仿人型机器人控制系统设计的几个问题

仿人型机器人控制系统设计的几个问题
仿人型机器人控制系统设计的几个问题

基于stm32的人形机器人制作

摘要: 变形机器人是机器人领域中新兴起的一个研究方向,同时也是当前机器人学研究领域的一个热点和难点。 本课题参照人体骨骼结构并综合考虑运动中模块间的碰撞、结构变化步数以及车型状态等因素,为机器人设计精确构型。基于机器人结构设计,详细探讨本项目变形机器人人车变形过程,具体展示不同构型的特点及相互之间的转换和衔接,打破变形机器人研究局限,推进本领域关键技术的突破。 本文我们主要对机电一体化产品-变形金刚机器人进行了系统设计,该变形机器人旨在满足四五岁儿童对于变形金刚机器人玩具的需求,可在战车和机器人之间变换,并且各变形处的机构变换设计巧妙,变换的多变性、趣味性和实用性都非常高,在战车和变形后机器人的外观上极为逼真、酷炫,对儿童极具吸引力。 我们首先对市场前景进行了调查和分析,之后查阅相关资料并进行分析,随后进行机器人方案设计及具体的机械结构设计,并绘制机器人总装图和关键零部件图,然后进行传感与控制方案设计,包括硬件与软件设计,试验测试,最后编制课程设计说明书。本文对于硬件电路的连接和软件控制方面进行了详细的阐明,完成变形金刚机器人变形、行走的功能,并实现无线通讯功能。

目录 第一章方案设计 (3) 1机械结构方案设计 (3) 2驱动方案选择 (4) 2.1电机的选择 (4) 3传感器的选择 (4) 4结构的合理性和参数的合理性 (5) 第二章动作的总体规划详细方案 (6) 1人形态下的行走设计 (6) 2车形态下的运动设计 (6) 3人车转换的变形设计 (6) 第三章软件系统设计 (7) 1软件系统总体方案 (7) 2控制方案与流程 (8) 第四章程序 (9) 第五章项目心得 (11)

仿人型机器人设计说明书

目录 1前言 (1) 1.1仿人机器人的概念........................................................ 错误!未定义书签。 1.2课题来源 (1) 1.3技术要求 (1) 1.4国内外研究现状及发展状况[] 2........................................ 错误!未定义书签。 1.4.1 国内研究现状 (1) 1.4.2 国外研究现状 (2) 1.4.3 发展趋势 (3) 1.5本课题要解决的主要问题及解决方案 (4) 2 总体方案设计 (6) 2.1仿人机器人臂手部结构的确定 (6) 2.2仿人机器人上身尺寸的确定 (6) 2.3结构的设计 (6) 2.4仿人机器人自由度的确定 (6) 2.5电机的选择 (7) 3 机器人驱动装置的设计 (8) 3.1 肩部步进电机的选择 (9) 3.2 肘部步进电机的选择 (9) 3.3 腕部及头部电机选择 (10) 4.仿人机器人机械传动件的设计 (11) 4.1齿轮的设计 (11) 4.1.1 肩部齿轮的设计与校核 .............................................. 错误!未定义书签。 4.1.2 肘腕部齿轮设计 (13) 4.1.3 头部齿轮的设计 (14) 4.2轴的设计与计算 (15) 4.2.1 轴的结构设计........................................................... 错误!未定义书签。 4.2.2 轴的强度计算 (16) 5. 仿人型机器人连接板的设计及校核 (21) 5.1肩部连接板的设计与校核 (21) 5.2电机支撑板的设计与校核 (22) 6. 仿人型机器人三维造型及运动仿真 (23) 6.1仿人型机器人三维造型 (23) 6.2仿人型机器人运动仿真 (24) 6.3仿人型机器人舞蹈运动分析 (24) 6.4仿人机器人重力分析 (25) 7 结论 (26) 参考文献 (27) 致谢 (29) 附录 (30)

仿人机器人

听讲座《仿人机器人的发展和最新技术》心得首先江山老师通过一段精彩视频让我们对机器人有了大概的了解;接着江山老师对ALDEBARAN Robotics公司进行了简单介绍并从自由度、传感器两个方面向大家介绍了针对实物做硬件的过程;随后江山老师详细讲解了电子架构和软件环境的相关知识并介绍了世界机器人大赛的相关情况;在讲座的最后,江山老师还现场向我们展示了真实的机器人。这场讲座让人印象十分深刻。 仿人机器人开始于20世纪60年代的双足步行机器人,迄今已成功研制出的各种能静态或动态步行的双足机器人样机及在双足机器人领域理论研究上的成果推动了仿人机器人的快速发展。加藤一郎于1973年,从工程角度研制出世界上第一台真正意义上的仿人形机器人WABOT-1。1980年出现WL-9DR(Dynam’s Refined)双足机器人,用步行运动分析及重复试验设计步态轨迹,用以控制机器人的步行运动。1986年,加藤实验室又成功研制了WL-12步行机器人,该机器人实现了步行周期2.6s、步幅30cm的平地动态步行。1996年11月公司首次展示了研制成功的第一台仿人机器人P2,它成为世界上第一台人性化自主双腿步行机器人。1997年10月HONDA公司又推出了仿人形机器人P3,是一台完全自立的人性化双腿步行机器人。在此基础上,ASIMO才得以诞生,2004年12月15日,日本本田技研工业株式会社推出了新一代“ASIMO”机器人,它是世界上首批遥控式双足直立行走机器人。 仿人机器人步态模式可分为静态步行、准动态步行和动态步行。在静态步行中,机器人的质心在地面上的投影始终不超越支撑多边形的范围;而在动态步行中,质心的投影在某一时刻可以超越支撑多边形。研究表明,动态行走时关节驱动力矩较静态行走时小,是仿人机器人研究的必然发展方向和实现目标。仿人机器人步态规划不仅取决于地面条件、下肢结构、控制的难易程度,而且必须满足运动平稳性、速度、机动性和功率等要求。为提高仿人机器人的智能化,仿人机器人中安装了大量的传感器,如力传感器、力矩传感器、陀螺仪、视觉传感器、接近觉传感器、声学传感器等多种传感器。而六维力/力矩传感器具有可以同时测量3自由度力和3自由度力矩的优越性,使得常被安装在机器人脚底用于测量地面反力。机器人的控制从某种程度上,可以说是基于传感器的控制。 仿人机器人是能够与人相互影响的最理想的机器人,它能够通过与环境的交互不断获得新知识,而且还能用它的设计者根本想象不到的方式去完成各种任务,它会自己适应非结构化的、动态的环境。开展仿人型机器人研究,不仅能够促进传感控制、人工智能等多学科发展,而且将大大提高我国机器人技术的系统集成能力和控制水平。通过提高机器人的智能化、机动性、可靠和安全性以及与人类环境的完美的融入性,使得仿人机器人融入人类的生活,和人类一起协同工作,从事一些人类无法从事的工作,以更大的灵活性给人类社会带来更多的价值。

喷漆机器人控制系统方案设计

喷涂机器人控制系统初步方案 一、控制系统组成框图 本控制系统采用了以PC104为核心,以步进电机驱动网为低层控制通道的开放式控制器。下图是整个控制系统的组成框图。

二、PC104模块选型 采用PC104是因为它有如下特点:结构小巧紧凑, 仅96 mm ×90 mm面积内集成了PC 机所有功能;采用自栈接的母线结构,级联牢固,易于扩充;整机功耗低;兼容性好,可以借鉴PC机成熟技术;外设丰富,应用简单。 本控制系统PC104模块选用研华PCM-3343F。其组成如下:核心模块DM&P V ortex86DX 的高性能低功耗CPU 模块,CPU 速度1.0 GHz,带有浮点运算单元,在板集成了256MB DDR2 SDRAM(最大可支持512MB)、显示控制器(支持LCD显示,最高分辨率为1024×768),以太网控制器等。带有PA TA硬盘接口1个,PC104扩展插槽1个,KB/MS插槽1个,USB2.0接口4个,16位GPIO口,RS-232接口3个,RS-232/422/485接口1个。 选择该嵌入式主板时,应注意: 1)购买时,要求将系统内存升级到512MB; 2)购买时,要求配齐以下配件: ①键盘及鼠标的接口线共2根(编号及图片如下); p/n: 1703060053p/n: 1700060202 ②VGA接口线1根(编号及图片如下); p/n: 1700000898

③US B×2接口线1根(编号及图片如下); p/n: 1703100260 ④RS-232×2接口线1根(编号及图片如下); p/n: 1701200220 ⑤RS-422/485接口线1根(编号及图片如下);p/n: 1703040157 ⑥IDE接口线1根(编号及图片如下); p/n: 1701440350 ⑦外接Li电池1个(编号及图片如下); p/n: 1750129010

六自由度工业机器人设计

六自由度工业机器人 对于工业机器人的设计与大多数机械设计过程相同;首先要知道为什么要设计机器人机器人能实现哪些功能活动空间(有效工作范围)有多大了解基本的要求后,接下来的工作就好作了。 首先是根据基本要求确定机器人的种类,是行走的提升(举升)机械臂、还是三轴的坐标机器人、还是六轴的机器人等。选定了机器人的种类也就确定了控制方式,也就有了在有限的空间内进行设计的指导方向。 接下来的要做的就是设计任务的确定。这是一个相对复杂的过程,在实现这一复杂过程的第一步是将设计要求明确的规定下来;第二步是按照设计要求制作机械传动简图,分析简图,制定动作流程表(图),初步确定传动功率、控制流程和方式;第三步是明确设计内容,设计步骤、攻克点、设计计算书、草图绘制,材料、加工工艺、控制程序、电路图绘制;第四步是综合审核各方面的内容,确认生产。 下面我将以六轴工业机器人作为设计对象来阐明这一设计过程: 在介绍机器人设计之前我先说一下机器人的应用领域。机器人的应用领域可以说是非常广泛的,在自动化生产线上的就有很多例子,如垛码机器人、包装机器人、转线机器人;在焊接方面也有很例子,如汽车生产线上的焊接机器人等等;现在机器人的发展是非常的迅速,机器人的应用也在民用企业的各个行业得以延伸。机器人的设计人才需求也越来越大。 六轴机器人的应用范筹不同,设计形式也各不相同。现在世界上生产机器人的公司也很多,结构各有特色。在中国应用最多的如:ABB、Panasonic、FANUK、莫托曼等国外进口的机器人。 既然机器人的应用那么广泛,在我国却没有知名的生产公司。对于作为中国机械工程技术人员来说是一个值得思考的问题!有关机器人技术方面探讨太少了从业人员还不能成群体虽然在很多地方可以看到机器的论术,可是却没有真正形成普及的东西。 即然是要说设计,那我就从头一点一点的说起。力求讲的通俗简明一些,讲得不对的地方还请各位指正! 六轴机器人是多关节、多自由度的机器人,动作多,变化灵活;是一种柔性技术较高的工业机器人,应用面也最广泛。那么怎样去从头开始的设计它呢工作范围又怎样去确定动作怎样去编排呢位姿怎样去控制呢各部位的关节又是有怎么样的要求呢等等。。。。。。让我们带着众多的疑问慢慢的往下走吧! 首先我们设定:机器人是六轴多自由度的机器人,手爪夹持二氧气体保护焊标准焊枪;完成点焊、连续焊等不同要求的焊接部件,工艺要求、工艺路线变化快的自动生线上。最大伸长量:1700mm;转动270度;底座与地平线水平固定;全电机驱动。 好了,有了这样的基本要求我们就可以做初步的方案的思考了。 首先是全电机驱动的,那么我们在考虑方案的时候就不要去考虑液压和气压的各种结构了,也就是传动机构只能用齿轮齿条、连杆机构等机械机构了。 机器人是用于焊接方面的,那么我们就去考察有人工行为下的各种焊接手法和方法。这里就有一个很复杂的东西在里面,那就是焊接工艺;即然焊艺定不下来,我们就给它区分一下,在常用焊接里有单点点焊、连续断点点焊、连续平缝焊接、填角焊接、立缝焊接、仰焊、环缝焊等等。。。。。。 搞清了各种焊方法,也就明白了要实现这些复杂的动作就要有一套可行的控制方式才行;在机械没有完全设计出来之前可以不做太多的控制方案思考,有一个大概的轮廓概念就行了,待机械结构做完,各方面的驱动功率确定下来之后再做详细的程序。 焊枪是用常用的标准的焊枪,也就是说焊枪是随时可以更换下来的,也就要求我们要做到对焊枪的夹持部分进行快速锁定与松开。

仿人机器人

仿人机器人 仿人形机器人是机器人以其外观等,在此基础上,人体的互动,让made-for-human工具或环境。在一般仿人机器人的头部有一个躯干,两臂和两条腿,虽然有些形式的仿人机器人可以模型只身体的一部份,例如,腰部以上。一些仿人机器人也许还有一个'面子',用“眼睛”和“口”。机器人是机器人,从美学的角度,就像一个人类建造的。 介绍 TOSY的TOPIO,仿人形机器人,可以打乒乓球。[1] 仿人形机器人是一个机器人,因为它可以适应它环境的改变或本身并继续达到它的目标。这是最主要的区别和其他种类的人形机器人。在此背景下,一些仿人形机器人的能力方面,其中可能包括: (如充电?自我维持自身) 自主学习(了解或?获得了新的能力,没有外界援助的基础上,调整战略环境和适应新环境,新情况) 避免有害的情况下人们0.9%,财产,本身 互动?安全人类和环境 像其他机械的机器人,人形参阅以下基本元件,工作太:感觉和计划和控制。因为他们尽量的模拟人类的结构和行为,他们是仿人机器人的自主系统,通常是复杂多其他种类的机器人。

这影响到所有的机器尺度复杂性(机械、空间、时间、功率密度、系统和计算复杂性),但这也较明显的在功率密度和系统复杂性鳞片。首先,目前多数的人形不够结实的话甚至跳,这一切发生的时候,因为功率/重量比,不如在人体内。动态平衡德克斯特能跳,但是差到目前为止。另一方面,有很好的算法人形建设几个方面,但它是非常困难的,合并所有成一个有效率的系统(该系统技术的计算复杂性高)。如今,这些是主要的困难,仿人机器人的发展要处理。 仿人机器人的设置是为了模仿一些相同的体力劳动和脑力劳动,人类经历日报。科学家和专家来自许多不同的领域,包括工程,认知科学,语言和语言学结合他们的努力创造一个机器人为类人是不可能的。他们的创造者的目标是:有一天机器人将能够彼此都清楚人类智力,原因和表现得像人类。如果机器人都有能力这样做,他们最终可能工作在凝聚力和人类创造出一个更有生产力及高质量的未来。另一个重要的好处是理解的发展,机器人的人体生物、心理过程,从看似简单的行为的概念走到意识和灵性。 目前有两种方法来创建一个机器人。第一个模型机器人像一套刚性连接,互联的关节。这种结构是一个类似,可以发现,在工业机器人。虽然这种方法用于大部分的仿人机器人的出现,一个新开展的研究工作,在一些使用在生物力学中获取的知识。在此一,仿人形机器人的底线是很相似的人类骨骼。 目的

机器人控制系统设计(毕业设计)文献综述

一、前言 1.课题研究的意义,国内外研究现状和发展趋势 1.1课题研究的意义 随着机器人在工业装配线的应用越来越广泛,工业环境对其控制系统的要求也越来越高,所以开放式机器人控制系统的设计具有工程实际意义。 课题以一四自由度关节型机器人研制为背景,设计机器人运动控制系统的硬件电路和软件结构,对机器人的运动控制电路进行设计,实现机器人按照预定轨迹或自主运动控制功能。 在机械工业中,应用机械手的意义可以概括如下: ①以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ②以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 ③可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产 随着机器人技术的发展,机器人应用领域的不断扩大,对机器人的性能提出了更高的要求,因此,如何有效地将其他领域(如图像处理、声音识别、最优控制、人工智能等)的研究成果应用到机器人控制系统的实时操作中,是一项富有挑战性的研究工作。而具有开放式结构的模块化、标准化机器人,其控制系统的研究无疑对提高机器人性能和自主能力,推动机器人技术的发展具有重大意义。 1.2国内外研究现状和发展趋势 随着机器人控制技术的发展,针对结构封闭的机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化机器人控制器”是当前机器人控制器的一个发展方向。近几年,日本、美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构、网络功能的机器人控制器。我国863计划智能机器人主题也已对这方面的研究立项。 由于适用于机器人控制的软、硬件种类繁多和现代技术的飞速发展,开发一个结构完全开放的标准化机器人控制器存在一定困难,但应用现有技术,如工业PC

工业机器人操作机的设计方法和步骤

工业机器人操作机的设计方法和步骤 (1)确定工作对象和工作任务开始设计操作机之前,首先要确定工作对象、工作任务。 1)焊接任务:如果工作对象是一辆汽车或是一个复杂曲面的物体,工作任务是对其进行弧焊或点焊,则要求机器人的制造精度很高,弧焊任务对机器人的轨迹精度和位姿精度及速度稳定性有很高的要求,点焊任务对机器人的位姿精度有很高的要求,两种任务都要求机器人具备摆弧的功能, 同时要能在狭小的空间内自由地运动,具备防碰撞功能,故机器人的自由度至少为六个。 2)喷漆任务:如果工作对象是一辆汽车或是一个复杂曲面的物体,工作任务是喷涂汽车的内部和车门或是复杂曲面物体的表面,则要求机器人手腕要灵活,能够在狭小的空间内自由地运动,具备防碰撞功能;要求机器人能够在长时间内连续稳定可靠地工作;同时要求机器人具备光滑的流线型外表面,漆、气管线最好能从其横臂和手腕内部通过,使机器人外表不易积漆积灰,不会污染已喷好的工作对象,且漆、气管线也不易损坏;因喷漆机器人是在易燃易爆的工作环境中工作,故要具备防爆的功能。同时对机器人的轨迹精度和位姿精度及速度稳定性也有较高的要求。机器人的自由度至少应为六个。 3)搬运任务:如果工作对象比较笨重,工作任务是定点搬运,定位精度要求高,则对机器人的承载能力和定位精度有高的要求。如果工作对象比较轻巧,工作任务也是定点搬运,但要求轻拿轻放,且定位精度要求高,则对机器人的速度稳定和定位精度有高的要求。 4)装配任务:对机器人的速度稳定密和位姿精度有很高的要求。 有些机器人能完成多种工作任务,如MOTOMAN - SKI20系列机器人,既可以用于搬运也可以用 于点焊,具有快速、精巧、强有力和安全性高的特点;另一种MOTOMAN—SK6/ SK16系列机器人, 可以完成弧焊、搬运、涂胶、喷釉和装配多种任务,具有高速、精巧和可靠性高的特点。 设计新型机器人时,要充分考虑以上诸多因素,并应多参考国内外同类产品的先进机型,参考其设计参数,经过反复研究和比较,确定出所要机械部分的特点,定出设计方案。下面以一台六自由度交流伺服通用机器人为例讲一下设计过程。 (2)确定设计要求 1 )负载:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人 的负载。一般喷漆和弧焊机器人的负载为5?6kg。 2 )精度:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人未端的最大复合速度和机器人各单轴的最大角速度。 3 )精度:根据用户工作对象和工作任务的要求,参考国内外同类产品的先进机型,确定机器人 的重复定位精度、如弧焊机器人的重复定位精度为土0.4mm ABB公司开发的Model 5003型喷漆机器人的重复定位精度为土1mm同时要确定构成机器人的零件的精度、臂体的尺寸精度、形位精度和传动链的间隙,如齿轮的精度和传动间隙;还要确定机器人上所用的元器件的精度,如减速器的传动精度、轴承的精度等等。

基于ADAMS的仿人机器人行走仿真

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第4Vol.26No.42012年4月Apr.,2012 收稿日期:2012-02-28 作者简介:肖乐(1981—),女,江苏苏州人,讲师,硕士,研究方向:机器人,智能控制. 常晋义(1955—),男,山西忻州人,教授,研究方向:决策支持系统. 殷晨波(1963—),男,江苏无锡人,教授,博导,研究方向:机器人技术、先进制造技术,车辆动力学. 基于ADAMS 的仿人机器人行走仿真 肖乐1,常晋义1,殷晨波2 (1.常熟理工学院计算机科学与工程学院,江苏常熟215500; 2.南京工业大学机械与动力工程学院,南京210009) 摘要:采用机械系统动力学仿真分析软件ADAMS 进行建模和动力学仿真,提供机器人三维 实体模型、运动学和动力学模型以及动画仿真.采用控制系统专业软件Matlab 进行机器人控制系统设计,提供控制关节目标轨迹、稳定控制算法并输出驱动力矩.通过ADAMS/Controls 接口模块建立起Matlab 与ADAMS 之间的数据接口.联合仿真方法为实现仿人机器人在线控制奠定了基础. 关键词:仿人机器人;虚拟样机;行走稳定性;联合仿真 中图分类号:TP24文献标识码:A 文章编号:1008-2794(2012)04-0073-06 由于仿人机器人研制的复杂性,有必要在物理样机制造之前先建立一个虚拟样机系统,在虚拟环境中模拟机器人双足行走的状态,通过模型计算出各个关节的驱动力矩、ZMP 点的变化轨迹等,并对设计方案进行优化,提高物理样机研制成功的概率[1-4].为了准确地建立仿人机器人的虚拟样机模型,发挥各类专业软件的优势,本文采用ADAMS 软件进行建模和动力学仿真,并在Matlab 中建立控制系统,Matlab 将机器人关节力矩控制指令传送给ADAMS ,ADAMS 将通过建立虚拟位置传感器将关节角实时反馈给Matlab ,实现联合仿真.1ADAMS 虚拟样机建模 ADAMS (Automatic Dynamic Analysis of Mechanical System )是世界上应用最广泛的机械系统动力学仿真分析软件[5-6].它由几十个模块组成,其中最主要的模块为ADAMS/View 用户界面模块和ADAMS/Solver 求解器,通过这两个模块可以对大部分的系统进行仿真分析.ADAMS/View 提供一个直接面向用户的基本操作环境,包括样机的建模和各种建模工具、样机模型数据的输入与编辑、与求解器和后处理等程序的自动连接、虚拟样机分析参数的设置、各种数据的输入和输出、同其他应用程序的接口等.ADAMS/Solver 是求解机械系统运动和动力学问题的程序.完成样机分析的准备工作以后,ADAMS/View 自动调用ADAMS/Solver 模块,求解样机模型的静力学、运动学、或动力学问题,完成仿真分析以后再自动地返回ADAMS/View 操作界面. 在ADAMS 中建立的仿人机器人虚拟样机模型及基本组成部件与主要关节如图1所示,其简化条件为: ①腿和地面都是刚性的,不考虑其弹性特征;②忽略纵向平面和横向平面的动力学耦合;③足与地面有足够

小型仿人机器人系统设计的方法

小型仿人机器人系统设计的方法 摘要:小型仿人机器人是近几年的研究热点,一个小小的仿人机器人中涉及了 多种学科领域例如电子工程、仿生学、信息工程、机械工程等,目前研制出与人 类相似度较高、功能相对完善的机器人一直是科学家的目标。本文主要探究仿人 机器人的设计原理以及设计方法,对一些程序进行详细分析,为以后的科技制造 提供参考意见。 关键词:小型;仿人机器人;系统设计;方法 小型仿人机器人凭借着与人类相似的外表、行为等一些外在特征以及经济化、人性化的 功能,更容易激起科技界的研究欲望,这种情况下,很容易推动我国科学技术与信息技术的 发展。 1.分析小型仿人机器人的设计理念 1.1分析仿人机器人的智能系统 从宏观方面来看,小型仿人机器人的智能系统必须拥有较高的运行速度,因为机器人在 启动的时候,视频采集系统、命令发送系统、显示系统、发音系统以及信息处理系统都得同 时运行,因此,对CPU内核的速率要求较高;小型仿人机器人做出的所有行为都是以采集的 视频信息为基础的,所以智能系统的研究重点是视频处理系统,综上所述,仿人机器人的智 能系统所具备的程序功能比较完善,需要的内存空间也比较大,因此,保障智能系统的运行 速度,能更好的推广仿人机器人的使用。 从微观方面来看,小型仿人机器人的智能系统必须具备音频、通信、摄像头、A/D、多路IO以及显示屏等设备[1]。 1.2分析智能系统的硬件设备 上文中分析了智能系统宏观方面的需求,对于控制器,常见的DSP以及单片机等系统是 不能满足其需求的,因此,可以在CPU处理器的基础上添加外围功能电路,这样既解决了运 行空间不足、运行速度较慢的缺陷,又实现了低成本的目的。 1.3分析组织层的硬件设备 本次研制的小型仿人机器人,其关节被设置成了19个自由节,在之后的使用过程中肯定会提高其关节自由度,进而更好的实现手臂功能、行走功能、俯身功能等一系列仿人运动。 综上所述,一个仿人机器人的关节自由度至少为19个。 此外,组织层还得确保小型仿人机器人运动过程中的稳定性,当组织层接收到运动信号时, 必须将信号输送给每一个关节,共同展开运动。 1.4A/D转换电路 在当前的设计过程中,由于CMOS数模转换器的高效性,可以将模拟信号同步输进八个 通道中,同时还能将信号转换成二进制模式。在这种情况下,很好的保障了小型仿人机器人 的运行效率。 2.分析控制系统的硬件 执行层硬件,其主要功能是发布信息、采集信息、控制小型仿人机器人运动、转换电源等,这也是控制系统的外围电路。发布信息时,控制系统会自动连接智能系统,借助发音器、显示器等一些机械设备,将信息输送给外界;采集信息时,智能系统中的摄像头、传感器、 电位计均是获取信息的来源;控制小型仿人机器人运动时,当每一个关节得到运动指令后, 会有控制系统协调完成,确保机器人活动过程中的稳定性;转换电源时,控制系统会将电源 输送给每一个部件,保障智能系统、组织层均能正常运行。 3.小型仿人机器人中控制系统的设计原理及组成 3.1控制系统中的软件功能框图 此次研制小型仿人机器人时,研究人员的设计理念为模块化程序设c1-思想,通过程序的 编写、翻译、检验,机器人便可开始使用。控制系统中的软件功能框图为下图1,其主要包 括摄像头、视频处理器、通信设备、语音输出设备、A/D采样设备、主程序控制器等。

工业机器人培养方案

工业机器人技术专业人才培养方案(2016级、三年制) 专业名称:工业机器人技术 专业代码: 招生对象:普通高中毕业生及同等学历者 学制与学历:三年制大专

一、制订人才培养方案的依据 为了适应社会经济建设的高速发展,满足社会对工业机器人技术应用高技能人才的需求,进一步推动高等职业教育体制改革,根据《国家中长期教育改革和发展规划纲要(2010-2020年)》、《国民经济和社会发展第十三个五年规划》、《机械工业十三五规划》、《教育部关于加强高职高专教育人才培养工作的意见》(教高[2000]2号)、《教育部关于以就业为导向深化高等职业教育改革的意见》(教高[2004]1号)与《关于全面提高高等职业教育教学质量的若干建议》(教高[2006]16号)、《教育部财政部关于支持高等职业学校提升专业服务产业发展能力的通知》(教职成[2011]11号)、《中国制造2025》及教育部关于发展高等职业教育相关文件精神,结合我公司实际情况,加强工业机器人技术专业的建设,制定了本专业人才培养方案。 二、培养目标与规格 培养目标:本专业培养拥护党的基本路线,德、智、体、美等全面发展,具有良好的科学文化素养、职业道德和扎实的文化基础知识。具有获取新知识、新技能的意识和能力,能适应不断变化的工作需求。熟悉企业生产流程,具有安全生产意识,严格按照行业安全工作规程进行操作,遵守各项工艺流程,重视环境保护,并具有独立解决非常规问题的基本能力。掌握现代工业机器人安装、调试、维护方面的专业知识和操作技能,具备机械结构设计、电气控制、传感技术、智能控制等专业技能,能从事工业机器人系统的模拟、编程、调试、操作、销售及工业机器人应用系统维护维修与管理、生产管理及服务于生产第一线工作的高素质高技能型人才。 (一)专业知识 1.具有常用电子元器件、集成器件、单片机的应用知识; 2.具有传感器应用的基本知识; 3.具有应用机械传动、液压与气动系统的基础知识; 4.具有PLC、变频器、触摸屏、组态软件控制技术的应用知识; 5.具有交流调速技术的应用知识; 6.具有机械系统绘图与设计的知识; 7.具有计算机接口、工业控制网络和自动化生产线系统的基础知识; 8.具有工业机器人原理、操作、编程与调试的知识; 9.具有检修工业机器人系统、自动化生产线系统故障的相关知识; 10.具有安全用电及救护常识。 (二)职业能力 1.读懂机器人应用系统的结构安装图和电气原理图的能力; 2.测绘简单机械部件生成零件图和装配图,跟进非标零件加工,完成装配工作的能力;

仿人形机器人的设计

赛伯乐人形机器人:第一部分- 设计 伊斯梅特·灿德德,穆罕默德·萨利姆·纳赛尔,蒋树声叶Tosunoglu萨布里佛 罗里达国际大学 机械工程学院 西弗拉格勒街10555 迈阿密,佛罗里达州33174 305-348-6841 cdede00阿2@https://www.360docs.net/doc/c514331704.html, 摘要 创造类人型机器人的目的是设计一个可以完成人类复杂动作,具有自主决策功能,能够帮助人类,甚至完成人类无法完成的任务的机器人。建立类人型机器人一直吸引了世界各地的科学家,虽然目的看似简单,但这是一个艰巨的任务。在这篇文章中,我们将呈现一种命名为赛伯乐的仿人机器人的概念,像双足动物一样行走,然后切换到四足的运动模式。第一部分的主要内容是,理想的系统标准,设计方案和最终设计选定以及通过运动学的分析得到仿人机器人的模拟方案。 关键字:仿人形机器人,赛伯乐机器人,双足,四足 1.引言 构建人形机器人的目的是简单地设计一个可以完成人类复杂运动和能够真诚地帮助人类的机器人。尽管其目的简单,但是要完成这个任务相当困难。例如前本田工程师实现了他们梦想建立一个进的仿人机器人,花了超过18年的时间,在这段时间里他们不断的学习,探究和实验,也走了不少的弯路。[1] 行走过程分为两个主要部分即静态和动态步行。静态步行人形机器人包括完整的移动身体的齿轮的基地脚区域,与此同时其他脚抬起并前进。这种机器人是从运动学角度(轨迹,或位移控制)来设计和控制的,结果是有相当大的脚以一个缓慢的速度行走。一个静态步行双足足动物,如本田P3的人形机器人,“不移动很像人并且能量效率低下。它移动与nonpendular外观相似,本田2000机器人在行走时需要大约2kw功率,他需要的功率是同样大小人类的肌肉工作功率的20倍[1]。动态稳定性需要快速行走和多样的地形。在行走时重心不在支撑腿区域内时,机器人在下一个动态平衡区域时就会失衡。 被动动态步行可增加到三分之一组不同类型的步行过程。无动力玩具士兵或企鹅早在一个世纪前就已经发明,它们可以沿着缓坡行走而没有任何电机的控制。通过对它们的腿和胳膊的长度和大众的仔细选择,这些玩具在行走时保持平衡而消耗很少的能量(来自重力)。这种模型以一种固定的方式行走,但他们的结构很简单。使用这个作为起点,可以添加更多的自由度,可以添加驱动和控制实现更加流畅的运动。 研究的目的是趋向于设计简单且能够实现更多功能。为此,我们选择了一个静态步行具有能力从两足改变到四足模式运动,以下部分提供一段到目前为止人形机器人研究历程。最后,介绍了最终设计理念的选择过程,最终设计的详细解释和提出离了初步的步态定义。 2、仿人机器人的发展历程 机器人的研究与应用在过去的三十年有了明显提高,机器人开始用于工业主要在装配生产线上。当他们发展得更智能的时候,在人们的日常生活中与人们的相互作用不断提高。 仿人机器人研究加速使得机器人智力水平的增加成为人类日常生活的一部分。以下阐述了机器人从简单的机械发展到动作形态都像人的类人型机器人的历程[2]。 古希腊的工程师ctesibus 让器官和水中与移动数字结合起来。 1774年瑞士发明家彼埃尔和Henri-louis jacquet-droz创造一些最复杂的机器人,他们的自动抄写员研制成功。这个栩栩如生的男孩可以画写任何长达40个字符的消息。一个女性的机器人演奏钢琴又是他们的另一重大发明之一。 1801约瑟提花发明了一种用打孔卡操作的纺织机器,这台机器被称为一个可编程纺织

人形机器人

人型机器人的发展现状与未来展望

什么是人形机器人 人形机器人,又称仿人机器人,是具有人形的机器人。1886年法国作家利尔亚当在他的小说《未来夏娃》中将外表像人的机器起名为“安德罗丁”(android),就是一种人形机器人。按照利尔亚描述,人形机器人由4部分组成:生命系统(平衡、步行、发声、身体摆动、感觉、表情、调节运动等);造型解质(关节能自由运动的金属覆盖体,一种盔甲);肌肉(在上述盔甲上有肉体、静脉、性别等身体的各种形态); 人造皮肤(含有肤色、轮廓、头发、视觉、牙齿、手爪等)。

构成及特点 现代的人形机器人一种智能化机器人,例如 ROBOT·X人形机器人,在机器的各活动关节配置有多达17个伺服器,具有17个自由度,特显灵活,更能完成诸如手臂后摆90度的高难度动作。它还配以设计优良的控制系统,通过自身智能编程软件便能自动地完成整套动作。 人形机器人随音乐起舞、行走、起卧、武术表演、翻跟斗等杂技以及各种奥运竞赛动作,。ROBOT·X人形机器人采用世界著名的日本FUTABA伺服器,具有高扭力、高转速、高稳定、反应灵敏、无抖动、转动角度大等优点,超快速高精度金属齿轮,耐冲击。

人形机器人集机、电、材料、计算机、传感器、控制技术等多门学科于一体,是一个国家高科技实力和发展水平的重要标志,因此,世界发达国家都不惜投入巨资进行开发研究。日、美英等国都在研制仿人形机器人方面做了大量的工作,并已取得突破性的进展。 日本本田公司于1997年10月推出了仿人形机器人P3,美国麻省理工学院研制出了仿人形机器人科戈(COG),德国和澳洲共同研制出了装有52个汽缸,身高2米、体重150公斤的大型机器人。 美国麻省理工学院研制出了一种有着像人一样眼睛的新型机器人,它能与人类进行交流,能对周围的环境做出回应,并能协助人类完成许多工作。2010年6月16日日本东京大学和大阪大学组成的科研小组向公众展示了一款仿真婴儿机器人,它就是新的一款人形机器人。这个名叫“野尾”的婴儿娃娃身高71厘米,在柔软的仿真皮肤下面共有600个传感器,可以做出伸手、转头等动作。当被拥抱时,忽闪着大眼睛好奇地看着世界,十分可爱。

仿人机器人发展概况 调查

仿人机器人发展概况 摘要:介绍了国内外仿人机器人的发展特点,以行走机构为主要内容详细分析了日本、美国等几种仿人机器人的主要技术及其技术指标,根据国外的样机设计,分析了仿人机器人的控制设计中的一些问题,就国外仿人机器人发展对中国仿人机器人发展的差异提出了看法。 关键词: 仿人机器人,技术,双足步行 1概述 仿人机器人在过去的10多年特别是近5年中发展迅猛,自从有关综述文章发表以来,情况有了很大改变。 行走机构是仿人机器人的关键技术,对于仿人机器人的研究是从对行走机构的研究开始的,日本旱稻田大学在1973年研制成功了最早具有记载的双足步行人形机构WABOT-1。本文重点论述世界范围内仿人机器人的近期发展,对行走机构的发展做重点介绍。 2 仿人机器人近期发展特点 现如今,世界各个国家都进行仿人机器人的研究,据韩国的一个经常更新的仿人机器人网站统计,2005年3月5日,世界上共有76各仿人机器人项目正在进行中,其中日本36个,美国10个,韩国7个,英国4个,中国3个,瑞典2个,澳大利亚、泰国、新加坡、保加利亚、伊朗、意大利、奥地利、俄罗斯等国各有1个,从统计数字可以看出当时日本在此领域的领先地位及其他各国的竞争实力。2005年2月18日出版的《科学》杂志上介绍了一种全新的行走机构,康奈尔大学、麻省理工学院和荷兰Delft理工大学的研究人员分别展示了基于这种行走机构的样机。 这种行走机构的概念来自一个简单的玩具:行走企鹅。这个企鹅臀部有两个没有动力的关节分别支撑两条直腿,该企鹅可以沿着斜坡摇摇晃晃的行走而下,这就是被动动力行走者。问题是在平地上企鹅不会行走,研究人员贡献在于设计了仅用少量驱动器就可以在平地上行走的行走机构。以Asimo为代表的传统仿人机器人每一个关节都用一个驱动器。新行走机构则不同,它的关节分为有驱动和无驱动两种,以康奈尔的设计为例,机器人每条腿的自由度为5个(臀1,膝2,踝2),其中只有一个踝关节用电机驱动,其他都是被动的,双手摆动各有一个自由度,通过机械结构由双腿带动,左腿带动右臂,右腿带动左臂。走动时,感知到左足触地时,右踝驱动右足踢开地面,使右腿摆动至左腿前方,完成一步,反之亦然。新行走机构的特点是节省能源,据说只需要通常行走机构的十分之一的动力,另外,新型步行机器人走路时一起一伏,跟人没什么两样。Delft设计和康奈尔的设计大致相同,只是采用气动驱动,MIT的设计则为每条腿有6个自由度,其中两个踝部关节用电机驱动,其他都是被动的。从录像看,康奈尔和的机器人的行走姿态是令人满意的,但似乎它们只能有一种走法.不象每Delft

机器人分布式控制系统设计与实现

机器人分布式控制系统设计与实现 1引言 目前,机器人系统的特点是开放式机器人控制,强调结构化、模块化、 可扩展性、交互性,是对机器人设计结构单一、信息封闭、缺少交互性缺点的突破。分层分布式控制系统采用集中管理,分散控制方式,这种控制方法优点体 现在:集中监控和管理,管理和现场分离,管理更加综合化和系统化;实现分 散控制可使各功能模块的设计、装配、调试以及维护相互独立,系统控制的危 险性分散,可靠性提高,投资减小;采用网络通信技术,可根据需要增加以微 处理器为核心的功能模块,具有良好的系统开放性、扩展性和升级特性。 本论文详细介绍了一种分层分布式控制系统的设计方案,系统由上到下分 为主控中心决策层、车载PC运算层、下位机驱动子层以及位置反馈子层。主 控中心决策层是系统的主层,可以是台式机或笔记本电脑,基于VC++编译环 境设计的人机交互界面,满足友好、便于操作的要求,主控中心决策层的功能 是总体规划和分配任务,对机器人进行远程监控;车载PC运算层为一台笔记 本电脑,基于VC++编译环境设计了控制界面,通过无线网卡与主控中心决策 层进行数据传输,采用面向连接可靠的TCP传输控制协议,保证数据传输的可 靠性;下位机驱动子层和位置反馈子层是相互独立的功能模块,与车载PC运 算层之间通过串口进行通信;下位机驱动子层是一个完整的直流电 机闭环控制系统,包括CPU、控制芯片、驱动芯片以及增量式光电编码器;位置反馈子层通过CPU的I/O口和中断得到机器人车轮轴转角信息,结合机器 人机械系统的实际尺寸计算机器人中心的实际位置信息,处理好的位置信息通 过串口反馈给车载PC运算层。该控制系统应用在国家自然科学基金资助项目 和国家重点基础研究发展计划973项目的移动机器人平台上,运动控制测试结 果表明,分层分布式控制方式控制精度高,稳定性好,系统响应迅速;同时该 控制系统具有超强的计算能力和二次开发潜力,根据项目研究需要可在各个子 层进行分布式扩展,比如在下位机驱动子层和位置反馈子层的同级层中扩展传 感器功能子层,增加机器人的智能。该控制系统为项目的实验工作奠定基础。 2分层分布式控制系统设计 1. 基于VC++的主控中心决策层设计 主控中心决策层的作用是总体规划和分配任务,对机器人进行远程监控。 基于VC++编译环境,采用模块化方法对人机交互系统进行设计,分为网络数 据传输模块、运动参数输入模块、轨迹显示模块、视觉监控模块。如图

人形机器人

人形机器人

这款人形机器人在2000年便已亮相,身高约1.28米、体重55公斤,最新版本已经可以实现跑动(6小时/公里),并且与人类进行互动,提供诸如端餐盘等服务,目前已经在世界范围内得到认可,在一些商业场合为 人们服务。 开发者:日本本田技研工业株式会社

开发者:意大利科技学院 iCub(i取自《我,机器人》里的i;Cub取自 于《丛林之书》的狼群养大的人类小男孩 man-cub),身长104cm,体形跟一个5岁大 的小孩差不多。四肢活动范围可达53度, 具有触觉和肢体协调能力,可以抓东西、 玩捉迷藏,甚至还会跟着音乐跳舞。它的 眼睛和头部可以跟踪运动中小球的移动轨 迹,手臂上安装有定制化的压力传感器。

开发者:法国波尔InriaFlower实验室 开源3D打印人形机器人,Poppy拥有可弯曲的腿、 多关节的躯干和柔软的身体。如此设计能够加强其 在行走过程中的健壮性、灵活性和稳定性。所有机 械部件的设计都根据重量进行优化,并尽可能地减 轻Poppy的体重。为了大量“瘦身”,采用了动力稍弱 的轻型电机。采用P A材料(尼龙)和选择性激光烧 结技术,3D打印其零件。

Romeo 问世已有8年,身高约1.4米、体重40公斤,身体有碳纤维和橡胶材质组成,旨在服务老人。它不仅能够行走,还能够聆听指令和回到问题,目前已经获得法国政府和欧盟亲睐,将在2017至2019年逐渐投放到 欧洲养老院,更好地服务老人。 开发者:日本软银机器人公司

开发者:英国Engineered Arts公司 RoboThespian是一款用于公共环境互动的人形机 器人,目前已经发展至第三代。它采用了完全互 动的设计,肢体灵活,并且内置多语言,能够与 人类沟通。另外,它配备了非常简单的接口,研 究人员可以通过网络上传配置文件,实现更广泛 的研究和应用形式。

仿人机器人自主学习之路

仿人机器人的自主学习之路-机械制造论文 仿人机器人的自主学习之路 文/罗定生 罗定生北京大学机器感知与智能教育部重点实验室副教授 中国电子学会教育工作委员会副秘书长使机器人具备智能,目前对人类来说还是一项巨大挑战,甚至“智能的本质是什么?”这个问题都还没有确切的答案。但是以人的智能行为能力为蓝本,从机器人环境知觉组织、交互与协作、知识获取与推理、自主认知与高级决策等角度展开机器人的智能性研究,正成为现阶段机器人领域研究的主题。设计和制造机器人并使之具有类人的智能,是人类文明进步与科技发展的目标之一。自上世纪中叶第一台可编程机械手及工业机器人问世以来,机器人的研究取得了丰硕的成果,并在包括工业、医学、农业、建筑业、军事等领域得以广泛应用。由于机器人技术综合了多个学科的研究成果,代表了高科技发展的前沿,因此机器人成为体现各国科技实力的一项重要指标,引发了全球研究的热潮。 探索的步伐从未停歇 综观机器人研发的历程,从最早我国西周出现的“歌舞伶人”、古希腊人发明的“自动机(Automata)”,到当下各国研发的各类先进的机器人,人类对机器人的研究经历了从探索概念原型、面向程控机械、注重自主功能到强调高智能水平等发展阶段。 1954年,第一台可编程机器人(机械手)和1959年第一台工业机器人相继问世,标志着真正意义上的机器人诞生;1968年美国斯坦福研究所研制出名为Shakey的第一台自主移动机器人,机器人以独立可移动个体的身份出现在世人

面前;1969年日本早稻田大学加藤一郎实验室研制了第一台以双脚走路的人形机器人,与人们长期期待的真正像人一样的机器人梦想实现了接轨。 机器人学涉及众多学科的技术革新以及来自人们生产生活的大量实际需求,促使机器人技术飞速发展。然而,重中之重是机器人行业巨大潜在价值引发了各国政府的强大支持、各大公司及科研院所的产学研整合。正是这些力量的汇聚,架构了一个前景广阔的机器人产业。 随着与机器人学紧密相关各学科的不断突破和迅猛发展,机器人的研发有了坚实的基础。20世纪末,一系列各种各样各具特色的机器人井喷式地涌现。在2015年6月份由美国国防先进项目研究局(DARPA)举办的挑战赛上,登台亮相了一批来自世界各国的先进机器人。几乎每一款先进机器人的研制都有其相对应的强大力量作支撑——美国国防先进项目研究局(DARPA)支持下的波士顿动力研究所(Boston Dynamics)大狗(BigDog)机器人、Petman机器人、美国麻省理工学院(MIT)Atlas机器人与猎豹(Cheetah)机器人、欧盟框架计划(EUFP6, EUFP7, Horizon 2020)支持下的iCub 、日本产业技术综合研究所(AIST)HRP系列机器人、日本本田公司的ASIMO机器人,以及韩国高等科技研究院的HUBO机器人等。 尽管机器人的研发取得了长足的进展,然而,如何使机器人具备智能仍然是一项具有极大挑战的课题。而首先要回答的问题便是:机器人能否具备智能?这是一个哲学性质的命题,对这一命题的完美解答,是以另一个问题的回答为基础的,那就是“智能的本质是什么?”(该问题与物质、宇宙、生命被学者并列为自然界的四大奥秘)。目前看来,在包括脑科学与认知科学在内的众多相关学科取得更大的根本性突破进展之前,该问题是无法予以完美解答的。

相关文档
最新文档