管、进入低温过热器,由低过加热后进入减温器调节汽温,然后经高过将蒸汽加热到额定蒸汽温度,进入汇汽集箱至主气管道。 循环流化床锅炉燃烧的基本特点: (1)低温的动力控制燃烧 循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。炉膛温度一般控制在850-950℃之间,(850℃左右为最佳脱硫温度)低于一般煤的灰熔点。

锅炉结构 及工作原理

锅炉结构及工作原理 锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。

汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,

锅炉基础知识及工作原理

锅炉基础知识及工作原理 第一讲:锅炉的类别、参数及型号 一、锅炉及其分类 锅炉也称蒸汽发生器,是利用燃料或工业生产中余热的热能,将工质加热到一定温度和压力的换热设备。锅炉用途广泛,型式众多,一般可按下列方法分类: 1、按用途分类 电站锅炉:大多为大容量、高参数锅炉,火室燃烧,热效率高,出口工质为过热蒸汽。 工业锅炉:用于工业生产和采暖,大多为低压、低温、小容量锅炉,火床燃烧居多,热效率较低;出口工质为蒸汽的称为蒸汽工业锅炉,出口工质为热水的称为热水锅炉。 船用锅炉:用作船舶动力,一般采用低、中参数,大多燃油。锅炉体积小,重量轻。 机车锅炉:用作机车动力,一般为小容量、低参数,火床燃烧,以燃煤为主,锅炉结构紧凑,现已少用。 注汽锅炉:用于油田对稠油的注汽热采,出口工质一般为高压湿蒸汽。 2、按结构分类 火管锅炉:烟气在火管内流过,可以制成小容量,低参数锅炉,热效率较低,但结构简单,水质要求低,运行维修方便。 水管锅炉:汽水在管内流过,可以制成小容量,低参数锅炉,也可制成大容量、高参数锅炉。电站锅炉均为水管锅炉,热效率较高,但对水质和运行水平的要求也较高。 3、按循环方式分类 自然循环锅筒锅炉:具有锅筒,利用下降管和上升管中工质密度差产生工质循环,只能在临界压力以下应用。 多次强制循环锅筒锅炉:也称辅助循环锅筒锅炉。具有锅筒和循环泵,利用循环回路中的工质密度差和循环泵压力建立工质循环。只能在临界压力以下应用。 低倍率循环锅炉:具有汽水分离器和循环泵,主要*循环泵建立工质循环,可应用于亚临界压力和超临界压力,循环倍率低,一般为1.25~2.0。 直流锅炉:无锅筒,给水*水泵压力,一次通过受热面产生蒸汽,适用于高压和超临界压力锅炉。 复合循环锅炉:具有再循环泵。锅炉负荷低时按再循环方式运行,负荷高时按直流方式运行,可应用于亚临界压力和超临界压力。 4、按锅炉出口工质压力分类 低压锅炉一般压力小于1.275MPa(13kgf/cm2) 中压锅炉一般压力为3.825MPa(39kgf/cm2) 高压锅炉一般压力为9.8MPa(100kgf/cm2) 超高压锅炉一般压力为1.3.73MPa(140kgf/cm2) 亚临界压力锅炉一般压力为16.67MPa(170kgf/cm2) 超临界压力锅炉压力大于22.13MPa(225.65kgf/cm2) 5、按燃烧方式分类 火床燃烧锅炉:主要用于工业锅炉,其中包括固定炉排炉、倒转炉排抛煤机炉、振动炉排炉;下饲式炉排炉和往复推饲炉排炉等。燃料主要在炉排上燃烧。 火室燃烧锅炉:主要用于电站锅炉,燃用液体燃料、气体燃料和煤粉的锅炉均为火室燃烧锅炉。火室燃烧时,燃料主要在炉膛空间悬浮燃烧。

相关文档
最新文档