高中物理必修二万有引力与航天讲义

高中物理必修二万有引力与航天讲义
高中物理必修二万有引力与航天讲义

学科教师辅导教案

组长审核:

图3

A.P1的平均密度比P2的大 B.P1的“第一宇宙速度”比P2的小

C.s1的向心加速度比s2的大 D.s1的公转周期比s2的大

AC

2、如图1所示,地球赤道上的山丘e,近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动.设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( BD )

A. v1>v2>v3

B. v1

C. a1>a2>a3

D. a1

二)相关知识点讲解、方法总结

1.物理量随轨道半径变化的规律

2.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.

(3)两种卫星的轨道平面一定通过地球的球心

同步卫星的五个“一定”

1.轨道平面一定:轨道平面与赤道平面共面. 2.周期一定:与地球自转周期相同,即T =24 h. 3.角速度一定:与地球自转的角速度相同.

4.高度一定:由G Mm (R +h )2=m 4π

2T 2(R +h )得同步卫星离地面的高度h = 3GMT 2

4π2

-R .

5.速率一定:v =

GM

R +h

. 三)巩固练习

1.(2017·江西鹰潭一模★★)我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射.量子卫星成功运行后,我国将在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系.假设量子卫星轨道在赤道平面,如图1所示.已知量子卫星的轨道半径是地球半径的m 倍,同步卫星的轨道半径是地球半径的n 倍,图中P 点是地球赤道上一点,由此可知( D )

A .同步卫星与量子卫星的运行周期之比为n 3

m 3 B .同步卫星与P 点的速度之比为

1

n

C .量子卫星与同步卫星的速度之比为n

m

D .量子卫星与P 点的速度之比为

n 3m

图1 图2 图3

2.(2017·山东日照一模★★★)2016年11月22日,我国成功发射了天链一号04星.天链一号04星是我国发射的第4颗地球同步卫星,它与天链一号02星、03星实现组网运行,为我国神舟飞船、空间实验室天宫二号提供数据中继与测控服务.如图2所示,1是天宫二号绕地球稳定运行的轨道,2是天链一号绕地球稳定运行的轨道.下列说法正确的是( B )

A.天链一号04星的最小发射速度是11.2 km/s

B.天链一号04星的运行速度小于天宫二号的运行速度

C.为了便于测控,天链一号04星相对于地面静止于北京飞控中心的正上方

D.由于技术进步,天链一号04星的运行速度可能大于天链一号02星的运行速度

3.(多选)(2017·黑龙江大庆一模★★★)如图3所示,a为放在地球赤道上随地球表面一起转动的物体,b为处于地面附近近地轨道上的卫星,c是地球同步卫星,d是高空探测卫星,若a、b、c、d的质量相同,地球表面附近的重力加速度为g.则下列说法正确的是( BD )

A.a和b的向心加速度都等于重力加速度g B.b的角速度最大

C.c距离地面的高度不是一确定值

D.d是三颗卫星中动能最小,机械能最大的

4.(2017·福建漳州联考★★)同步卫星离地面距离为h,运行速率为v1,加速度为a1,地球赤道上物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R.则( D)

A.v1

v2

R

h+R

B.

a1

a2

h+R

R

C.a1

a2

R2

(h+R)2

D.

v1

v2

R

h+R

5、如图4,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是( )

图4

A.甲的向心加速度比乙的小

B.甲的运行周期比乙的小

C.甲的角速度比乙的大

D.甲的线速度比乙的大

答案 A

考点二:卫星变轨问题分析 二)例题解析

(2016·天津理综·3改编★★★)如图6所示,我国发射的“天宫二号”空间实验室已与“神舟十一号”飞船完成对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( C )

图6

A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接

B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接

C .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接

D .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接

三)相关知识点讲解、方法总结

1.速度:如图5所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .

图5

2.加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.

3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由

开普勒第三定律r 3

T

2=k 可知T 1

4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1

三)巩固练习

1.(2017·北京房山区模拟★★)我国的“神舟十一号”载人飞船已于2016年10月17日发射升空,入轨两天后,与“天宫二号”成功对接,顺利完成任务.假定对接前,“天宫二号”在如图1所示的轨道3上绕地球做匀速圆周运动,而“神舟十一号”在图中轨道1上绕地球做匀速圆周运动,两者都在图示平面内顺时针运转.若“神舟十一号”在轨道1上的P点瞬间改变其速度的大小,使其运行的轨道变为椭圆轨道2,并在轨道2和轨道3的切点Q与“天宫二号”进行对接,图中P、Q、K三点位于同一直线上,则( A)

A.“神舟十一号”应在P点瞬间加速才能使其运动轨道由1变为2

B.“神舟十一号”沿椭圆轨道2从Q点飞向P点过程中,万有引力做负功

C.“神舟十一号”沿椭圆轨道2从P点飞向Q点过程中机械能不断增大

D.“天宫二号”在轨道3上经过Q点时的速度与“神舟十一号”在轨道2上经过Q点时的速度相等

图1 图2

2.(多选)(2017·山东淄博一模★★)“嫦娥三号”从距月面高度为100 km的环月圆轨道Ⅰ上的P点实施变轨,进入近月点为15 km的椭圆轨道Ⅱ,从近月点Q成功落月,如图2所示.关于“嫦娥三号”,下列说法正确的是( BD )

A.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期

B.沿轨道Ⅰ运行至P点时,需制动减速才能进入轨道Ⅱ

C.沿轨道Ⅱ运行时,在P点的加速度大小等于在Q点的加速度大小

D.在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做正功,它的动能增加,机械能不变3.(2017·江西省六校3月联考★★)2016年10月23日早上,天宫二号空间实验室上搭载的一颗小卫星(伴星)在太空中成功释放,并且对天宫二号和神舟十一号组合体进行了第一次拍照.“伴星”经调整后,和“天宫

二号”一样绕地球做匀速圆周运动.但比“天宫二号”离地面稍高一些,那么( D ) A .“伴星”的运行周期比“天宫二号”稍小一些

B .从地球上发射一颗到“伴星”轨道运动的卫星,发射速度要大于11.2 km/s

C .在同一轨道上,若后面的卫星一旦加速,将与前面的卫星相碰撞

D .若伴星失去动力且受阻力作用,轨道半径将变小,则有可能与“天宫二号”相碰撞

4.(多选)(2018·湖北黄冈模拟★★)2015年12月10日,我国成功将中星1C 卫星发射升空,卫星顺利进入预定转移轨道.如图3所示是某卫星沿椭圆轨道绕地球运动的示意图,已知地球半径为R ,地球表面的重力加速度为g ,卫星远地点P 距地心O 的距离为3R .则( BC )

图3

A .卫星在远地点的速度大于

3gR

3

B .卫星经过远地点时速度最小

C .卫星经过远地点时的加速度大小为g

9 D .卫星经过远地点时加速,卫星将不能再次经过远地点

5.★★有研究表明,目前月球远离地球的速度是每年3.82±0.07 cm.则10亿年后月球与现在相比( C ) A .绕地球做圆周运动的周期变小 B .绕地球做圆周运动的加速度变大 C .绕地球做圆周运动的线速度变小 D .地月之间的引力势能变小

(四)本节综合练习

1. 2010年10月1日我国成功发射“嫦娥二号”绕月卫星,绕月运行高度为100公里.2007年10月24日发射的“嫦娥一号”绕月运行高度为200公里,如图6所示.“嫦娥二号”卫星与“嫦娥一号”卫星绕月运行相比,下列判断正确的是 ( AD )

A .周期小,线速度大

B .周期大,加速度小

C .线速度大,加速度小

D .角速度大,线速度大

2.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率,如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动,由此能得到半径为R、密度为ρ、质量为M且分布均匀的星球的最小自转周期T.下列表达式中正确的是( AD )

A.T=2πR3

GM

B.T=2π

3R3

GM

C.T=π

D.T=

3.2010年10月1日,“嫦娥二号”在四川西昌发射成功,10月6日实施第一次近月制动,进入周期约为12 h的椭圆环月轨道;10月8日实施第二次近月制动,进入周期约为3.5h的椭圆环月轨道;10月9日实施第三次近月制动,进入轨道高度约为100 km的圆形环月工作轨道.实施近月制动的位置都是在相应的近月点P,如图7所示.则“嫦娥二号” ( BC )

A.从不同轨道经过P点时,速度大小相同

B.从不同轨道经过P点(不制动)时,加速度大小相同

C.在两条椭圆环月轨道上运行时,机械能不同

D.在椭圆环月轨道上运行的过程中受到月球的万有引力大小不变

4.我国“嫦娥二号”探月卫星于2010年10月成功发射.在“嫦娥二号”卫星奔月过程中,在月球上空有一次变轨过程,是由椭圆轨道A变为近月圆形轨道B,A、B两轨道相切于P点,如图8所示.探月卫星先后沿

A、B轨道运动经过P点时,下列说法正确的是( B )

A.卫星运行的速度v A=v B

B.卫星受月球的引力F A=F B

C.卫星的加速度a A>a B

D.卫星的动能E k A

5.“嫦娥二号”卫星已成功发射,这次发射后卫星直接进入近地点高度200公里、远地点高度约38万公里的地月转移轨道直接奔月,当卫星到达月球附近的特定位置时,卫星就必须“急刹车”,也就是近月制动,以确保卫星既能被月球准确捕获,又不会撞上月球,并由此进入近月点100公里、周期12小时的椭圆轨道a.再经过两次轨道调整,进入100公里的近月圆轨道b,轨道a和b相切于P点,如图9所示,下列说法正确的是

( AD )

A.“嫦娥二号”卫星的发射速度大于7.9 km/s,小于11.2 km/s

B.“嫦娥二号”卫星的发射速度大于11.2 km/s

C.“嫦娥二号”卫星在轨道a、b上经过P点的速度v a=v b

D.“嫦娥二号”卫星在轨道a、b上经过P点的加速度分别为a a、a b,则a a=a b

(五)课堂总结

三、出门测

1、(多选)如图9是“嫦娥三号”飞行轨道示意图,在地月转移段,若不计其他星体的影响,关闭发动机后,下列说法正确的是( )

图9

A.“嫦娥三号”飞行速度一定越来越小

B.“嫦娥三号”的动能可能增大

C.“嫦娥三号”的动能和引力势能之和一定不变

D.“嫦娥三号”的动能和引力势能之和可能增大

答案AC

2、(多选★★)2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯—土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.已知火星的质量约为地球质量

的1

9

,火星的半径约为地球半径的

1

2

.下列关于火星探测器的说法中正确的是( CD )

A.发射速度只要大于第一宇宙速度即可

B.发射速度只有达到第三宇宙速度才可以

C.发射速度应大于第二宇宙速度而小于第三宇宙速度

D.火星探测器环绕火星运行的最大速度为地球第一宇宙速度的

2 3

3、★★★如图4所示,“嫦娥三号”探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅰ为圆形轨道,轨道Ⅱ为椭圆轨道.下列说法正确的是( C )

图4

A.探测器在轨道Ⅰ运行时的加速度大于月球表面的重力加速度

B.探测器在轨道Ⅰ经过P点时的加速度小于在轨道Ⅱ经过P点时的加速度

C.探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期

D.探测器在P点由轨道Ⅰ进入轨道Ⅱ必须点火加速

4.嫦娥三号携带有一台无人月球车,重3吨多,是当时我国设计的最复杂的航天器.如图7所示为其飞行轨道示意图,则下列说法正确的是( )

图7

A.嫦娥三号的发射速度应该大于11.2 km/s

B.嫦娥三号在环月轨道1上P点的加速度大于在环月轨道2上P点的加速度

C.嫦娥三号在环月轨道2上运行周期比在环月轨道1上运行周期小

D.嫦娥三号在动力下降段中一直处于完全失重状态

答案 C

5、(多选)某航天飞机在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图8所示.关于航天飞机的运动,下列说法中正确的有( )

图8

A.在轨道Ⅱ上经过A的速度小于经过B的速度

B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能

C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期

D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度

答案ABC

6、如图4所示,同步卫星与地心的距离为r,运行速率为v1,向心加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是 ( AD )

A.a1

a2

r

R

B.

a1

a2

=(

R

r

)2

C.v1

v2

r

R

D.

v1

v2

R

r

四、练一练

1.我国于2010年10月1日成功发射了月球探测卫星“嫦娥二号”CE-2,CE-2在椭圆轨道近月点Q完成近月拍摄任务后,到达椭圆轨道的远月点P变轨成圆形轨道,如图1所示.忽略地球对CE-2的影响,则CE-2 ( BCD )

A.在由椭圆轨道变成圆轨道过程中机械能不变

B.在由椭圆轨道变成圆轨道过程中线速度增大

C.在Q点的线速度比沿圆轨道运动的线速度大

D.在Q点的加速度比沿圆轨道运动的加速度大

2.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运行周期127分钟.若还知道引力常量和月球平均半径,仅利用以上条件不能求出的是 (B )

A.月球表面的重力加速度

B.月球对卫星的吸引力

C.卫星绕月运行的速度

D.卫星绕月运行的加速度

3.据报道,“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形轨道距月球表面分别约为200 km和100 km,运行速率分别为v1和v2.那么,v1和v2的比值为(月球半径取1 700 km) ( C )

A.19

18

B.

19

18

C.

18

19

D.

18

19

4.如图2所示,A为静止于地球赤道上的物体,B为绕地球沿椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点.已知A、B、C绕地心运动的周期相同,相对于地心,下列说法中正确的是 ( C )

A.物体A和卫星C具有相同大小的线速度

B.物体A和卫星C具有相同大小的加速度

C.卫星B在P点的加速度与卫星C在该点的加速度一定相同

D.卫星B在P点的线速度与卫星C在该点的线速度一定相同

5.全球定位系统(GPS)有24颗卫星分布在绕地球的6个轨道上运行,距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6 400 km,则全球定位系统的这些卫星的运行速度约为( B )

A.3.1 km/s B.3.9 km/s

C.7.9 km/s D.11.2 km/s

6.2010年12月18日凌晨4时20分,以“金牌火箭”著称的“长征三号甲”运载火箭在西昌卫星发射中心点火升空.火箭飞行832.1秒后,成功将第七颗北斗导航卫星送入太空预定转移轨道,圆满完成任务.本次发射的第七颗北斗导航卫星是我国今年连续发射的第五颗北斗导航系统组网卫星,卫星的转移轨道为一椭圆,如图3所示,地球的球心位于该椭圆的一个焦点上,A、B两点分别是卫星转移轨道上的近地点和远地点.若A点在地面附近,且卫星所受阻力可以忽略不计,则( BC )

A.运动到B点时其速率可能等于7.9 km/s

B.运动到A点时其速率一定大于7.9 km/s

C.若要卫星在B点所在的高度同步轨道做匀速圆周运动,需在B点加速

D .若要卫星在B 点所在的高度同步轨道做匀速圆周运动,需在A 点加速

7.北斗卫星导航系统第三颗组网卫星(简称“三号卫星”)的工作轨道为地球同步轨道,设地球半径为R ,“三号卫星”的离地高度为h ,则关于地球赤道上静止的物体、地球近地环绕卫星和“三号卫星”的有关物理量下列说法中正确的是 ( C ) A .赤道上物体与“三号卫星”的线速度之比为v 1v 3=

R +h

R

B .近地卫星与“三号卫星”的角速度之比为

ω2ω3=(R +h R

)2 C .近地卫星与“三号卫星”的周期之比为T 2T 3

(

R

R +h

)3

D .赤道上物体与“三号卫星”的向心加速度之比为a 1a 3=(

R +h R

)2

8.已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,不考虑地球自转的影响. (1)求卫星环绕地球运行的第一宇宙速度v 1;

(2)若卫星绕地球做匀速圆周运动且运行周期为T ,求卫星运行半径r ;

(3)由题目所给条件,请提出一种估算地球平均密度的方法,并推导出密度表达式. (1)gR (2) 3gR 2T 2

4π2 (3)ρ=

3g

4πGR

高考物理万有引力与航天专题训练答案

高考物理万有引力与航天专题训练答案 一、高中物理精讲专题测试万有引力与航天 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

万有引力与航天 -典型例题(修改稿)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 万有引力与航天--例题 考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =m ω2 r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体 表面的重力加速度). 2.天体质量和密度的计算 (1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2 G , 天体密度ρ=M V =M 43 πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r . ①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3 GT 2; ②若已知天体半径R ,则天体的平均密度

ρ=M V =M 43 πR 3=3πr 3GT 2R 3 ; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R , 则天体密度ρ=3π GT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中 心天体的密度. 例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2 G B .太阳的质量m 太=4π2L 32 GT 22 C .月球的质量m 月=4π2L 3 1 GT 21 D .可求月球、地球及太阳的密度 1.[天体质量的估算]“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G =6.67×10 - 11 N·m 2/kg 2,月球的半径为 1.74×103 km.利用以上数据估算月球的质量约为( ) A .8.1×1010 kg B .7.4×1013 kg C .5.4×1019 kg D .7.4×1022 kg 2.[天体密度的计算]“嫦娥三号”探测器已于2013年12月2日1时30分,在西昌卫星发射中心成功发射.“嫦娥三号”携带“玉免号”月球车首次实现月球软着陆和月面巡视勘察,并开展月表形貌与地质构造调查等科学探测.已知月球半径为R 0,月 球表面处重力加速度为g 0,地球和月球的半径之比为R R 0=4,表面重力加速度之比为 g g 0 =6,则地球和月球的密度之比ρ ρ0为( ) A.23 B.3 2 C .4 D .6

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求: (1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期. 【答案】(1) R=m M M +L, r=m M m +L,(2)()3L G M m + 【解析】 (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+ 两星做圆周运动时的向心力由万有引力提供,则有:22 22244mM G mR Mr L T T ππ== 可得 R M r m = ,又因为L R r =+ 所以可以解得:M R L M m = +,m r L M m =+; (2)根据(1)可以得到:2222244mM M G m R m L L T T M m ππ==?+ 则:()()233 42L L T M m G G m M π= =++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径. 2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ; (3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .

万有引力与航天 -典型例题(修改稿)

万有引力与航天--例题 考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =m ω2 r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的 重力加速度). 2.天体质量和密度的计算 (1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2 G , 天体密度ρ=M V =M 43 πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r . ①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3 GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43 πR 3=3πr 3GT 2R 3 ; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体 密度ρ=3π GT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2 G B .太阳的质量m 太=4π2L 32 GT 22 C .月球的质量m 月=4π2L 31 GT 21 D .可求月球、地球及太阳的密度 1.[天体质量的估算]“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200

人教版高中物理必修二高一万有引力与航天

高中物理学习材料 (马鸣风萧萧**整理制作) 河北省衡水市景县梁集中学2014-2015学年度高一万有引力与航天 专项训练 万有引力与航天 (90分钟 100分) 一、选择题(本大题共12小题,每小题4分,共48分.每小题至少一个答案正确,选不全得2分) 1.(2011·信阳高一检测)要使两物体间万有引力减小到原来的1/8,可采取的方法是( ) A.使两物体的质量各减少一半,距离保持不变 B.使两物体间距离变为原来的2倍,其中一个物体质量减为原来的1/2 C.使其中一个物体质量减为原来的1/4,距离不变 D.使两物体质量及它们之间的距离都减为原来的1/4 2.(2011·平川高一检测)关于人造地球卫星的运行速度和发射速度,以下说法中正确的是( ) A.低轨道卫星的运行速度大,发射速度也大 B.低轨道卫星的运行速度大,但发射速度小 C.高轨道卫星的运行速度小,发射速度也小 D.高轨道卫星的运行速度小,但发射速度大 3.(2011·广州高一检测)美国宇航员评出了太阳系外10颗最神奇的行星,在这10颗最神奇的行星中排名第三的是一颗不断缩小的行星,命名为HD209458b,它的一年只有3.5个地球日.这颗行星以极近的距离绕恒

星运转,因此它的大气层不断被恒星风吹走.据科学家估计,这颗行星每秒就丢失至少10 000吨物质,最终这颗缩小的行星将只剩下一个死核.假设该行星是以其球心为中心均匀减小的,且其绕恒星做匀速圆周运动.下列说法正确的是( ) A.该行星绕恒星运行周期会不断增大 B.该行星绕恒星运行的速度大小会不断减小 C.该行星绕恒星运行周期不变 D.该行星绕恒星运行的线速度大小不变 4.(2011·山东高考)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是 ( ) A.甲的周期大于乙的周期 B.乙的速度大于第一宇宙速度 C.甲的加速度小于乙的加速度 D.甲在运行时能经过北极的正上方 5.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A.6倍 B.4倍 C.25/9倍 D.12倍 6.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a,设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则( ) A.g1=a B.g2=a

备战2021新高考物理-重点专题-万有引力与航天(三)(含解析)

备战2021新高考物理-重点专题-万有引力与航天(三) 一、单选题 1.三颗人造地球卫星绕地球做匀速圆周运动,运行方向如图所示.已知 ,则关于三颗卫星,下列说法错误的是() A.卫星运行线速度关系为 B.卫星轨道半径与运行周期关系为 C.已知万有引力常量G,现测得卫星A的运行周期T A和轨道半径R A,可求地球的平均密度 D.为使A 与B同向对接,可对A适当加速 2.如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是() A.B,C的角速度相等,且小于A的角速度 B.B,C的线速度大小相等,且大于A的线速度 C.B,C的向心加速度相等,且大于A的向心加速度 D.B,C的周期相等,且小于A的周期 3.2020年4月24日,国家航天局宣布,我国行星探测任务命名为“天问”,首次火星探测任务命名为“天问一号”。已知万有引力常量,为计算火星的质量,需要测量的数据是() A.火星表面的重力加速度和火星绕太阳做匀速圆周运动的轨道半径 B.火星绕太阳做匀速圆周运动的轨道半径和火星的公转周期 C.某卫星绕火星做匀速圆周运动的周期和火星的半径 D.某卫星绕火星做匀速圆周运动的轨道半径和公转周期 4.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下面说法中正确的是()

A.g′=0 B.g′= C.F N=0 D.F N= 5.2019年11月23日8时55分,我国在西昌卫星发射中心用“长征三号“乙运载火箭,以“一箭双星”方式成功发射第50、51颗北斗导航卫星。两颗卫星均属于中圆轨道(MEO)卫星,是我国的“北斗三号”系统的组网卫星。这两颗卫星的中圆轨道(MEO)是一种周期为12小时,轨道面与赤道平面夹角为60°的圆轨道。是经过GPS和GLONASS运行证明性能优良的全球导航卫星轨道。关于这两颗卫星,下列说法正确的是() A.这两颗卫星的动能一定相同 B.这两颗卫星绕地心运动的角速度是长城随地球自转角速度的4倍 C.这两颗卫星的轨道半径是同步卫星轨道半径的 D.其中一颗卫星每天会经过赤道正上方2次 6.如图所示,a、b、c是地球大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相等且小于c的质量,则下列判断错误的是() A.b所需向心力最小 B.b、c周期相等,且大于a的周期 C.b、c向心加速度大小相等,且大于a的向心加速度 D.b、c线速度大小相等,且小于a的线速度 7.将地球看成质量均匀的球体,假如地球自转速度增大,下列说法中正确的是() A.放在赤道地面上的物体所受的万有引力增大 B.放在两极地面上的物体所受的重力增大 C.放在赤道地面上的物体随地球自转所需的向心力增大 D.放在赤道地面上的物体所受的重力增大 8.太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是() A.2年 B.4年 C.8年 D.10年 9.若将八大行星绕太阳运行的轨迹可粗略地认为是圆,各星球半径和轨道半径如下表所示:从表中所列数据可以估算出海王星的公转周期最接近( )

万有引力与航天43个必须掌握的习题模型

A B C 1-4-1 万有引力与航天43个必须掌握的习题模型 吕梁高级中学物理教研组:袁文胜 1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是( ) A .卫星的轨道半径越大,它的运行速度越大 B .卫星的轨道半径越大,它的运行速度越小 C .卫星的质量一定时,轨道半径越大,它需要的向心力越大 D .卫星的质量一定时,轨道半径越大,它需要的向心力越小 2.甲、乙两颗人造地球卫星,质量相等,它们的轨道都是圆,若甲的运动周期比乙小,则( ) A .甲距地面的高度比乙小 B .甲的加速度一定比乙小 C .甲的加速度一定比乙大 D .甲的速度一定比乙大 3.下面是金星、地球、火星的有关情况比较。 星球 金星 地球 火星 公转半径 1.0 810?km 1.5 810?km 2.25 810?km 自转周期 243日 23时56分 24时37分 表面温度 480℃ 15℃ —100℃~0℃ 大气主要成分 约95%的CO 2 78%的N 2,21%的O 2 约95%的CO 2 根据以上信息,关于地球及地球的两个邻居金星和火星(行星的运动可看作圆周运动),下列判断正 确的是( ) A .金星运行的线速度最小,火星运行的线速度最大 B .金星公转的向心加速度大于地球公转的向心加速度 C .金星的公转周期一定比地球的公转周期小 D .金星的主要大气成分是由CO 2组成的,所以可以判断气压一定 很大 4.如图1-4-1所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A 、B 、C 某时刻在同一条直线上,则( ) A.经过一段时间,它们将同时回到原位置 B.卫星C 受到的向心力最小 C.卫星B 的周期比C 小 D.卫星A 的角速度最大 5.某天体半径是地球半径的K 倍,密度是地球的P 倍,则该天体表面的重力加速度是地球表面重力加速度的( ) A .2P K 倍 B .P K 倍 C .KP 倍 D .K P 2倍 6.A 、B 两颗行星,质量之比p M M B A =,半径之比q R R B A =,则两行星表面的重力加速度之比为( ) 第1页

高中物理必修二《万有引力与航天》典型题练习(含答案)

《万有引力与航天》典型题练习一、选择题 1.关于地球的第一宇宙速度,下列表述正确的是() A.第一宇宙速度又叫脱离速度 B.第一宇宙速度又叫环绕速度 C.第一宇宙速度跟地球的质量无关 D.第一宇宙速度跟地球的半径无关 2.火星的质量和半径分别约为地球的1 10和 1 2,地球表面的重力加速度为g, 则火星表面的重力加速度约为() A.0.2g B.0.4g C.2.5g D.5g 3.嫦娥二号卫星已成功发射,这次发射后卫星直接进入近地点高度200公里、远地点高度约38万公里的地月转移轨道直接奔月.当卫星到达月球附近的特定位置时,卫星就必须“急刹车”,也就是近月制动,以确保卫星既能被月球准确捕获,又不会撞上月球,并由此进入近月点100公里、 周期12小时的椭圆轨道a.再经过两次轨道调整,进入100 公里的近月圆轨道b.轨道a和b相切于P点,如右图所示.下 列说法正确的是() A.嫦娥二号卫星的发射速度大于7.9 km/s,小于11.2 km/s B.嫦娥二号卫星的发射速度大于11.2 km/s C.嫦娥二号卫星在a、b轨道经过P点的速度v a=v b D.嫦娥二号卫星在a、b轨道经过P点的加速度分别为a a、a b则a a>a b 4.我们在推导第一宇宙速度的公式v=gR时,需要做一些假设和选择一些理论依据,下列必要的假设和理论依据有() A.卫星做半径等于2倍地球半径的匀速圆周运动 B.卫星所受的重力全部作为其所需的向心力 C.卫星所受的万有引力仅有一部分作为其所需的向心力 D.卫星的运转周期必须等于地球的自转周期

5.全球定位系统(GPS)有24颗卫星分布在绕地球的6个轨道上运行,距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6 400 km ,则全球定位系统的这些卫星的运行速度约为( ) A .3.1 km/s B .3.9 km/s C .7.9 km/s D .11.2 km/s 6.有两颗质量均匀分布的行星A 和B ,它们各有一颗靠近表面的卫星a 和b ,若这两颗卫星a 和b 的周期相等,由此可知( ) A .卫星a 和b 的线速度一定相等 B .行星A 和B 的质量一定相等 C .行星A 和B 的密度一定相等 D .行星A 和B 表面的重力加速度一定相等 7.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.“东方红一号”的运行轨道为椭圆轨道,其近地点M 和远地点N 的高度分别为439 km 和2 384 km ,则 ( ) A .卫星在M 点的势能大于N 点的势能 B .卫星在M 点的角速度小于N 点的角速度 C .卫星在M 点的加速度大于N 点的加速度 D .卫星在N 点的速度大于7.9 km/s 8.如图所示,是美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知引力常量为G ,则下列关于土星质量M 和平均密度ρ的表达式正确的是( ) A .M =4π2(R +h )3Gt 2 ,ρ=3π·(R +h )3 Gt 2R 3 B .M =4π2(R +h )2Gt 2 ,ρ=3π·(R +h )2 Gt 2R 3

万有引力与航天专题

A O 万有引力与航天专题 1.【2012?湖北联考】经长期观测发现,A 行星运行的轨道半径为R 0,周期为T 0但其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离.如图所示,天文学家认为形成这种现象的原因可能是A 行星外侧 还存在着一颗未知行星B ,则行星B 运动轨道半径为( ) A . 030002()2t R R t T =- B .T t t R R -=000 C . 3 20000)(T t t R R -= D .300200T t t R R -= 2.【2012?北京朝阳期末】2011年12月美国宇航局发布声明宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、可适合居住的行星。该行星被命名为开普勒一22b (Kepler 一22b ),距离地球约600光年之遥,体积是地球的2.4倍。这是目前被证实的从大小和运行轨道来说最接近地球形态的行星,它每290天环绕着一颗类似于太阳的恒星运转一圈。若行星开普勒一22b 绕恒星做圆运动的轨道半径可测量,万有引力常量G 已知。根据以上数据可以估算的物理量有( ) A.行星的质量 B .行星的密度 C .恒星的质量 D .恒星的密度 3.【2012?江西联考】如右图,三个质点a 、b 、c 质量分别为m 1、m 2、 M (M>> m 1,M>> m 2)。在c 的万有引力作用下,a 、b 在同一平面内 绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a ∶T b =1∶k ; 从图示位置开始,在b 运动一周的过程中,则 ( ) A .a 、b 距离最近的次数为k 次 B .a 、b 距离最近的次数为k+1次 C .a 、b 、c 共线的次数为2k D .a 、b 、c 共线的次数为2k-2 4.【2012?安徽期末】2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

必修二万有引力与航天知识点总结完整版

第六章 万有引力与航天知识点总结 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11N ·m 2/kg 2 ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力: 在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。 地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重 力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小, 就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰 好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2 122 m m F G r =2 R Mm G mg =

高考必备09 万有引力与航天(1)-2021年高三物理重点模型训练(解析版)

高考必备一模一例一法一练 万有引力与航天 目录 天体质量和密度的估算 (2) 近地卫星模型 (4) 同步卫星模型 (5) 万有引力等于重力模型 (9) 卫星模型相关物理量讨论 (10) 三种天体运动速度比较 (12) 双星模型 (14) 三星、多星模型 (17) 黑洞模型 (20) 暗物质 (22) 卫星变轨 (25) 常数的应用 (28) 重力等于万有引力模型(黄金代换) (29) 利用比例求解模型 (31) 三星一线模型 (32)

天体质量和密度的估算 【典例】(2018高考理综II ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为。以周期T 稳定自转的星体的密度最小值约为( ) A . B . C . D . 【答案】C 【解析】本题考查万有引力定律、牛顿运动定律、密度及其相关的知识点。设脉冲星质量为M ,半径为R 。选取脉冲星赤道上一质元,设质量为m ,由万有引力定律和牛顿第二定律可得G =mR ()2,星体最小密度ρ=M/V ,星球体积V=πR 3,联立解得:ρ=,代入数据得ρ=5×1015kg/m ,选项C 正确。 【思想方法】 一、 题型概述 1. 利用万有引力等于重力可以估算地球质量,若测量出绕天体运行卫星的周期和轨道半径可以估算天体的质量,若知道天体的半径,可以估算出天体的密度。高考有关天体质量和密度的估算考查频率较高。 2.考虑星球自转时星球表面上的物体所受重力为万有引力的分力;忽略自转时重力等于万有引力. 3.一定要区分研究对象是做环绕运动的天体,还是在星球表面上随星球一块自转的物体.做环绕运动的天体受到的万有引力全部提供向心力,星球表面上的物体受到的万有引力只有很少一部分用来提供向心力. 二、估算中心天体质量和密度的两条思路和三个误区 (1)两条思路 11226.6710N m /kg -??93510kg /m ?123510kg /m ?153510kg /m ?183510kg /m ?2Mm R 2T π43 23GT π

高一物理必修二第六章《万有引力与航天》知识点总结

万有引力与航天知识点总结 一、人类认识天体运动的历史 1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德) 2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容 开普勒第二定律:v v >远近 开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体 才可以列比例,太阳系: 333222 ===......a a a T T T 水火地地水火 三、万有引力定律 1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。 K T R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝' 2r Mm F ∝ 2r Mm G F = 2、表达式:221r m m G F = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量 m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。 4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭 秤实验测出。 5、适用条件:①适用于两个质点间的万有引力大小的计算。 ②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。 ③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。 ④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质 心间的距离。 6、推导:2224mM G m R R T π= ? 3224R GM T π =

高中物理《万有引力与航天(1)》优质课教案、教学设计

《万有引力与航天》高三复习教学设计 ( 一) 设计思想 本讲主要内容就是《万有引力》部分一轮复习。通过教学,给学生一个清晰的知识脉络和模型,使学生在面对高考试题时能高效入题,高效做题,高效得分。促进学生熟练掌握, 并能减轻学生学习的负担,提高学习的效率。其次就是通过这部分内容的学习,激发学 生对航空、航天产生更加浓厚的兴趣和爱好。 ( 二 ) 教材分析 《万有引力与航天》在高考试题中是一个必出的内容。几乎每年都以选择题的形式出 现。 本专题的知识是以所学物理规律解决“天地”问题的典范。所以深刻理解万有引力定 律及应用的条件、范围和思路,是这个单元教学的中心。 在万有引力的应用上,主要有三方面,一是在地表面附近的应用, G Mm =mg, R 2 和 G Mm =Fn+mg (矢量相加),前者是在不考虑自转影响时用(因为在地面上的物 R 2 体随,后者是在考虑地球自转影响时用。二是在天上的应用(以圆周运动为主),依据 是 G Mm =F n。三是卫星的发射与变轨的问题。 r 2 ( 三) 学情分析 经过高二的学习之后,学生对万有引力定律及其应用有了一定的认识,但由于时间较 长,学生不仅在知识上有所遗忘,更重要的是规律的生疏和方法经验的缺失、遗忘,致使学生对这部分知识又成陌路。所以在一轮复习时,回顾知识,用一些做过的问题作为引子,唤醒学生记忆,并在此基础上有针对性地加强经验、方法、模型的小结(针对考试),可更有效地提升做题的效率。 ( 四) 教学目标 1、知识与技能 (1) )复习回顾《万有引力》。

(2))小结回顾归纳万有引力定律在实际中的应用及典型模型,指出各类问题解决的 方法思路。提高学生做题的技巧和能力。 (3))通过适量练习,小结方法经验,指出需要注意的事项。提高解题技巧和估算能力。 2、过程与方法 (1))能够应用万有引力定律解决简单的引力计算问题。 (2))掌握计算天体质量与密度方法。 (3))掌握天体运动规律与宇宙速度的概念。 3、情感、态度与价值观 (1))航空与航天,是多少优秀中华儿女的梦想,通过学习掌握万有引力定律及其应用,促使学生热爱航空航天事业,激发学生的深厚兴趣,为我国航空航天事业贡献力量。(2))通过本单元教学,可以培养学生热爱生活的态度和实事求是的精神,培养学生唯 物史观和探索宇宙兴趣和爱好。 (五)教学重难点 教学重点:万有引力在天体运动中的应用教 学难点:万有引力与重力的关系应用 (六)教学方法 1、小结归纳、难点透析; 2、例题归类、方法点拨; 3、联系实际、激发兴趣。 (七)教学手段 1、多媒体呈现主要内容和主要过程; 2、板书内容要点和演练过程。 (八)教学过程 一复习回顾基本知识 【知识储备】 1、开普勒行星运动第一定律:. 第二定律:. 第三定律:. 2 、有两个质量均匀分布的小球,质量分别为M 和m,半径为r,两球间距离也为 r,则两球之间的万有引力为。 3、向心力计算公式F = F = F= 。

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

万有引力与航天专题复习

万有引力与航天专题 复习 Revised on November 25, 2020

万有引力与航天 一、行星的运动 1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 推论:近日点速度比较快,远日点速度比较慢。 ③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等。 即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。 推广:对围绕同一中心天体运动的行星或卫星,上式均成立。K 取决于中心天体的质量 例1. 据报道,美国计划从2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球沿椭圆轨道运行时,在近地点A 的速率 (填“大于”“小于”或“等于”)在远地点B 的速率。 例2、宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( ) 年 年 年 年 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正 比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 例3.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力恒量) (2)计算重力加速度 3 2a k T =2Mm F G r =1122 6.6710/G N m kg -=??12 2m m F G r =2R Mm G mg =

必修二万有引力与航天知识点总结

第六章 万有引力与航天知识点总结(MYX ) 一、人类认识天体运动的历史 1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德) 2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容 推论:开普勒第二定律:v v >远近 开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的环绕 星体才可以列比例,太阳系: 333222===......a a a T T T 水火地地水火a---半长轴或半径,T---公转周期 三、万有引力定律 1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。 K T R =2 3(开三) r T m F 224π=(牛二) 22π4=r m K F 2m F r ∝ F F '=(牛三) 2r M F ∝' 2r Mm F ∝ 2r Mm G F = 2、表达式:221r m m G F =,r 是球心距。 3.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭 秤实验测出。 4、适用条件:①万有引力定律公式适用于两个质点间的万有引力大小的计算。万有引力是普遍存在的。 ②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。 ③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。

④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中 r 为两物体 质心间的距离。 四、万有引力定律的两个重要推论 1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。 2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。 五、双星系统 两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。 设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和 ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121 M M v G M M r L r ω== M 2 22122222222M M v G M M r L r ω== 相同的有:周期,角速度,向心力 因为12F F =,所以221122m r m r ωω= 轨道半径之比与双星质量之比相反: 1221r m r m = 线速度之比与质量比相反:1221 v m v m = 六、宇宙航行: 一、 1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星…… 2、卫星轨道:可以是圆轨道,也可以是椭圆轨道。地球对卫星的万有引力提供向心力,所以圆轨道圆心 或椭圆轨道焦点是地心。分为赤道轨道、极地轨道、一般轨道。 3、卫星围绕地球飞行时,向心加速度即该点的重力加速度。 二、 1、三个宇宙速度: 第一宇宙速度(发射速度):7.9km/s 。最小的发射速度,最大的环绕速度。 2 v mg m R = ,9.8/63707.9/gR m s km km s =?=(所有卫星中的最大速度) 第二宇宙速度(脱离速度):11.2km/s 。物体挣脱地球引力束缚,成为绕太阳运行的小行星或飞到其他行星 上去的最小发射速度。 第三宇宙速度(逃逸速度):16.7km/s 。物体挣脱太阳引力束缚、飞到太阳系以外的宇宙空间去的最小发射 速度。 7.9km/s <v <11.2km/s 时,卫星绕地球旋转,其轨道是椭圆,地球位于一个焦点上。

(完整)高中物理必修二《万有引力与航天》知识提纲.docx

高一必修 1 第六章知识提纲 第六章《万有引力与航天》知识提纲 一、知识网络 托勒密:地心说 人类对行哥白尼:日心说 星运动规开普勒第一定律(轨道定律) 行星第二定律(面积定律) 律的认识第三定律(周期定律) 运动定律 万有引力定律的发现 万有引力定律的内容 万有引力定律F=G m 1 m 2 r 2 引力常数的测定 万有引力定律称量地球质量M=gR 2 G 万有引力的理论成就M 4 2r 3= 2 GT 与航天计算天体质量r=R,M= 4 2 R 3 GT 2 M= gR2 G 人造地球卫星 4 2 r 3 M= 2 GT 宇宙航行G Mm =m v2 r 2r mr2 ma 第一宇宙速度7.9km/s 三个宇宙速度第二宇宙速度11.2km/s 地三宇宙速度16.7km/s

高一必修 1 第六章 知识提纲 二、重点内容讲解 1、计算重力加速度 (1)在地球表面附近的重力加速度, 在忽略地球自转的情况下, 可用万有引力定律来计算。 F M =6.67* 10 11 5.98 * 1024 =9.8(m/ 2 引 =G * s )=9.8N/kg R 2 (6730* 103 ) 2 即在地球表面附近,物体的重力加速度 g = 9.8m/ s 2 。这一结果表明,在重力作用下,物体 加速度大小与物体质量无关。 (2)即算地球上空距地面 h 处的重力加速度 g ’。有万有引力定律可得: GM GM g' R 2 ,∴ g ’= ( R 2 g g ’= 又 g = ,∴ = (R h)2 ) ( R h)2 R 2 g R h (3)计算任意天体表面的重力加速度 g ’。有万有引力定律得: g ’= GM ' ( M ’为星球质量, R ’卫星球的半径) ,又 g = GM ,∴ g ' = M ' ? ( R ) 2 。 R'2 R 2 g M R' 注意:在地球表面物体受到地球施与的万有引力与其重力是合力与分力的关系, 万有引力的 另一个分量给物体提供其与地球一起自转所需要的向心力。 由于这个向心力很少, 我们可以 忽略,所以在地球表面的物体 F 引 =G 2、天体运行的基本公式 在宇宙空间, 行星和卫星运行所需的向心力, 均来自于中心天体的万有引力。 因此万有 引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。 (1)向心力的六个基本公式,设中心天体的质量为 M ,行星(或卫星)的圆轨道半径为 r , 则向心力可以表示为: F 引 =F 向, F n = G Mm v 2 =mr 2 2 2 =mr (2 f ) 2 v 。 r 2 = ma = m =mr ( ) =m r T (2)五个比例关系: ( r 为行星的轨道半径) 向心力: F n = G Mm , F ∝ 1 ; r 2 r 2 向心加速度: a=G M , a ∝ 1 ; r 2 r 2 ① G Mm = m v 2 ; 得 v = GM , v ∝ 1 ; r 2 r r r ② G Mm = m r 2 ;得 = GM , ∝ 1 ; r 2 r 3 r 3 ③ G Mm = mr ( 2 ) 2 ; 得 T = 2 r 3 ,T ∝ r 3 ; r 2 T GM (3) v 与 的关系。在 r 一定时, v=r ,v ∝ ; 在 r 变化时,如卫星绕一螺旋轨道远离或 靠近中心天体时, r 不断变化, v 、 也随之变化。 根据, v ∝ 1 和 ∝ 1 ,这时 v 与 3

相关文档
最新文档