完全平方公式 习题

完全平方公式 习题
完全平方公式 习题

完全平方公式

例1:直接运用:口诀:首平方,尾平方,乘积2倍放中央(注意做三检查)

1.(1) 21(3)2

a b -=(2)=2填空题:(注意分析,找出a 、b );

22(1)(n 1)_____m --=232(2)(23)_____x y -=

22222222(3)()()_______(4)()()____

(5)()()_______(6)()()____

a b a b a b a b a b a b a b a b -=+-+=-+++-=+--=例2:互为相反数的形式

(1) (2) ()()x y y x --2332()()a b b a --+例3:简便运算 (1)0.982 (2) 1012

例4:完全平方公式和平方差公式的综合运用

(1) (2)()()

z y x z y x 3232+--+(23)(23)a b c a b c +---

(3); (4);

22(2)(2)(4)a b a b a b +--22(3)(3)a b a b +-例5:完全平方公式的逆用

1.(1)(2x -______)2=____-4xy +y 2. (2)(3m 2+_______)2=______+12m 2n +________.

(3)x 2-xy +________=(x -______)2 (4)49a 2-______+81b 2=(______+9b )2

222222222.2015403020132013_____3.(x y)2()()_____

4.(2015)(2013)20142015)(2013)x y x y a a a a -′+=+--+-=--=-+-若,则(的值为______例6:连续两边平方

1:已知,求,的值。2.若,求(1)(2)16x x -=221x x +441x x +13x x

+=221x x +4

41

x x +()[]2c b a -+

3..已知a 2-3a +1=0.求、和的值;a a 1+221a a +2

1??? ??-a a 例7:配方法 : 即凑成“0+0=0”型 222

2x a ()a x a ++=+注意:x 1、已知m 2+n 2-6m+10n+34=0,求m+n 的值

∵m2+n2-6m+10n+34=0,

∴m2-6m+9+n2+10n+25=0,

∴(m-3)2+(n+5)2=0,

即m-3=0,n+5=0; m=3,n=-5,

∴m+n=3+(-5)=-2.

2.已知,都是有理数,求的值。

0136422=+-++y x y x y x 、y x 3.无论、为何值,代数式的值总是(

a b 22246a b a b +-++(A )负数 (B )0 (C )正数 (D )非负数4、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________.

5、已知,求=_______.222450x y x y +--+=21(1)2

x xy --6、已知x 、y 满足x 2十y 2十=2x 十y ,求代数式=_______.4

5y x xy +7.已知,则=

.014642222=+-+-++z y x z y x z y x ++8、已知是△ABC 的三边的长,且满足,试判断此

c b a 、、0)(22222=+-++c a b c b a 三角形的形状。

9.22

,4618a b b a b +-++当为何值时,多项式a 有最小值,并求出这个最小值

例8:“完全平方式”问题:

1.要使式子成为一个完全平方式,则K= ;

26a a k -+2. 若是一个完全平方式,则K= ;

225a ka ++3若加上一个单项式后,恰好为一个整式的完全平方,则这个单项式241x +为 ;

4.如果a 2-8a+m 是一个完全平方式,则m 的值为( ) A.-4 B.16 C.4 D.-16

5. 若是完全平方式,则m =_____________。

22916x mxy y -+6.在①a 2-4a+4,②a 2+a+

,③4a 2-a+ ④4a 2+4a+1,是完全平方式的有_____(填序1414号).

7.若二项式4m 2+9加上一个单项式后是一含m 的完全平方式,则这样的单项式有( )

A .4个

B .3个

C .2个

D .1个8、多项式加上一个单项式后,使它能成为一个二项式的完全平方,那么加上的单192+x 项式可以是

9.若是一个完全平方式,则的关系是

n mx x ++2n m 、例9:“知二求二”模型 以下4个式子中知二求二

2222

(),(),,a b a b ab a b +-+1、已知(a+b)2=7,(a-b)2=3, 求: (1)a 2+b 2= (2)ab= (自己推导)

2、若a―b=7, ab=2, 则(a+b)2 =

3、已知a+b=-8,ab=12,则(a -b)2= 若x-y=3,xy=1,则(x+y )2=________

4.若,则

, ]3,2a b ab +=-=22a b +=()2a b -=5、若则____________,_________

()()a b a b -=+=22713,,a b 22+=ab =6. 若,则a 为( ) A. 0 B. ; C. D. ()()x y x y a -=++22

-2xy 2xy -4xy

7. 如果,那么M 等于 ( )A 、 2xy B 、-2xy C 、4xy D 、-4xy 22)()(y x M y x +=+-

8.已知(a+b)2=m ,(a—b)2=n ,则ab 等于( )

A 、

B 、

C 、

D 、()n m -21()n m --21()n m -41()n m --4

19.若,则N 的代数式是( )

N b a b a ++=-22)32()32(A. -24ab B.12ab C.24ab D.-12ab

10若,,求的值.

2a b -=1ab =222()a b a b 和++11.已知求的值

2()1,(a b)25a b -=+=223()2ab a b ++12.已知求与的值。

224,4a b a b +=+=22a b 2()a b -13.已知(a +b)2=60,(a -b)2=80,求(a 2+b 2)及3a b 的值

例10:完全平方公式的拓展

222222()()2()222a b c a b a b c c a b c ab ac bc

++=++++=+++++222222()()2()c c 222a b c a b a b a b c ab ac bc

--=---+=++--+(自己推导试试)

2

22

222()()()2a b a c b c a b c ab bc ca -+-+-++---=1. 如果,那么的值是(

1,3=-=-c a b a ()()()222a c c b b a -+-+-(A )14 (B )13 (C )12 (D )11

2.已知,,,

则代数式20042005+=x a 20062005+=x b 20082005+=x c 的值是 .ca bc ab c b a ---++222

3、是△ABC 的三边,且,那么△ABC 的形状是(

)c b a 、、bc ac ab c b a ++=++222A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、等边三角形

4.已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式,请说明该三角形是什么三角形?22223()()a b c a b c ++=++

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

平方差公式和完全平方公式练习题

平方差公式和完全平方 公式练习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

一、选择题1.平方差公式(a+b)(a-b)=a - b 中字母a,b表示() A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是() A.(a+b)(b+a) B.(-a+b)(a-b) C.( a+b)(b-a) D.(a2-b)(b2+a) 3.下列计算中,错误的有() ①(3a+4)(3a-4)=9a -4;②(2a -b)(2a +b)=4a -b ; ③(3-x)(x+3)=x -9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x -y . A.1个 B.2个 C.3个 D.4个 4.若x -y =30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 二、填空题 5.(-2x+y)(-2x-y)=______. 6.(-3x +2y )(______)=9x -4y . 7.(a+b-1)(a-b+1)=____________ 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 9.利用平方差公式计算: (1)2009×2007-2008 .(2). 10. 解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3)

11.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3, (1-x)(?1+x+x2+x3)=1-x4. (1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算: ①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n=______(n为正整数). ③(x-1)(x99+x98+x97+…+x2+x+1)=_______. (3)通过以上规律请你进行下面的探索: ①(a-b)(a+b)=_______. ②(a-b)(a2+ab+b2)=______. ③(a-b)(a3+a2b+ab2+b3)=______. 12,判断正误 (1)(a-b)=a - b ( ) (2)(-a-b)=(a+b) =a+2ab+b ( ) (3)(a-b)=(b-a) =b-2ab+a () ( 4) (1)(2x+5y)(2)( m - n) (3) (x-3) (4)(-2t-1) (5)( x+ y) (6)(-cd+ ) (7)(a+b+c)(8)(a+b+c+d) (1)代数式2xy-x -y =( ) A、(x-y) B、(-x-y) C、(y-x) D、-(x-y) (2)()-()等于() A、xy B、2xy C、 D、0

完全平方公式 典型应用

完全平方公式的典型应用 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2- 41y 2等于-( )2 题型四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求 21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角

完全平方公式练习题一

完全平方公式为: 注:1.完全平方公式和平方差公式不同: 形式不同. 结果不同:完全平方公式的结果是三项,即 (a ?b )2=a 2 ?2ab+b 2 ; 平方差公式的结果是两项, 即(a+b )(a?b )=a 2?b 2. 2. 解题过程中要准确确定a 和b ,对照公式原形的两边, 做到不丢项、 不弄错符号、2ab 时不少乘2。 3. 口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。 例1 用完全平方公式计算: (1)(2x ?3)2 ; (2) (4x +5y )2 ; (3) (mn ?a )2 练习: 1、计算:2 )221 (y x - (n +1)2-n 2 (2x 2-3y 2)2 2、下列各式中哪些可以运用完全平方公式计算 (1)()()x y y x +-+ (2)()()a b b a -- (3)()()ab x x ab +--33 (4)()()n m n m +-- 例2.计算: (1)(-1-2x )2 (2)()()n m n m +--22 (3))432)(432(-++-y x y x (4)22)32 1()321(b a b a +-

练习: (1)()2c b a -+ (2) (-2x +1) 2 (3))4)(2)(2(22y x y x y x --+ (4)??? ??+-??? ??-b a b a 32132 1 拓展:1.已知31=+ x x ,则=+221x x ________________ 2. 已知131-=x y ,那么2323122-+-y xy x 的值是________________ 3、已知2216)1(2y xy m x +-+是完全平方公式,则m = 4、若22()12,()16,x y x y xy -=+=则=

完全平方公式练习题30道

1 (a-2b)2 2 (a-b)2 3 ( -2)2= -21 x+ 4. (3x+2y)2-(3x-2y)2 5 (3a 2-2a+1)(3a 2+2a+1) 6. (a-b)2=a 2-ab+b 2 7. (a+3b)2 8. (x+9)(x-9)=x 2-9 9 (a+3b)2-(3a+b) 10. (5x 2-4y 2)(-5x 2+4y 2) 11. (3y+2x)2 12. -(-21x 3n+2-32 x 2+n )2 13. (3a+2b)2-(3a-2b)2 14. (x 2+x+6)(x 2-x+6)

15. (a+b+c+d)2 16. (9-a 2)2-(3-a)(3-a)(9+a)2 . 17. (x 3+2)2-2(x+2)(x-2)(x 2+4)-(x 2-2)2,其中x=-21 . 18. 20012 19. 9992 20.证明:(m-9)2-(m+5)2是28的倍数,其中m 为整数.(提示:只要将原式化简后各项 均能被28整除) 21.解方程:(x 2-2)(-x 2+2)=(2x-x 2)(2x+x 2)+4x 22. (x +2)(x -3)+(x +2)(x +4) 23. 2(a-3)(a-3)-a+3 24. (x + a)2 – (x – a)2 25. 1990×29-1991×71+1990×71-29×1991 26. 2)2 332 (y x - 27. 2)2(n m +- 28. )1)(1)(1(2--+m m m 29. 22)()(y x y x +- 30. )2)(2(z y x z y x --++

平方差公式和完全平方公式基础拔高练习(含答案)汇编

学习-----好资料 1. _______________________ ( a 2+b 2) (a 2- b 2) = ( ) 2-( ) 2= . 2. ________________________________________ (-2x 2-3y 2) (2x 2-3y 2) = (__))-( ) 2= . 3. ________________ 20X 19= (20+ ______ ) (20- __ ) = ___ - = . 4. 9.3 X 10.7= ( ____ — ____ ) ( ____ + ___ ) = ____ — ___ . 5. 20062 — 2005X 2007 的计算结果为( )A . 1 B . - 1 C . 2 D . - 2 6. 在下列各式中,运算结果是 b 2- 16a 2的是()A. (-4a+b ) (-4a -b ) B . (-4a+b ) (4a - b ) 7. 运用平方差公式计算. (8) (a -1) (a -2) (a+1) (a+2) (1) 102X 98 3 1 (2) 2-X 3 4 4 (3)— 2.7 X 3.3 1007X 993 (5) 121 X 112 3 3 (6)— 19- X 201 5 5 C. (b+2a ) (b -8a ) .(—4a - b ) (4a - b )

学习-----好资料 (9) (a+b ) (a — b ) + (a+2b ) (a — 2b ) (10) (x+2y ) (x — 2y ) — ( 2x+5y ) (2x — 5y ) (12) (a+b ) (a — b ) — ( a — 3b ) (a+3b ) + (— 2a+3b ) (— 2a — 3b ) 8. _____________ ( 3a+b ) ( ) =b 2— 9a 2; (a+b — m )( 1 9. 先化简,再求值:(3a+1) (3a —1) — ( 2a — 3) (3a+2),其中 a=—-. (11) (2m- 5) (5+2m ) + ( — 4m — 3) (4m — 3) )=b 2—( a — m ) 2.

知识点 完全平方公式(填空)

1、多项式x2+2mx+64是完全平方式,则m=±8. 考点:完全平方式。 分析:根据完全平方公式结构特征,这里首尾两数是x和8的平方,所以中间项为加上或减去它们乘积的2倍. 解答:解:∵x2+2mx+64是完全平方式, ∴2mx=±2?x?8, ∴m=±8. 点评:本题是完全平方公式的应用,要熟记完全平方公式的结构特征:两数的平方和,再加上或减去它们乘积的2倍,为此应注意积的2倍有符号有正负两种,避免漏解. 2、代数式4x2+3mx+9是完全平方式,则m=±4. 考点:完全平方式。 分析:本题考查完全平方公式的灵活应用,这里首末两项是2x和3的平方,那么中间项为加上或减去2x和3的乘积的2倍. 解答:解:∵4x2+3mx+9是完全平方式, ∴3mx=±2×3?2x, 解得m=±4. 点评:本题主要考查完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解.3、设4x2+mx+121是一个完全平方式,则m=±44. 考点:完全平方式。 分析:这里首末两项是2x和11这两个数的平方,那么中间一项为加上或减去2x和11积的2倍. 解答:解:∵4x2+mx+121是一个完全平方式, ∴mx=±2×11?2x, ∴m=±44. 点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 4、若9x2+mx+25是完全平方式,则m=±30. 考点:完全平方式。 专题:计算题。 分析:这里首末两项是3x和5这两个数的平方,那么中间一项为加上或减去3x和5积的2倍,故m=±30. 解答:解:∵(3x±5)2=9x2±30x+25, ∴在9x2+mx+25中,m=±30. 点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 5、已知x2﹣4x+a是一个完全平方式,则a为4. 考点:完全平方式。 分析:根据乘积二倍项先确定出这两个数是x和2,再根据完全平方公式结构特点,a等于2的平方. 解答:解:∵4x=2×2x, 则a=22=4.

完全平方公式练习50题

完全平方公式专项练习 知识点: 姓名: 完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2 2、能否运用完全平方式的判定: ① 两数和(或差)的平方 即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2 ② 两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。 即:a 2+2ab+b 2或a 2-2ab+b 2 -a 2-2ab-b 2或 -a 2+2ab-b 2 专项练习: 1.(a +2b )2 2.(3a -5)2 3..(-2m -3n )2 4. (a 2-1)2-(a 2+1)2 5.(-2a +5b )2 6.(-21ab 2-3 2c )2 7.(x -2y )(x 2-4y 2)(x +2y ) 8.(2a +3)2+(3a -2)2 9.(a -2b +3c -1)(a +2b -3c -1); 10.(s -2t )(-s -2t )-(s -2t )2; 11.(t -3)2(t +3)2(t 2+9)2. 12. 972; 13. 20022; 14. 992-98×100; 15. 49×51-2499; 16.(x -2y )(x +2y )-(x +2y )2 17.(a +b +c )(a +b -c ) 18. (a+b+c+d)2 19.(2a +1)2-(1-2a )2 20.(3x -y )2-(2x +y )2+5x (y -x )

完全平方公式(完整知识点)

完全平方公式 完全平方公式即(a±b)2=a2±2ab+b2 该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 必须注意的: ①漏下了一次项 ②混淆公式(与平方差公式) ③运算结果中符号错误 ④变式应用难于掌握。 学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

这两个公式的结构特征: 1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方 和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右 边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内). 完全平方公式口诀 前平方,后平方,二倍乘积在中央。 同号加、异号减,符号添在异号前。(可以背下来) 即 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(注意:后面一定是加号) 公式变形(习题) 变形的方法 (一)、变符号: 例1:运用完全平方公式计算: (1)(-4x+3y)2(2)(-a-b)2 分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。 解答: (1)原式=16x2-24xy+9y2 (2)原式=a2+2ab+b2 (二)、变项数:

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

完全平方公式提升练习题

完全平方公式提升练习题 一、完全平方公式 1、(- 21ab 2-3 2c )2; 2、(x -3y -2)(x +3y -2); 3、(x -2y )(x 2-4y 2)(x +2y ); 4、若k x x ++22是完全平方式,则k =____________. 5、.若x 2-7xy +M 是一个完全平方式,那么M 是 6、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 7、如果224925y kxy x +-是一个完全平方式,那么k = 二、公式的逆用 8.(2x -______)2=____-4xy +y 2. 9.(3m 2+_______)2=_______+12m 2n +________. 10.x 2-xy +________=(x -______)2. 11.49a 2-________+81b 2=(________+9b )2. 12.代数式xy -x 2-4 1y 2等于( )2 三、配方思想 13、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 14、已知0136422=+-++y x y x ,求y x =_______. 15、已知222450x y x y +--+=,求21(1)2x xy --=_______.

16、已知x 、y 满足x 2十y 2十 45=2x 十y ,求代数式y x xy +=_______. 17.已知014642222=+-+-++z y x z y x ,则z y x ++= . 四、完全平方公式的变形技巧 18、已知 2 ()16,4,a b ab +==求22 3a b +与2()a b -的值。 19、已知2a -b =5,ab =2 3,求4a 2+b 2-1的值. 20、已知16x x -=,求221x x +,441x x + 21、0132=++x x ,求(1)221x x +(2)441x x +

数学教案的运用完全平方公式法

数学教案的运用完全平方公式法 1。使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法; 2。理解完全平方式的意义和特点,培养学生的判断能力。 3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力. 4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。 1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法? 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。 2。把下列各式分解因式: (1)ax4-ax2 (2)16m4-n4。 解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1) (2) 16m4-n4=(4m2)2-(n2)2 =(4m2+n2)(4m2-n2) =(4m2+n2)(2m+n)(2m-n)。 问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式。 请写出完全平方公式。 完全平方公式是: (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。 这节课我们就来讨论如何运用完全平方公式把多项式因式分解。 和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到 a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子 a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。 问:具备什么特征的多项是完全平方式? 答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。 问:下列多项式是否为完全平方式?为什么? (1)x2+6x+9; (2)x2+xy+y2; (3)25x4-10x2+1; (4)16a2+1。

41完全平方公式(基础)知识讲解

完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解. 【答案】B ; 【解析】A 、221x x -++其中有两项-x 2、12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误; B 、2221(1)x x x -+-=--,符合完全平方公式特点,故本选项正确; C 、221x x --其中有两项x 2、-12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误;

乘法公式——完全平方公式专题训练试题精选(一)附答案

- -. 完全平方公式专题训练试题精选(一) 一.选择题(共30小题) 1.(2014?六盘水)下列运算正确的是() A. (﹣2mn)2=4m2n2B. y2+y2=2y4 C. (a﹣b)2=a2﹣b2 D. m2+m=m3 2.(2014?)下列计算正确的是() A. 2a3+a2=3a5B. (3a)2=6a2 C. (a+b)2=a2+b2 D. 2a2?a3=2a5 3.(2014?)算式999032+888052+777072之值的十位数字为何?() A.1B.2C.6D.8 4.(2014?)若a+b=2,ab=2,则a2+b2的值为() A.6B.4C.3D.2 5.(2014?南平模拟)下列计算正确的是() A. 5a2﹣3a2=2 B. (﹣2a2)3=﹣6a6 C. a3÷a=a2 D. (a+b)2=a2+b2 6.(2014?拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是() A.2,0 B.4,0 C.2,D.4, 7.(2012?鄂州三月调考)已知,则的值为() A.B.C.D.无法确定8.(2012?西岗区模拟)下列运算正确的是() A. (x﹣y)2=x2﹣y2B. x2+y2=x2y2 C. x2y+xy2=x3y3 D. x2÷x4=x﹣2 9.(2011?天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0 10.(2011?)下列运算正确的是() A. x2+x3=x5B. (x+y)2=x2+y2 C. x2?x3=x6 D. (x2)3=x6 11.(2011?浦东新区二模)下列各式中,正确的是() A. a6+a6=a12B. a4?a4=a16 C. (﹣a2)3=(﹣a3)2 D. (a﹣b)2=(b﹣a)2

《完全平方公式》测试题(含答案)

1.8 完全平方公式 ( 总分 100分 时间 40分钟) 一、填空题 :( 每题 4 分, 共 28 分 ) 1.( 1 x+3y) 2=______,( ) 2 = 1 y 2-y+1. 3 2 2 2 2 4 2 2.( ) =9a -________+16b ,x +10x+______=(x+_____) . 3.(a+b-c) 2 =____________________. 2 2 2 1 2 4.(a-b) +________=(a+b) ,x + x 2 +__________=(x-_____) . 5. 如果 a 2+ma+9是一个完全平方式 , 那么 m=_________. 6.(x+y-z)(x-y+z)=___________. 7. 一个正方形的边长增加 2cm,它的面积就增加 12cm 2,? 这个正方形的边长是 ___________. 二、选择题 :( 每题 5 分, 共 30 分) 8. 下列运算中 , 错误的运算有 ( ) ① (2x+y) 2 =4x 2+y 2, ② (a-3b) 2=a 2-9b 2 , ③ (-x-y) 2 =x 2 -2xy+y 2 , ④(x- 1 ) 2=x 2-2x+ 1 , 2 4 A.1 个 B.2 个 C.3 个 D.4 个 9. 若 a 2+b 2=2,a+b=1, 则 ab 的值为 ( ) A.-1 B.- 1 C.- 3 D.3 2 2 4 4 2 =( ) 10. 若 1 , 则 x 2 x x A.-2 B.-1 C.1 D.2 11. 已知 x-y=4,xy=12, 则 x 2+y 2 的值是 ( ) A.28 B.40 C.26 D.25 2 2 12. 若 x 、 y 是有理数 , 设 N=3x +2y -18x+8y+35, 则 ( ) A.N 一定是负数 B.N 一定不是负数 C.N 一定是正数 D.N 的正负与 x 、 y 的取值有关 13. 如果 ( 1 a x) 2 1 a 2 1 y x 1 , 则 x 、 y 的值分别为 ( ) 2 4 2 9 A. 1,- 2 或-1, 2 B.- 1,- 2 C. 1 , 2 D. 1 , 1 3 3 3 3 3 3 3 3 3 6 三、解答题 :( 每题 7 分,共 42 分) 14. 已知 x ≠ 0 1 求 x 4 1 的值 . 且 x+ =5, x 4 x 15. 计算 (a+1)(a+2)(a+3)(a+4).

初中数学 完全平方公式的五种常见应用举例

完全平方公式的五种常见应用举例 完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明. 一、正用 根据算式的结构特征,由左向右套用. 例1 计算22 (23)m m -- 分析 本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解.解 22(23)m m --22 [(2)3]m m =--222(2)6(2)9 m m m m =---+4322446129 m m m m m =-+-++43242129 m m m m =--++ 思考 本题中三项式转化为二项式的根据是什么?还有其它的方法吗? 二、逆用 将公式逆向使用,即由右向左套用. 例2 己知,,,则多项式20172018a x =+20172019b x =+20172020c x =+的值为( ) 222a b c ab bc ac ++--- (A) 0 (B)1 (C)2 (D)3 分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到,而,,的值可求,故本题巧妙得解.222()()()a b b c c a -+-+-a b -b c -c a -解 ∵20172018a x =+20172019 b x =+20172020 c x =+∴,,1a b -=-1b c -=-2 c a -=∴222 a b c ab bc ac ++---2221(222222)2 a b c ab bc ac = ++---2222221(222)2 a a b b b b c c c ac a =-++-++-+2221[()()()]2 a b b c c a =-+-+-2221[(1)(1)2]2=-+-+

苏教版七年级下册数学[完全平方公式(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 【400108 因式分解之公式法 知识要点】 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解.

完全平方公式的几何背景专题训练试题精选附复习资料

完全平方公式的几何背景专题训练试题精选 一.选择题(共6小题) 1.(2010?丹东)图①是一个边长为()的正方形,小颖将图①中的阴影部分拼 成图②的形状,由图①和图②能验证的式子是() A.()2﹣(m﹣n)2=4 B.()2﹣(m22)=2 C.(m﹣n)2+222D ()(m﹣n)2﹣n2 . 2.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们 可以得到两数和的平方公式:()22+22.你根据图乙能得到的数学公式是() B.(a﹣b)22﹣22C.a()2D.a(a﹣b)2﹣A.()(a﹣b)2﹣ b2 3.如图,你能根据面积关系得到的数学公式是() A.a2﹣b2=()(a﹣b)B.()22+22C.(a﹣b)22﹣22D.a()2

4.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是() A.B.()2C.(a﹣b)2D.a2﹣b2 5.如图的图形面积由以下哪个公式表示() B.(a﹣b)22﹣22C.()22+22D.a2﹣b2=()(a﹣b)A.a2﹣b2(a﹣b)(a ﹣b) 6.如果关于x的二次三项式x2﹣16是一个完全平方式,那么m的值是()A.8或﹣8 B.8C.﹣8 D.无法确定 二.填空题(共7小题) 7.(2014?玄武区二模)如图,在一个矩形中,有两个面积分别为a2、b2(a>0,b>0)的正方形.这个矩形的面积为(用含a、b的代数式表示)

8.如图,边长为(2)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是.(用含m的代数式表示) 9.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为. 10.如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a()2成立.根据图2,利用面积的不同表示方法,写出一个代数恒等式. 11.如图,正方形广场的边长为a米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含a、b的代数式可表示为

最新完全平方公式测试题

完全平方公式测试题 、选择题 1.下列各式中,能够成立的等式是( ). A …r : B . c. —:D.二-叮W 2 ?下列多项式不是完全平方式的是( 2 2 A 、9a 6a 1 B 、x —4x -4 3.若■- . 「- …: ,则皿为( A . B. C . 4心 4. 一个正方形的边长为 acm ,若边长增加 A . - : \ A : B f .12acm J : C .(36 ). 2 1 2 C 、4t -12t 9 D 、一 t t 1 4 ). D . V 〔二1,则新正方形的面积增加了( ). 1 D .以上都不对 5 ?如果■ :..; I 1是一个完全平方公式,那么 a 的值是( ). A . 2 B . - 2 C .二]D .二1 6. 若一个多项式的平方的结果为 -.;'I-.'./ ,则紀=( ) A . ■- B . - C . D .二 2 2 7. 已知a - b = 3, ab = 10,那么a + b 的值为( ). A . 27 B . 28 C . 29 D . 30 若JT -F — =5,则冷+ 的值是I ) 8. ' … A . 25 B . 23 C . 12 D . 11 、计算题(每小题 10 分) 2 12. (mn-1) - (mn -1)(mn 1) 13. 999精品文档 2 9. (x - y) -(x y)(x - y) 10. (a b)2 -(a -b)2 -4ab 11. 2 2 (3x - 4y) - (3x 4y) - xy 14. 102

(2) (3)已知 a (a — 1) + ( b — a ) 7,求 a 2 b 2 —ab 的值. 精品文档 2 2 15. 3(m 1) -5(m 1)(m -1) 2(m -1) 17 (x -2 y ) ( x +2 y ) — ( x +2 y ) 2 2 20( 3 x — y ) —(2 x + y ) +5 x (y — x ) 21,先化简。再求值:(x +2 y ) (x —2 y ) (x —4 y ),其中 x =2, y =—1 23,根据已知条件,求值: (1) 已知 x — y = 9, x ? y =5, 求 x 2 + y 2 的值. 精品文档 16. (a+2b+c)(a+2b-c) 18 (a + b + c ) (a + b — c ); 19 (2 a +1) — (1 — 2 a ) ; 22,解关于x 的方程: —(x —丄)(x + - )= 1

完全平方公式几何意义专题

完全平方公式几何意义专题 第 页 1、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。 图a 图b (1)你认为图b 中的阴影部分的正方形的边长等于 。 (2)请用两种不同的方法求图b 中阴影部分的面积。 方法1: 方法2: (3)观察图b 你能写出下列三个代数式之间的等量关系吗? 代数式: ()(). , ,2 2mn n m n m -+ (4) 根据(3)题中的等量关系,解决如下问题:若5,7==+ab b a ,求2)(b a -的值。 2、乘法公式的探究及应用. (1)将左图阴影部分裁剪下来,重新拼成一个长方形(右图所示),那么这个长方形的宽是 ,长是 ,面积是 . (2)比较左、右两图的阴影部分面积,可以得到乘法公式 .(用式子表达) (3)运用你所得到的公式,计算(2m+n ﹣p )(2m ﹣n+p ) 3、乘法公式的探究与应用:

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式) (2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式). (3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达) (4)运用你所得到的公式计算:10.3×9.7. 4、(1)将下列左图剪切拼成右图,比较两图的阴影部分面积,可以得到乘法公式:(用式子表达).(2)运用你所得到的乘法公式,计算:(a+b﹣c)(a﹣b﹣c). 5、如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2). (1)图2中的阴影部分的面积为; (2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是; (3)根据(2)中的结论,若x+y=5,x?y=,则x﹣y=; (4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?. 6、图a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形. (1)请用两种不同的方法求图b中阴影部分的面积: 方法1:(只列式,不化简) 方法2:(只列式,不化简) (2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系:; (3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=.

相关文档
最新文档