电力电子实验报告

电力电子实验报告
电力电子实验报告

电力电子实验报告

K 4 A 4

《电力电子技术》

实验课程报告

姓名________________

学号—

时间2016 年5月

河海大学物联网工程学院自动化系

目录

1.实验1 单相桥式可控整流电路工作原理仿真 (3)

1.1实验目的 (3)

1.2实验系统组成及工作原理 (3)

1.3实验所需软、硬件设备及仪器 (3)

1.4实验内容 (3)

1.5步骤及方法 (3)

1.6课后思考与总结 (4)

1.6.1仿真结果及分析 (4)

1.6.2单相整流桥工作原理 (5)

2.实验2 三相桥式可控整流电路工作原理仿真 (8)

2.1实验目的 (8)

2.2实验系统组成及工作原理 (8)

2.3实验所需软、硬件设备及仪器 (8)

2.4 实验内容 (8)

2.5步骤及方法 (8)

2.5.1 .......................................................................................... 仿真参数

设置9

2.5.2建立模型 (9)

2.6课后思考与总结 (9)

2. 6.1仿真结果及分析 (9)

2.6.2三相整流桥工作原理 (11)

2.6.3三相桥式全控整流电路的特点 (14)

3.实验3直-直变流器工作原理仿真 (15)

3.1实验目的 (15)

3.2 实验系统组成及工作原理 (15)

3.3实验所需软、硬件设备及仪器 (15)

3.4实验内容 (15)

3.5步骤及方法 (15)

3.6 课后思考与总结 (16)

3.6.1建立模型 (16)

3.6.2仿真结果及分析 (16)

3.6.3 buck变换器连续和断续工作模式下与电感取值的关系 (17)

3.6.4断续模式下buck变换器的输出和输入电压关系 (18)

4.实验4单相桥式可控整流电路工作原理仿真 (19)

4.1 实验目的 (19)

4.2实验系统组成及工作原理 (19)

4.3实验所需软、硬件设备及仪器 (19)

4.4实验内容 (19)

4.5步骤及方法 (19)

4.6课后思考与总结 (19)

4.6.1建立模型 (19)

4.6.2仿真结果及分析 (19)

实验1单相桥式可控整流电路工作原理仿真

1.1实验目的

加深对单相桥式可控整流电路工作原理的理解,学会使用仿真软件MATLAB 中的SIMULINK 模块,搭建单相桥式可控整流电路模型,以及如何利用脉冲发生器来构建晶闸管的触发脉冲,并利用仿真模型,示波器和多路测量器分析单相桥式可控整流电路在不同触发延迟角、不同性质负载下的电流、输出电压波形。

1.2实验系统组成及工作原理

单相桥式全控整流原理电路

1.3实验所需软、硬件设备及仪器

(1)计算机(装有windows XP以上操作系统);

(2)MATLAB 6.1版本以上软件;

1.4实验内容

单相桥式全控整流电路,电源电压为220V/50HZ,观察不同触发角(

30 °

90 °下阻性负载(R L 2 )与感性负载下(R L 2 ,L 0.01H )时的输出电压、负载电流以及晶闸管的耐压波形等。

1.5步骤及方法

仿真参数设置

(1)电压源参数。电压为220V,频率50Hz,输入电压峰值为220*sqrt

(2)

(2)变压器参数。电压为220V (有效值),二次电压为100V (有效值)。

(3)晶闸管使用默认参数。

(4) 负载RLC 的参数。阻性负载R L 2 ,感性负载下R L 2 ,L 0.01H

(5) 触发角 的参数。 30、 90。

1.6课后思考与总结

(1)撰写仿真实验报告;

(2)思考不同负载下的单相整流桥的工作原理, 并仿真单相桥式半波可控电路, 理解其(带续流二极管电路)在阻性和感性负载下的工作原理。

1.6.1仿真结果及分析

A.电阻负载

图1-2

30 ,单相桥

b. 90时,仿真波形如图1-3,

3

21

a. 30时,仿真波形如图1-2,

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

模拟电子技术基础实验思考题

低频电子线路实验思考题 实验一常用电子仪器的使用(P6) 1.什么是电压有效值?什么是电压峰值?常用交流电压表的电压测量值和示波器的电压直接测量值有什么不同? 答:电压峰值是该波形中点到最高或最低之间的电压值;电压有效值等于它的瞬时值的平方在一个周期内职分的平均值再取平方根。 常用交流电压表的电压测量值一般都为有效值,而示波器的电压直接测量都为峰值。 2.用示波器测量交流信号的峰值和频率,如何尽可能提高测量精度?答:幅值的测量:Y轴灵敏度微调旋钮置于校准位置,Y轴灵敏度开关置于合适的位置即整个波形在显示屏的Y轴上尽可能大地显示,但不能超出显示屏指示线外。频率测量:扫描微调旋钮置于校准位置,扫描开关处于合适位置即使整个波形在X轴上所占的格数尽可能接近10格(但不能大于10格)。 实验二晶体管主要参数及特性曲线的测试(P11) 1.为什么不能用MF500HA型万用表的R×1Ω和R×10Ω档量程测量工作极限电流小的二极管的正向电阻值? 答:根据MF500HA型万用表的内部工作原理,可知R×1Ω和R×10Ω档量程测量工作极限电流小的二极管的正向电阻值的等效电路分别为图1和图2所示,此时流过二极管的最大电流,,当I D1和I D2大于该二极管的工作极限电流时就会使二极管损坏。

图1 图2 2. 用MF500HA型万用表的不同量程测量同一只二极管的正向电阻值,其结果不同,为什么? 提示:根据二极管的输入特性曲线和指针式万用表Ω档的等效电路,结合测试原理分析回答。 答:R×1Ω:r o=9.4Ω; R×10Ω: r o=100Ω; R×100Ω: r o=1073Ω; R×1kΩ: r o=32kΩ。因为二极管工作特性为正向导通、反向截至,尤其是正向导通的输入特性曲线为一条非线性曲线。用MF500HA型万用表

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

微电子实验报告一

实验一MOS管的基本特性 班级姓名学号指导老师袁文澹 一、实验目的 1、熟练掌握仿真工具Hspice相关语法; 2、熟练掌握MOS管基本特性; 3、掌握使用HSPICE对MOS电路进行SPICE仿真,以得到MOS电路的I-V曲线。 二、实验内容及要求 1、熟悉Hspice仿真工具; 2、使用Hspice仿真MOS的输出特性,当VGs从0~5V变化,Vds分别从1V、2V、3V、4V 和5V时的输出特性曲线; 三、实验原理 1、N沟道增强型MOS管电路图 a)当Vds=0时,Vgs=0的话不会有电流,即输出电流Id=0。 b)当Vgs是小于开启电压的一个确定值,不管Vds如何变化,输出电流Id都不会改变。 c)当Vgs是大于开启电压的一个确定值,在一定范围内增大Vds时,输出电流Id增大。但当 出现预夹断之后,再增大Vds,输出电流Id不会再变化。 2、NMOS管的输出特性曲线

四、实验方法与步骤 实验方法: 计算机平台:(在戴尔计算机平台、Windows XP操作系统。) 软件仿真平台:(在VMware和Hspice软件仿真平台上。) 实验步骤: 1、编写源代码。按照实验要求,在记事本上编写MOS管输出特性曲线的描述代码。并以aaa.sp 文件扩展名存储文件。 2、打开Hspice软件平台,点击File中的aaa.sp一个文件。 3、编译与调试。确定源代码文件为当前工程文件,点击Complier进行文件编译。编译结果有错误或警告,则将要调试修改直至文件编译成功。 4、软件仿真运行及验证。在编译成功后,点击simulate开始仿真运行。点击Edit LL单步运行查看结果,无错误后点击Avanwaves按照程序所述对比仿真结果。 5、断点设置与仿真。… 6、仿真平台各结果信息说明. 五、实验仿真结果及其分析 1、仿真过程 1)源代码 *Sample netlist for GSMC $对接下来的网表进行分析 .TEMP 25.0000 $温度仿真设定 .option abstol=1e-6 reltol=1e-6 post ingold $设定abstol,reltol的参数值 .lib 'gd018.l' TT $使用库文件 * --- Voltage Sources --- vdd VDD 0 dc=1.8 $分析电压源 vgs g 0 0 $分析栅源电压 vds d 0 dc=5 $分析漏源电压 vbs b 0 dc=0 $分析衬源电压 * --- Inverter Subcircuit --- Mnmos d g 0 b NCH W=30U L=6U $Nmos管的一些参数 * --- Transient Analysis --- .dc vds 0 5 0.1 SWEEP vgs 1 5 1 $双参数直流扫描分析 $vds从0V~5V,仿真有效点间隔取0.1 $vgs取1V、2V、3V、4V、5V

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

微电子综合实验报告

微电子综合实验报告实验题目:⒚同或门电路仿真 班级:电子科学与技术1201 姓名:XXX 学号:XXX 时间:2015.5—2015.6

一、电路图。 OUT A B (IN1) (IN2) 分别给上图中的每个管子和结点标注,如下所述: P管分别标记为:MP1、MP2、MP3;N管分别标记为:MN1、MN2、MP3;A、B端分别标记为:IN1、IN2;输出端标记为:OUT;N 管之间连接点标记为:1;连接反相器的点标记为:2;如上图所示。 其真值表如下所示:

二、电路仿真表。 *dounand MN1 1 IN1 0 0 NMOS L=0.6U W=2.4U MN2 2 IN2 1 0 NMOS L=0.6U W=2.4U MN3 OUT 2 0 0 NMOS L=0.6U W=2.4U MP1 IN2 IN1 2 VDD PMOS L=0.6U W=4.4U MP2 IN1 IN2 2 VDD PMOS L=0.6U W=4.4U MP3 OUT 2 VDD VDD PMOS L=0.6U W=4.4U VDD VDD 0 DC 5V VIN1 IN1 0 PULSE(0 5 0 0.1N 0.1N 5N 10N) VIN2 IN2 0 PULSE(0 5 0 0.1N 0.1N 10N 20N) .TRAN 1N 100N UIC .LIB './HJ.L' TT .END 下图为无负载电容,IN1=10ns,IN2=20ns时的波形图。 从图中可以发现,本来输出应该是5v,实际输出只有4.8v,可见输出有阈值损失。 原因是N管传高电平、P管传低电平时,输出半幅,所以存在阈值损失。 三、输出加负载电容。 1、C=0.2p ;IN1=10ns ;IN2=20ns 时波形如下:

电力电子实验报告

电力电子实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验一SCR(单向和双向)特性与触发实验 一、实验目的 1、了解晶闸管的基本特性。 2、熟悉晶闸管的触发与吸收电路。 二、实验内容 1、晶闸管的导通与关断条件的验证。 2、晶闸管的触发与吸收电路。 三、实验设备与仪器 1、典型器件及驱动挂箱(DSE01)—DE01单元 2、触发电路挂箱Ⅰ(DST01)—DT02单元 3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代) 4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元 5、逆变变压器配件挂箱(DSM08)—电阻负载单元 6、慢扫描双踪示波器、数字万用表等测试仪器 四、实验电路的组成及实验操作 图1-1 晶闸管及其驱动电路

1、晶闸管的导通与关断条件的验证: 晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。打开系统总电源,将系统工作模式设置为“高级应用”。将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。闭合控制电路及挂箱上的电源开关,调节“DT03”单元的电位器“RP2”使“K”点输出电压为“0V”;闭合主电路,用示波器观测T1两端电压;调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况,记录使T1由截止变为开通的门极电压值,它正比于通入T1门极的电流I G;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测T1的端电压情况。断开主电路、挂箱电源、控制电路。将加在晶闸管和电阻上的主电源换成交流电源,即“AC15V”直接接“R1”一端,T1的阴极直接接“O”;依次闭合控制电路、挂箱电源、主电路。调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测并记录T1的端电压情况。通过实验结果,参考教材相关章节的内容,分析晶闸管的导通与关断条件。实验完毕,依次断开主电路、挂箱电源、控制电路。 2、晶闸管的触发与吸收电路: 将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;用导线连接“DT02”单元输出端子“OUT11”和“OUT12”与“DE01”单元的脉冲变压器输入端“IN1”和“IN2”;取主电源的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”;“DP01”单元的同步信号输出端“A”和“B”连接到锯齿波移相触发电路的同步信号输入端“A”和“B”;将“DE01”的脉冲变压器输出“g1”和“k1”分别接至单向

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

电子技术基础实验答案

实验一、常用电子仪器的使用 一、实验目的 1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。 2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。 电路实验箱的结构、基本功能和使用方法。 二、实验原理 在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。 1.信号发生器 信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。输出信号电压幅度可由输出幅度调节旋钮进行连续调节。 操作要领: 1)按下电源开关。 2)根据需要选定一个波形输出开关按下。 3)根据所需频率,选择频率范围(选定一个频率分挡开关按下)、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。 4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。 注意:信号发生器的输出端不允许短路。 2.交流毫伏表 交流毫伏表只能在其工作频率范围内,用来测量300伏以下正弦交流电压的有效值。 操作要领: 1)为了防止过载损坏仪表,在开机前和测量前(即在输入端开路情况下)应先将量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。 2)读数:当量程开关旋到左边首位数为“1”的任一挡位时,应读取0~10标度尺上的示数。当量程开关旋到左边首位数为“3”的任一挡位时,应读取0~3标度尺上的示数。 3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。 3.双踪示波器 示波器是用来观察和测量信号的波形及参数的设备。双踪示波器可以同时对两个输入信号进行观测和比较。 操作要领: 1)时基线位置的调节开机数秒钟后,适当调节垂直(↑↓)和水平(←→)位移旋钮,将时基线移至适当的位置。 2)清晰度的调节适当调节亮度和聚焦旋钮,使时基线越细越好(亮度不能太亮,一般能看清楚即可)。 3)示波器的显示方式示波器主要有单踪和双踪两种显示方式,属单踪显示的有“Y1”、“Y2”、“Y1+Y2”,作单踪显示时,可选择“Y1”或“Y2”其中一个按钮按下。属双踪显示的有“交 替”和“断续”,作双踪显示时,为了在一次扫描过程中同时显示两个波形,采用“交替”显示 方式,当被观察信号频率很低时(几十赫兹以下),可采用“断续”显示方式。 4)波形的稳定为了显示稳定的波形,应注意示波器面板上控制按钮的位置:a)“扫描

电工电子工艺基础实验报告完整版

电工电子工艺基础实验报告完整版 电工电子工艺基础实验报告专业年级: 学号: 姓名: 指导教师: 2013 年 10 月 7 日

目录 一.手工焊点焊接方法与工艺,贴片、通孔元器件焊接工艺。 二.简述磁控声光报警器的工作原理,画出电路组成框图,实物图片。 三.简述ZX—2005型稳压源/充电器的工作原理,画出电路组成框图,实物图片;附上实习报告。四.简述流水灯工作原理,画出电路组成框图,实物图。 五.简述ZX2031FM微型贴片收音机的工作原理,画出电路组成框图,实物图。 六.简述HTDZ1208型—复合管OTL音频功率放大器的工作原理,画出电路组成框图,实物图。七.总的实训体会,收获,意见。 一.手工焊点焊接方法与工艺,贴片、通孔元器件焊接工艺。 (1)电烙铁的拿法 反握法:动作稳定,不易疲劳,适于大功率焊接。 正握法:适于中等功率电烙铁的操作。

握笔法:一般多采用握笔法,适于轻巧型的电烙铁,其 烙铁头就是直的,头端锉成一个斜面或圆锥状,适于焊 接面积较小的焊盘。 (2)焊锡的拿法 (3)焊接操作五步法 左手拿焊条,右手拿焊铁,处于随时可焊状态。 加热焊件、送入焊条、移开焊条、移开电烙铁。(4)采用正确的加热方法 让焊件上需要锡侵润的各部分均匀受热 (5)撤离电烙铁的方法 撤离电烙铁应及时,撤离时应垂直向上撤离 (6)焊点的质量要求 有可靠的机械强度、有可靠的电气连接。 (7)合格焊点的外观 焊点形状近似圆锥体,椎体表面呈直线型、表面光泽 且平滑、焊点匀称,呈拉开裙状、无裂纹针孔夹 渣。 (8)常见焊点缺陷分析 二.简述磁控声光报警器的工作原理,画出

电力电子实验报告

实验题目:MPD-15实验设备《电力电子技术》班级:自动化1405 姓名:KZY 学号:0901140450X 指导老师:XXX

实验一、三相脉冲移相触发电路 1.实验目的:熟悉了解集成触发电路的工作原理、双脉冲形成过程及掌握集成触发电路的 应用。 2.实验内容:集成触发电路的调试及各点波形的观察与分析。 3.实验设备:YB4320A型双线示波器一台;万用表一块;MPD-15实验设备中“模拟量可逆 调速系统”控制大板中的“脉冲触发单元”。 4.实验接线:见图1 图1 该实验接好三根线:即SZ与SZ1,GZ与GND,U GD与U CT连接好就行了。 5.实验步骤: (1)将实验台左下方的三相电源总开关QF1合上;(其它开关和按钮不要动) (2)将模拟挂箱上左边的电源开关拨至“通”位置,此时控制箱便接入了工作电源和三相交流同步电源U sa U sb U sc (注:U sa U sb U sc 与主回路电压:U A16 U B16 U C16相位一致)。 (3)将模拟挂箱上正组脉冲开关拨至“通”位置,此时正组脉冲便接至了正组晶闸管。 (4)用示波器观察U sa U sb U sc孔的相序是否正确,相位是否依次相差120°(注:用示波器的公共端接GND孔,其它两信号探头分别依次检查三个同步信号)。 (5)触发器锯齿波斜率的整定 (6)触发器相位特性整定:

实验二三相桥式整流电路的研究 一、实验目的 1、熟悉三相桥式整流电路的组成、研究及其工作原理。 2、研究该电路在不同负载(R、R+L、R+L+VDR)下的工作情况,波形及其特性。 3、掌握晶体管整流电路的试验方法。 二、实验设备 1、YB4320A型双线示波器一台 2、万用表一块 3、模拟量挂箱一个 4、MPD-08试验台主回路 三、实验接线 1、先断开三相电源总开关QF1; 2、触发器单元接线维持实验一线路不变; 3、主回路接线按图5进行。 A N0 图5 三相桥式整流电路(虚线部分用导线接好) 四、实验步骤(注意:根据表1中 所对应的Uct数据来调节Uct大小)

集成电路综合实验报告

集成电路设计综合实验 题目:集成电路设计综合实验 班级:微电子学1201 姓名: 学号:

集成电路设计综合实验报告 一、实验目的 1、培养从版图提取电路的能力 2、学习版图设计的方法和技巧 3、复习和巩固基本的数字单元电路设计 4、学习并掌握集成电路设计流程 二、实验内容 1. 反向提取给定电路模块(如下图1所示),要求画出电路原理图,分析出其所完成的逻辑功能,并进行仿真验证;再画出该电路的版图,完成DRC验证。 图1 1.1 查阅相关资料,反向提取给定电路模块,并且将其整理、合理布局。 1.2 建立自己的library和Schematic View(电路图如下图2所示)。 图2 1.3 进行仿真验证,并分析其所完成的逻辑功能(仿真波形如下图3所示)。

图3 由仿真波形分析其功能为D锁存器。 锁存器:对脉冲电平敏感,在时钟脉冲的电平作用下改变状态。锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值,当锁存器处于使能状态时,输出才会随着数据输入发生变化。简单地说,它有两个输入,分别是一个有效信号EN,一个输入数据信号DATA_IN,它有一个输出Q,它的功能就是在EN有效的时候把DATA_IN的值传给Q,也就是锁存的过程。 只有在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号。其中使能端A 加入CP信号,C为数据信号。输出控制信号为0时,锁存器的数据通过三态门进行输出。所谓锁存器,就是输出端的状态不会随输入端的状态变化而变化,仅在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号到来时才改变。锁存,就是把信号暂存以维持某种电平状态。 1.4 生成Symbol测试电路如下(图4所示) 图4

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

电子技术基础实验答案

电子技术基础实验答案 导语:在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。以下为大家介绍电子技术基础实验答案文章,欢迎大家阅读参考! 实验一、常用电子仪器的使用 1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。 2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。 电路实验箱的结构、基本功能和使用方法。 在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。 1.信号发生器 信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。输出信号电压幅度可由输出幅度调节旋钮进行连续调节。 操作要领:

1)按下电源开关。 2)根据需要选定一个波形输出开关按下。 3)根据所需频率,选择频率范围、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。 4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。 注意:信号发生器的输出端不允许短路。 2.交流毫伏表 交流毫伏表只能在其工作频率范围内,用来测量300伏以下正弦交流电压的有效值。 1)为了防止过载损坏仪表,在开机前和测量前应先将量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。 2)读数:当量程开关旋到左边首位数为“1”的任一挡位时,应读取0~10标度尺上的示数。当量程开关旋到左边首位数为“3”的任一挡位时,应读取0~3标度尺上的示数。 3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。 3.双踪示波器 示波器是用来观察和测量信号的波形及参数的设备。双踪示波器可以同时对两个输入信号进行观测和比较。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实 验报告 Prepared on 24 November 2020

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1) 电阻性负载 按图接线,将Rd 调至最大450 (900并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd 调至最大(450)。 调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30 O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90°

华桥大学微电子器件与电路实验实验报告IC2019实验2

实验报告)微电子器件与电路实验(集成 学号实验时间姓名 2019.04 实验成绩实验操作教师签字 实验二集成二极管电学特性分析实验名称(1)计算机 (2)操作系统:Centos 实验设备TSMC RF0.18um工艺模型软件平台:Cadence Virtuoso (4)(3)1.掌握变量扫描分析、OP分析、DC Sweep下分析器件电学模型参数 2.掌握二极管电流和结面积和结周长关系,加深对集成二极管电学特性的理解实验目的特性的测试方法 3.掌握二极管CV 掌握单边突变结二极管掺杂浓度测量方法 4.实验 要求 1. 实验前按要求阅读器件说明文档,阅读实验操作文档,熟悉实验过程及操作步骤 2. 实验过程中按实验报告要求操作、仿真、记录数据(波形) 3. 实验结果经指导老师检查、验收,经允许后方可关机,离开实验室 ,、实验后按要求处理数据和波形,回答问题。实验报告打印后,于下次实验时间缴交。3实验内容: 【20%】 2.1 集成二极管电流随结面积变化特性(变量分析)实验对给定的二极管固定二极管的L,然后对二极管结W进行变量分析,测得二极管电流和结面积之间的关系曲线,通过曲线斜率估计二极管电流和结面积是否满足线性关系,回答思考题1 【20%】分析)2.2 实验集成二极管电流随结周长变化特性(OP使用不同结周长的二极管单元并联成结面积相同的二极管器件,测得相同偏置条件下的二极管电流,通过对比不同二极管电流之间的差异,确定二极管电流和结周长的关系,回答思考题2 【30%】 CV特性测试(DC分析下器件电学模型参数分析)集成二极管实验2.3 对给定结面积的二极管进行DC分析,分析二极管结电容和反偏电压之间的关系,测得CV特性曲线。并根据《微电子器件与电路》所学知识,回答思考题3、4、5。 【30%】实验2.4 集成二极管内建电势差及掺杂浓度测量2测试不同结电压下单边突变结二极管的单位结面积电容,根据单边突变结1/C关系曲线特点计算得到二极管的掺杂浓度和内建电势差。

杭电电力电子技术实验报告

电力电子技术实验报告班级: 学号: 姓名: 指导老师:余善恩、孙伟华 实验名称:锯齿波同步移相触发电路及单相半波可控整流 三相桥式全控整流及有源逆变电路实验

实验一锯齿波同步移相触发电路及单相半波可控整流一、实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。 二、实验内容 1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三、实验线路及原理 锯齿波同步移相触发电路主要由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-1所示。 主电路 (a) (b)锯齿波同步移相触发电路 图1-1 单相半波可控整流电路 由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R3、V3放电;调节电位器RP1可以调节恒流源的电流大小,改变对电容的充电时间,从而改变了锯齿波的斜率;控制电压U ct、偏移电压U b和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小;V6、V7构成脉冲形成放大环节,C5为强触发电容用于改善脉冲的前沿,由脉冲变压器输出触发脉冲。

EDA实验报告

电子科技大学成都学院 实验报告册 课程名称:EDA实验与实践 姓名:魏亮 学号:2940710618 院系:微电子技术系 专业:集成电路设计与集成系统(嵌入式) 教师:李海 2011 年12 月12 日

实验一:计数器 一、实验目的: 学习计数器的设计,仿真和硬件测试; 进一步熟悉Verilog HDL的编程方法。 二、实验原理和内容: 本实验的原理是利用复位信号rst,时钟信号clk,输出cout ,实现由0自加到学号(即18)。 本实验的内容是利用Quartus Ⅱ建立一个自加至18的计数器,并进行仿真测试。 三、实验步骤: 1. 启动Quartus Ⅱ建立一个空白工程,然后命名为count . qpf 。 2. 新建Verilog HDL源程序文件count.v,输入程序代码并保存, 然后进行综合编译,若在编译过程中发现错误,则找出并更正错误, 直到编译成功为止。 3. 建立波形仿真文件并进行仿真验证。 四、实验数据和结果: module count (clk,rst,cout); input clk,rst; output[5:0] cout; reg[5:0] cout; always @ (posedge clk) begin if(rst) begin cout=cout+1; if(cout==5'b10011) cout=0; end end endmodule

五、实验总结: 进一步熟悉仿真测试和Verilog HDL 编程方法。

实验二:流水灯 一、实验目的: 通过次试验进一步了解、熟悉和掌握CPLD/FPGA开发软件的使用方法及Verilog HDL的编程方法;学习简单的时序电路的设计和硬件 测试。 二、实验原理和内容: 本实验的内容是建立可用于控制LED流水灯的简单硬件电路,要求在实验箱上时间LED1~LED8发光二极管流水灯显示。 原理:在LED1~LED8引脚上周期性的输出流水数据,如原来输出的数据是11111100则表示点亮LED1、LED2。流水一次后,输出数据应 该为11111000,而此时则应点亮LED1~LED3三个LED发光二极管,这 样就可以实现LED流水灯,为了方便观察,在源程序中加入了一个分频 程序来控制流水速率。 三、实验步骤: (1)启动QuartusII建立空白工程,然后命名为led.qpf。 (2)新建Verilog HDL源程序文件led.v,输入程序代码并保存(源程序参考实验内容),进行综合编译,若在编译过程中发现错误,则找出并更正错误,直至编译成功为止。 (3)FPGA引脚分配,在Quartus II主界面下,选择Assignments→Pins,按照实验课本附录进行相应的引脚分配,引脚分配好以后保存。 (4)对该工程文件进行最后的编译,若在编译过程中发现错误,则找出并更正错误,直至编译成功为止。 (5)打开试验箱的电源开关,执行下载命令,把程序下载到FPGA试验箱中,观察流水灯的变化。 四、实验数据和结果: module led(led,clk); input clk; output[7:0] led; reg[7:0] led_r; reg[31:0] count; assign led=led_r[7:0]; always @ (posedge clk) begin count<=count+1';

电力电子实验报告

电力电子实验报告 学院名称电气信息学院 专业班级电气自动化03班 学号 学生姓名 指导教师

实验一电力晶体管(GTR)驱动电路研究 一.实验目的 1.掌握GTR对基极驱动电路的要求 2.掌握一个实用驱动电路的工作原理与调试方法 二.实验内容 1.连接实验线路组成一个实用驱动电路 2.PWM波形发生器频率与占空比测试 3.光耦合器输入、输出延时时间与电流传输比测试 4.贝克箝位电路性能测试 5.过流保护电路性能测试 三.实验线路 四.实验设备和仪器 1.MCL-07电力电子实验箱 2.双踪示波器 3.万用表 4.教学实验台主控制屏 五.实验方法 1.检查面板上所有开关是否均置于断开位置 2.PWM波形发生器频率与占空比测试 (1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D 当S2通,RP右旋时:

当S2断,RP右旋时: 当S2通,RP左旋时: 当S2断,RP左旋时: (2)将电位器RP左旋到底,测出f与D。 (3)将开关S2打向“断”,测出这时的f与D。 (4)电位器RP顺时针旋到底,测出这时的f与D。 (5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。 3.光耦合器特性测试 (1)输入电阻为R1=1.6K 时的开门,关门延时时间测试 a.将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。

电力电子实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称:锯齿波同步移相触发电路实验

接于“7”端。注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。 3.调节脉冲移相范围 将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图4-4所示。 调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。 4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。 七、实验报告 1、观察波形 ⑴、“1”、“2”孔波形

⑵、“3孔波形” ⑶、“4”孔波形

⑸、U G1K1波形

2、调节脉冲移相范围 ⑴U2、U5波形

⑵、U G1K1、U G2K2波形 ⑶、U G1K1、U G3K3波形

相关文档
最新文档