年高考第一轮复习数学数学归纳法

年高考第一轮复习数学数学归纳法
年高考第一轮复习数学数学归纳法

※第十三章极限

●网络体系总览

●考点目标定位

1.数学归纳法、极限

要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.

(2)了解数列极限和函数极限的概念.

(3)掌握极限的四则运算法则,会求某些数列与函数的极限.

(4)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值的性质.

●复习方略指南

极限的概念和方法是近代数学的核心内容,微积分学的基本概念、基本方法在现代实践中越来越多的被应用,并在现代数学及相关学科的研究中不断得到进一步的发展.本章的主要内容由两部分组成,一是数学归纳法,二是极限.学习极限时要注意数列极限和函数极限的联系和区别、函数的极限与函数连续性的渐进性.

数学归纳法

●知识梳理

1.数学归纳法的定义:由归纳法得到的与自然数有关的数学命题常采用下面的证明方法:(1)先证明当n=n0(n0是使命题成立的最小自然数)时命题成立;(2)

假设当n =k (k ∈N *, k ≥n 0)时命题成立,再证明当n =k +1时命题也成立,那么就证明这个命题成立,这种证明方法叫数学归纳法.

2.数学归纳法的应用:①证恒等式;②整除性的证明;③探求平面几何中的问题;④探求数列的通项;⑤不等式的证明.

特别提示

(1)用数学归纳法证题时,两步缺一不可;

(2)证题时要注意两凑:一凑归纳假设;二凑目标.

●点击双基 1.设f (n )=11+n +21+n +31+n +…+n

21(n ∈N *),那么f (n +1)-f (n )等于 A.1

21

+n B.2

21

+n C.

121+n +2

21+n

D.

1

21

+n -221+n

解析:f (n +1)-f (n )=

21+n +31+n +…+n 21 +1

21+n +221+n -(11+n +21

+n +…

+n 21)=121+n +2

21+n -11+n =121

+n -221+n .

答案:D

2.(2004年太原模拟题)若把正整数按下图所示的规律排序,则从2002到2004年的箭头方向依次为

解析:2002=4×500+2,而a n =4n 是每一个下边不封闭的正方形左、上顶点的数.

答案:D

3.凸n 边形有f (n )条对角线,则凸n +1边形有对角线条数f (n +1)为 (n )+n +1 (n )+n (n )+n -1 (n )+n -2 解析:由n 边形到n +1边形,增加的对角线是增加的一个顶点与原n -2个顶点连成的 n -2条对角线,及原先的一条边成了对角线.

答案:C

4.用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为

+1 (2k +1) C.

1

1

2++k k D.132++k k

解析:当n =1时,显然成立.

当n =k 时,左边=(k +1)(k +2)·…·(k +k ),

当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k )(k +1+k +1) =(k +2)(k +3)·…·(k +k )(k +1+k )(k +1+k +1) =(k +1)(k +2)·…·(k+k )

1

)

22)(12(+++k k k =(k +1)(k +2)·…·(k +k )2(2k +1).

答案:B

5.(2004年春季上海,8)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图形中有_________个点.

解析:观察图形点分布的变化规律,发现第一个图形只有一个中心点;第二个图形中除中心外还有两边,每边一个点;第三个图形中除中心点外还有三个边,每边两个点;…;依次类推,第n个图形中除中心外有n条边,每边n-1个点,故第n个图形中点的个数为n(n-1)+1.

答案:n2-n+1

●典例剖析

【例1】比较2n与n2的大小(n∈N *).

剖析:比较两数(或式)大小的常用方法本题不适用,故考虑用归纳法推测大小关系,再用数学归纳法证明.

解:当n=1时,21>12,

当n=2时,22=22,当n=3时,23<32,

当n=4时,24=42,当n=5时,25>52,

猜想:当n≥5时,2n>n2.

下面用数学归纳法证明:

(1)当n=5时,25>52成立.

(2)假设n=k(k∈N *,k≥5)时2k>k2,

那么2k+1=2·2k=2k+2k>k2+(1+1)k>k2+C0

k +C1

k

+C1 k

k

=k2+2k+1=(k+1) 2.

∴当n=k+1时,2n>n2.

由(1)(2)可知,对n≥5的一切自然数2n>n2都成立.

综上,得当n=1或n≥5时,2n>n2;当n=2,4时,2n=n2;当n=3时,2n<n2.

评述:用数学归纳法证不等式时,要恰当地凑出目标和凑出归纳假设,凑目标时可适当放缩.

深化拓展

当n≥5时,要证2n>n2,也可直接用二项式定理证:2n=(1+1)n=C0

n +C1

n

+C2

n

+…

+C2-n

n +C1-n

n

+C n

n

>1+n+

2

)1

(-

n

n+

2

)1

(-

n

n=1+n+n2-n>n2.

【例2】是否存在常数a、b、c使等式1·(n2-12)+2(n2-22)+…+n(n2-

n2)=an4+bn2+c对一切正整数n成立证明你的结论.

剖析:先取n=1,2,3探求a、b、c的值,然后用数学归纳法证明对一切n∈N*,a、b、c所确定的等式都成立.

解:分别用n=1,2,3代入解方程组

下面用数学归纳法证明.

(1)当n=1时,由上可知等式成立;

(2)假设当n=k+1时,等式成立,

则当n=k+1时,左边=1·[(k+1)2-12]+2[(k+1)2-22]+…+k[(k+1)2-k2]

+(k +1)[(k +1)2-(k +1)2]=1·(k 2-12)+2(k 2-22)+…+k (k 2-k 2)+1·(2k +1)+2(2k +1)+…+k (2k +1)

=4

1

k 4

+(-4

1)k 2

+(2k +1)+2(2k +1)+…+k (2k +1)=4

1(k +1)4

-4

1(k +1)2

.

∴当n =k +1时,等式成立.

由(1)(2)得等式对一切的n ∈N *均成立.

评述:本题是探索性命题,它通过观察——归纳——猜想——证明这一完整的思路过程去探索和发现问题,并证明所得结论的正确性,这是非常重要的一种思维能力.

【例3】(2003年全国)设a 0为常数,且a n =3n -1-2a n -1(n ∈N *).证明:n ≥1时,a n =5

1

[3n +(-1)n -1·2n ]+(-1)n ·2n ·a 0.

剖析:给出了递推公式,证通项公式,可用数学归纳法证.

证明:(1)当n =1时,5

1

[3+2]-2a 0=1-2a 0,而a 1=30-2a 0=1-2a 0.

∴当n =1时,通项公式正确.

(2)假设n =k (k ∈N *)时正确,即a k =5

1[3k +(-1)k -1·2k ]+(-1)k ·2k ·a 0, 那么a k +1=3k -2a k =3k -5

2×3k +5

2(-1)k ·2k +(-1)k +1·2k +1a 0 =5

3·3k +5

1(-1)k ·2k +1+(-1)k +1·2k +1·a 0

=51[3k +1+(-1)k ·2k +1]+(-1)k +1·2k +1·a 0.∴当n =k +1时,通项公式正确.

由(1)(2)可知,对n ∈N *,a n =5

1

[3n +(-1)

n -1

·2n ]+(-1)n ·2n

·a 0.

评述:由n =k 正确?n =k +1时也正确是证明的关键.

深化拓展

本题也可用构造数列的方法求a n . 解:∵a 0为常数,∴a 1=3-2a 0. 由a n =3n -1-2a n -1, 得n

n a 3

3=-

1

13

2--n n a +1, 即

n n a 3=-3

113--n n a +3

1.

∴n

n a 3-5

1=-3

2(

1

13--n n a -5

1

).

∴{

n

n a 3-5

1}是公比为-3

2,首项为

5

1

3230--a 的等比数列. ∴

n

n a 3-51=(54-32a 0)·(-3

2)n -1.

∴a n =(5

4-3

2a 0)·(-2)n -1×3+5

1×3n =5

1[3n +(-1)n -1·2n ]+(-1)n ·2n ·a 0.

注:本题关键是转化成a n +1=ca n +d 型.

●闯关训练

夯实基础

1.如果命题P (n )对n =k 成立,则它对n =k +1也成立,现已知P (n )对n =4不成立,则下列结论正确的是

(n )对n ∈N*成立

(n )对n >4且n ∈N*成立 (n )对n <4且n ∈N*成立 (n )对n ≤4且n ∈N*不成立

解析:由题意可知,P (n )对n =3不成立(否则n =4也成立).同理可推得P (n )对n =2,n =1也不成立.

答案:D

2.用数学归纳法证明“1+2

1+3

1+…+

1

21

-n

<n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是

-1

-1 +1

解析:左边的特点:分母逐渐增加1,末项为1

21

-n ;由n =k ,末项为121-k 到n =k +1,

末项为

1

211-+k =

k

k 2

121+-,∴应增加的项数为2k

. 答案:C

3.观察下表: 1

2 3 4

3 4 5 6 7

4 5 6 7 8 9 10 ……

设第n 行的各数之和为S n ,则∞

→n lim

2

n S n =__________.

解析:第一行1=12, 第二行2+3+4=9=33, 第三行3+4+5+6+7=25=52, 第四行4+5+6+7+8+9+10=49=72.

归纳:第n 项的各数之和S n =(2n -1)2,

→n lim

2

n S n =∞

→n lim (

n

n 12-)2

=4. 答案:4

4.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n

-2个图形中共有____________个顶点.

解析:观察规律:第一个图形有32

+3=(1+2)2

+(1+2); 第二个图形有(2+2)2

+(2+2)=42+4; 第三个图形有(3+2)2+(3+2)=52+5; …

第n -2个图形有(n +2-2)2+(n +2-2)=n 2+n 个顶点. 答案:n 2+n

5.已知y =f (x )满足f (n -1)=f (n )-lg a n -1(n ≥2,n ∈N )且f (1)=-lg a ,是否存在实数α、β使f (n )=(αn 2+βn -1)lg a 对任何n ∈N *都成立,证明你的结论.

解:∵f (n )=f (n -1)+lg a n -1,令n =2,则f (2)=f (1)+f (a )=-lg a +lg a =0. 又f (1)=-lg a ,

∴?

?

?=+=+.1420

αββα

∴???

????-==.21,21βα ∴f (n )=(21

n 2-2

1n -1)lg a .

证明:(1)当n =1时,显然成立.

(2)假设n =k 时成立,即f (k )=(2

1k 2

-2

1k -1)lg a ,

则n =k +1时,f (k +1)=f (k )+lg a k =f (k )+k lg a =(2

1k 2-2

1k -1+k )lg a =[2

1(k +1)2-2

1

(k +1)-1]lg a .

∴当n =k +1时,等式成立.

综合(1)(2)可知,存在实数α、β且α=21,β=-2

1,使f (n )=(αn 2+βn -1)lg a 对任意n ∈N *都成立.

培养能力

6.已知数列{bn }是等差数列,b1=1,b1+b2+…+b10=100. (1)求数列{bn }的通项公式bn ;

(2)设数列{a n }的通项a n =lg (1+

n

b 1

),记S n 为{a n }的前n 项和,试比较S n 与

2

1

lg bn +1的大小,并证明你的结论. 解:(1)容易得bn =2n -1. (2)由bn =2n -1,

知S n =lg (1+1)+1g (1+3

1

)+…+lg (1+

1

21

n )=lg (1+1)(1+

31)·…·(1+1

21-n ). 又2

11g b n +1=1g 12+n ,

因此要比较S n 与211g b n +1的大小,可先比较(1+1)(1+31)·…·(1+1

21

-n )与12+n 的大小.

取n =1,2,3可以发现:前者大于后者,由此推测 (1+1)(1+3

1

)· …· (1+

1

21

-n )>12+n . ① 下面用数学归纳法证明上面猜想: 当n =1时,不等式①成立. 假设n =k 时,不等式①成立,即 (1+1)(1+3

1

)·…·(1+

1

21

-k )>12+k . 那么n =k +1时,

(1+1)(1+31

)·…·(1+

121-k )(1+121+k )>12+k (1+1

21

+k ) =

1

21

2)1(2+++k k k .

又[1212)1(2+++k k k ]2-(32+k )2=1

21

+k >0,

1

21

2)1(2+++k k k >32+k =.1)1(2++k

∴当n =k +1时①成立.

综上所述,n ∈N*时①成立. 由函数单调性可判定S n >2

11g b n +1.

7.平面内有n 条直线,其中无任何两条平行,也无任何三条共点,求证:这n 条直线把平面分割成2

1(n 2+n +2)块.

证明:(1)当n =1时,1条直线把平面分成2块,又2

1(12+1+2)=2,命题成立. (2)假设n =k 时,k ≥1命题成立,即k 条满足题设的直线把平面分成2

1(k 2+k +2)块,那么当n =k +1时,第k +1条直线被k 条直线分成k +1段,每段把它们所在的平面块又分成了2块,因此,增加了k +1个平面块.所以k +1条直线把平面分成了

2

1(k 2+k +2)+k +1= 2

1

[(k +1) 2+(k +1)+2]块,这说明当n =k +1时,命题也成立.由(1)(2)知,对一切n ∈N *,命题都成立.

探究创新

8.(2004年重庆,22)设数列{a n }满足a 1=2,a n +1=a n +

n

a 1

(n =1,2,…). (1)证明a n >12+n 对一切正整数n 都成立;

(2)令b n =n

a n (n =1,2,…),判定

b n 与b n +1的大小,并说明理由.

(1)证法一:当n =1时,a 1=2>112+?,不等式成立. 假设n =k 时,a k >12+k 成立,

当n =k +1时,a k +12=a k 2+

2

1k

a +2>2k +3+

2

1k

a >2(k +1)+1,

∴当n =k +1时,a k +1>1)1(2++k 成立.

综上,由数学归纳法可知,a n >12+n 对一切正整数成立. 证法二:当n =1时,a 1=2>3=112+?结论成立. 假设n =k 时结论成立,即a k >12+k ,

当n =k +1时,由函数f (x )=x +x

1(x >1)的单调递增性和归纳假设有

a k +1=a k +

k

a 1>12+k +

1

21+k =

1

2112+++k k =

1

222++k k =

1

24842+++k k k >

1

2)

12)(32(+++k k k =32+k .

∴当n =k +1时,结论成立.

因此,a n >12+n 对一切正整数n 均成立.

(2)解:

n

n b b 1

+=n

a n a n n 1

1

++=(1+21n a )1

+n n <(1+

1

21

+n )1

+n n =

1

)12()1(2+++n n n n

=1

2)1(2++n n n =2

141)21(2+

-

+n n <1.

故b n +1<b n .

●思悟小结

1.用数学归纳法证明问题应注意:

(1)第一步验证n=n0时,n0并不一定是1.

(2)第二步证明的关键是要运用归纳假设,特别要弄清由k到k+1时命题的变化.

(3)由假设n=k时命题成立,证n=k+1时命题也成立,要充分利用归纳假设,要恰当地“凑”出目标.

2.归纳、猜想、论证是培养学生观察能力、归纳能力以及推理论证能力的方式之一.

●教师下载中心

教学点睛

1.数学归纳法中的归纳思想是比较常见的数学思想,因此要重视.

2.数学归纳法在考试中时隐时现,且较隐蔽,因此在复习中应引起重视.只要与自然数有关,都可考虑数学归纳法,当然主要是恒等式、等式、不等式、整除问题、几何问题、三角问题、数列问题等联系得更多一些.

拓展题例

【例1】是否存在正整数m,使得f(n)=(2n+7)·3n+9对任意自然数n都能

被m 整除若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.

解:由f (n )=(2n +7)·3n

+9,得f (1)=36, f (2)=3×36, f (3)=10×36,

f (4)=

34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立.

(2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),

由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除.

由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36.

【例2】 如下图,设P 1,P 2,P 3,…,P n ,…是曲线y =x 上的点列,Q 1,Q 2,Q 3, …,

Q n ,…是x 轴正半轴上的点列,且△OQ 1P 1,△Q 1Q 2P 2,…,△Q n -1Q n P n ,…都是正三角

形,设它们的边长为a 1,a 2,…,a n ,…,求证:a 1+a 2+…+a n =3

1

n (n +1).

证明:(1)当n =1时,点P 1是直线y =3x 与曲线y =x 的交点, ∴可求出P 1(3

1

3

3

).

∴a 1=|OP 1|=32.而31×1×2=3

2,命题成立.

(2)假设n =k (k ∈N *)时命题成立,即a 1+a 2+…+a k =3

1k (k +1),则点Q k 的坐标为(3

1k (k +1),0),

∴直线Q k P k +1的方程为y =3[x -3

1k (k +1)].代入y =x ,解得P k +1点的坐标为

)).1(3

3,3)1((2++k k

∴a k +1=|Q k P k +1|=

33(k +1)·32=3

2

(k +1). ∴a 1+a 2+…+a k +a k +1=31

k (k +1)+32(k +1)=3

1(k +1)(k +2).

∴当n =k +1时,命题成立.

由(1)(2)可知,命题对所有正整数都成立.

评述:本题的关键是求出P k +1的纵坐标,再根据正三角形高与边的关系求出|Q k P

k +1

|.

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

高考真题突破:数学归纳法

专题十三 推理与证明 第三十九讲 数学归纳法 解答题 1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈* N . 证明:当n ∈* N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1 122 n n n n x x x x ++-≤ ; (Ⅲ)1211 22 n n n x --≤≤. 2.(2015湖北) 已知数列{}n a 的各项均为正数,1 (1)()n n n b n a n n +=+∈N ,e 为自然对数的 底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1 (1)n n +与e 的大小; (Ⅱ)计算 11b a ,1212 b b a a ,123123 b b b a a a ,由此推测计算12 12n n b b b a a a 的公式,并给出证明; (Ⅲ)令112()n n n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 3.(2014江苏)已知函数0sin ()(0) x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (Ⅰ)求()() 122222 f f πππ+的值; (2)证明:对任意的n *∈N ,等式()( ) 1444n n nf f -πππ+=成立. 4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p +>+1)1(; (Ⅱ)数列{}n a 满足p c a 11>,p n n n a p c a p p a -++-= 111, 证明:p n n c a a 1 1>>+. 5.(2014 重庆)设1 11,(*)n a a b n N +==+∈

高考数学复习题库 高考数学归纳法

高考数学复习题库高考数学归纳法 一.选择题 1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x +y整除”,在第二步时,正确的证法是( ). A.假设n=k(k∈N +),证明n=k+1命题成立 B.假设n=k(k是正奇数),证明n=k+1命题成立 C.假设n=2k+1(k∈N+),证明n=k+1命题成立 D.假设n=k(k是正奇数),证明n=k+2命题成立解析 A.B.C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数. 答案 D 2.用数学归纳法证明“2n>n2+1 对于n≥n0 的正整数 n 都成立”时,第一步证明中的起始值 n0 应取( ) A.2 B.3 C.5 D.6 解析分别令 n0=2,3,5, 依次验证即可. 答案 C 3.对于不等式

4.利用数学归纳法证明“1+a+a2+…+an+1=(a≠1, n∈N*)”时,在验证n=1成立时,左边应该是( ) A1 B1+a C1+a+a2 D1+a+a2+a3 解析当n=1时,左边 =1+a+a2,故选C. 答案 C 5.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( ). A.k2+1 B.(k+1)2 C. D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2 解析∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧=1+2+3+…+k2+ (k2+1)+…+(k+1)2,∴当n=k+1时,左端应在n=k的基 础上加上 (k2+1)+(k2+2)+(k2+3)+…+(k+1) 2. 答案 D 6.下列代数式(其中k∈N*)能被9整除的是( ) A.6+6·7k B.2+7k-1 C.2(2+7k+1) D.3(2+7k) 解析 (1)当k=1时,显然只有3(2+7k)能被9整除. (2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36. 这就是说,k=n+1时命题也成立. 由 (1) (2)可知,命题对任何k∈N*都成立. 答案 D

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++??????=?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

高三数学课题:数学归纳法(公开课讲解)

课题:数学归纳法 【三维目标】: 一、知识与技能 1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 2.抽象思维和概括能力进一步得到提高. 二、过程与方法 通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明是解决问题的一种重要途径,用数学归纳法进行证明时,“归纳奠基”与“归纳递推”两个步骤缺一不可,而关键的第二步,其本质是证明一个递推关系。 三、情感,态度与价值观 体会数学归纳法是用有限步骤解决无限问题的重要方法,提高归纳、猜想、证明能力。 【教学重点与难点】: 重点:是了解数学归纳法的原理及其应用。 难点:是对数学归纳法的原理的了解,关键是弄清数学归纳法的两个步骤及其作用。 【课时安排】:2课时 第一课时 【教学思路】: (一)、创设情景,揭示课题

问题1:P 71中的例1.在数列{a n }中,a 1=1,a n+1= n n a a +1(n ∈N+),先计算a 2,a 3,a 4的值,再推测通项an 的公式. 生:a 2=21,a 3=31,a 4=41.由此得到:a n =n 1(n ∈N +). 问题2:通过计算下面式子,你能猜出()()121531--++-+-n n 的结果吗?证明你的结论? ________97531________ 7531_______531_______ 31=-+-+-=+-+-=-+-=+- 生:上面四个式子的结果分别是:2,-3,4,-5,因此猜想: ()()()n n n n 1121531-=--++-+- (*) 怎样证明它呢? 问题3:我们先从多米诺骨牌游戏说起,这是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌也倒下。只要推倒第一块骨牌,由于第一块骨牌倒下,就可导致第二块骨牌倒下;而第二块骨牌倒下,就可以导至第三块骨牌倒下……最后,不论有多少块,都能全部倒下。 (二)、研探新知 原理分析:问题3:可以看出,使所有骨牌都倒下的条件有两个: (1) 第一块骨牌倒下; (2) 任意相邻的两块骨牌,前一块倒下.一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。这样只要第1块骨牌倒下,其他所有的骨牌就能够相继倒下。事实上,无论有多少块骨牌,只要保证(1)

高考数学专题训练 数学归纳法

数学归纳法 注意事项:1.考察内容:数学归纳法 2.题目难度:中等难度 3.题型方面:10道选择,4道填空,4道解答。 4.参考答案:有详细答案 5.资源类型:试题/课后练习/单元测试 一、选择题 1.用数学归纳法证明“)1 2...(312))...(2)(1(-???=+++n n n n n n ”从k 到1+k 左端需增乘 的代数式为 ( ) A .12+k B .)12(2+k C . 112++k k D .1 3 2++k k 2.凸n 边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( ) A .()1f n n ++ B .()f n n + C .()1f n n +- D .()2f n n +- 3.已知 11 1 ()()12 31 f n n n n n *= +++ ∈++-N ,则(1)f k +=( ) A .1 ()3(1)1 f k k + ++ B .1 ()32f k k + + C .1111 ()3233341f k k k k k +++- ++++ D .11 ()341 f k k k +- ++ 4.如果命题()p n 对n k =成立,那么它对2n k =+也成立,又若()p n 对2n =成立,则下列 结论正确的是( ) A .()p n 对所有自然数n 成立 B .()p n 对所有正偶数n 成立 C .()p n 对所有正奇数n 成立 D .()p n 对所有大于1的自然数n 成立 5.用数学归纳法证明,“当n 为正奇数时,n n x y +能被x y + 整除”时,第二步归纳假设应写 成( ) A .假设21()n k k * =+∈N 时正确,再推证23n k =+正确

数学归纳法知识点大全

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

数学归纳法

数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.7 易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. 1.利用数学归纳法证明问题时有哪些注意事项? 剖析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立?n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明. (2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析. 2.运用数学归纳法时易犯的错误有哪些? 剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错. (2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了. (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性.

【自主练习】 1.已知f (n )=1n +1n +1+1n +2+…+1 n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+1 3 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1 4 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1 3 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1 4 2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1= 2? ???1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2)

高考数学(人教a版,理科)题库:数学归纳法(含答案)

第3讲数学归纳法一、选择题 1. 利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+2 1-a (a≠1,n∈N*)”时,在验 证n=1成立时,左边应该是( ) A 1 B 1+a C 1+a+a2 D 1+a+a2+a3 解析当n=1时,左边=1+a+a2,故选C. 答案 C 2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立 B.假设n=k(k是正奇数),证明n=k+1命题成立 C.假设n=2k+1(k∈N+),证明n=k+1命题成立 D.假设n=k(k是正奇数),证明n=k+2命题成立 解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数. 答案 D 3.用数学归纳法证明1-1 2+ 1 3- 1 4+…+ 1 2n-1 - 1 2n= 1 n+1 + 1 n+2 +…+ 1 2n,则 当n=k+1时,左端应在n=k的基础上加上(). A.1 2k+2B.- 1 2k+2 C.1 2k+1- 1 2k+2 D. 1 2k+1 + 1 2k+2 解析∵当n=k时,左侧=1-1 2+ 1 3- 1 4+…+ 1 2k-1 - 1 2k,当n=k+1时, 左侧=1-1 2+ 1 3- 1 4+…+ 1 2k-1 - 1 2k+ 1 2k+1 - 1 2k+2 . 答案 C

4.对于不等式n2+n

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

数学归纳法经典例题及答案

数学归纳法(2016421) 、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确. 综合(1)、( 2), 注意:数学归纳法使用要点: 两步骤,一结论 、题型归纳: 题型1.证明代数恒等式 用数学归纳法证明: 当n=k+1时. k 1 2k 3 由①、②可知,对一切自然数 n 等式成立. 证明:①n=1时,左边 ②假设n =k 时, 2n 1 1 2n 1 n 2n 1 1 3 等式成立,即: -,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k 2k 1 2k 1 2k 1 2k 1 2k 3 2k 1 2k 1 2k 3 2k 2 2k 1 3k 1 2k 3 2k 1 k 1 2k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,

题型2.证明不等式 11 1 _ 例2 ?证明不等式1 2打(n € N ). V 2 <3 V n 证明:①当n=1时,左边=1,右边=2. 左边 <右边,不等式成立. 那么当n=k+1时, 2 .k 2k 1 2.k 1 这就是说,当n=k+1时,不等式成立. 由①、②可知,原不等式对任意自然数 n 都成立. 说明:这里要注意,当 n=k+1时,要证的目标是 1 1 1 1 ---------------------------------------- 1 — — — ------------ 2 \ k 1,当代入归纟纳假设后,就是要证明: ■. 2 3 . k 、k 1 2、、k 1— 2 k 1 . -k 1 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *). (1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值. a 2 十 ⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1) 3 . 解:(1) 当 n = 5 时, 原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1 .3 1 . 2 1 ■- 3

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

数学归纳法(有答案解析)

数学归纳法 2015高考会这样考 1.考查数学归纳法的原理和证题步骤;2.用数学归纳法证明与等式、不等式或数列有关的命题,考查分析问题、解决问题的能力. 复习备考要这样做 1.理解数学归纳法的归纳递推思想及其在证题中的应用;2.规范书写数学归纳法的证题步骤. 一、知识梳理 数学归纳法 一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0 (n 0∈N *)时命题成立; (2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫作数学归纳法. [难点正本 疑点清源] 1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据. 2.在用数学归纳法证明时,第(1)步验算n =n 0的n 0不一定为1,而是根据题目要求,选择合适的起始值.第(2)步,证明n =k +1时命题也成立的过程,一定要用到归纳假设,否则就不是数学归纳法. 小试牛刀 1.凸k 边形内角和为f (k ),则凸k +1边形的内角和为f (k +1)=f (k )+________. 答案 π 解析 易得f (k +1)=f (k )+π. 2.用数学归纳法证明:“1+12+13+…+1 2n -1 1)”,由n =k (k >1)不等式成立,推证 n =k +1时,左边应增加的项的项数是________. 答案 2k 解析 n =k 时,左边=1+12+…+1 2k -1,当n =k +1时, 左边=1+12+13+…+12k -1+…+1 2k +1-1. 所以左边应增加的项的项数为2k . 3.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +2 1-a (a ≠1,n ∈N +),在验证n =1成立时, 左边需计算的项是 ( )

高考数学压轴—数学归纳法(含解法)

高考数学压轴—数学归纳法(含解法) 运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 Ⅰ、再现性题组: 1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2n ·1·2…(2n -1) (n ∈N ),从“k 到k +1”,左端需乘的代数式为_____。 A. 2k +1 B. 2(2k +1) C. 211k k ++ D. 231k k ++ 2. 用数学归纳法证明1+12+13+…+121 n -1)时,由n =k (k>1)不等式成立,推证n =k +1时,左边应增加的代数式的个数是_____。 A. 2k -1 B. 2k -1 C. 2k D. 2k +1 3. 某个命题与自然数n 有关,若n =k (k ∈N)时该命题成立,那么可推得n =k +1时该命题也成立。现已知当n =5时该命题不成立,那么可推得______。 (94年上海高考) A.当n =6时该命题不成立 B.当n =6时该命题成立 C.当n =4时该命题不成立 D.当n =4时该命题成立 4. 数列{a n }中,已知a 1=1,当n ≥2时a n =a n -1+2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是_____。 A. 3n -2 B. n 2 C. 3 n -1 D. 4n -3 5. 用数学归纳法证明3 42n ++521n + (n ∈N)能被14整除,当n =k +1时对于式子3412()k +++5211()k ++应变形为_______________________。 6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k)+_________。 【简解】1小题:n =k 时,左端的代数式是(k +1)(k +2)…(k +k),n =k +1时,左端的代数式是(k +2)(k +3)…(2k +1)(2k +2),所以应乘的代数式为 ()()21221k k k +++,选B ; 2小题:(2k +1-1)-(2k -1)=2k ,选C ; 3小题:原命题与逆否命题等价,若n =k +1时命题不成立,则n =k 命题不成立,选C 。 4小题:计算出a 1=1、a 2=4、a 3=9、a 4=16再猜想a n ,选B ; 5小题:答案(342k ++521k +)3k +521k +(52-34 ); 6小题:答案k -1。

数学归纳法的理论依据

数学归纳法的理论依据 ——数学教学改革实验与理解能力培养 我们在中学教数学归纳法时,经常碰到一些勤于思考的学生提出:“数学归纳法的理论依据是什么?”这个问题在《高等代数》中早有论述,但中学生一般还很难看懂。为了保护学生们的好奇心、求知欲望和探索精神,提高与发展学生的领会理解能力,我们以数学课外活动的方式,开设“数学专题讲座”,给这个问题作出深入浅出的回答。 一、自然数集的基本性质与皮亚诺公理。 1962年我国著名数学家华罗庚教授在一次讲话中说:“简单朴素的数的性质,成为数学概念和方法的一个重要源泉。”数学归纳是用来证明某些与自然数n有关的数学命题P(n)的重要方法。它的理论依据就必定与自然数的基本性质有关。 1889年意大利数学家皮亚诺创立了五条自然数集的公理体系,揭示出自然数集N的基本性质。这五条公理是 (1)1属于自然数集N,即; (2)若,则有且仅有一个自然数紧跟在a后面,记为a+1; (3)若a属于自然数集N,即,则; (4)设,,当x+1=y+1时,x=y; (5)若M是N的一个子集,具有下面两个性质: 1); 2)若,有, 则M=N。 依皮亚诺公理,有,1+1记为2,则2,2+1记为3,则,

3+1记为,则4,则依此递推,便得自然数集。 事实上,我们数自然数时,第一个数便是1,这就是公理1。公理2说明,任何自然数a都有唯一确定的后继数a+1。公理3说明,1是自然数中唯一不是后继数的数;1是自然数集N中的最小数。公理4说明,除1以外,每个自然数都是一个唯一确定的自然数的后继数。公理5说明,从1开始,一直数下去,以至无穷,便得到所有的自然数。这个公理5,又称为归纳公理,它就是数学归纳法最原始的理论依据。 二、最小数原理与数学归纳法原理。 依皮亚诺公理,自然数集N有最小数1。这个性质加以推广,便得“最小数原理”。 定理一、自然数集的任意非空子集必有一个最小数。 证明:设A是自然数集的任意非空子集。在A中任意取出一个数m。依皮亚诺公理,从1到m共有m个自然数,则A中不超过m的数最多有m个。因为这是有限个数,则其中必有一个最小数K。K对于A中不超过m的数来说最小。而A中其余的数都比m大,因而更比K大,所以,K就是A中的最小数。 例1、用“最小数原理”证明 证明:假设至少存在一个自然数m,使得上述等式P(m)不成立。令S 表示所有使等式P(m)不成立的那些自然数m的集合。因为当n=1时,等式 P(1)显然成立,则,所以,S是N的一个真子集。又由假设得,S是非空的。依最小数原理,S中必有一个最小数K,使得P(K)不成立。且K>1。 因为K-1

高考数学归纳法的常考题型

高考数学归纳法的常考题型 一、题意直接指明利用数学归纳法证题的探索题型 例1 已知数列{}n x 满足:*1111,21n n x x n N x ∈++’= =. (1)猜想数列{}2n x 的单调性,并证明你的结论. (2)证明:1 112 |()65 n n n x x -+-|≤. (1)解:由211= x 和n n x x +=+111,得21 13 ,85,32642===x x x .由246x x x >>,猜想: 数列{}2n x 是递减数列. 下面用数学归纳法证明. ①当n=1时,命题成立. ②假设当 n=k 时命题成立,即222k k x x +>,易知20k x >,那么 232122242123212311 11(1)(1) k k k k k k k k x x x x x x x x ++++++++--= -= ++++= 222 22122230(1)(1)(1)(1) k k k k k k x x x x x x ++++->++++,即2(1)2(1)2k k x x +++>,也就是说,当n=k+1时命 题也成立. 结合①②,可知命题成立. (2)证明:①当n=1时,1211 6 n n x x x x +-=-= ,结论成立. ②假设当k n =时命题成立,则有1 15261-+? ? ? ???≤-k k k x x .当2n ≥时,易知 11111 01,12,12 n n n n x x x x ---<<∴+<= >+. ()()5 21111≤++∴ -k k x x . 当 1 +=k n 时, 111115(1)(1)(1)(1)212 n n n n n x x x x x ----∴++=+ +=+≥+

数学归纳法

备课 时间 教学 课题 教时 计划 1 教学 课时 1 教学 目标 1.了解归纳法的意义,培养学生观察、归纳、发现的能力. 2.了解数学归纳法的原理,能以递推思想作指导,理解数学归纳法的操作步骤. 3.抽象思维和概括能力进一步得到提高. 重点难点 重点:借助具体实例了解数学归纳的基本思想,掌握它的基本步骤,运用它证明一 些与正整数n (n 取无限多个值)有关的数学命题。 难点:1、学生不易理解数学归纳的思想实质,具体表现在不了解第二个步骤的作 用,不易根据归纳假设作出证明; 2、运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。 教学过程 (一)创设情景 对于数列{an},已知11=a , a a a n n n +=+11(n=1,2,…), 通过对n=1,2,3,4前4项的归纳,猜想其通项公式为n a n 1= 。这个猜想是否正确需要证明。 一般来说,与正整数n 有关的命题,当n 比较小时可以逐个验证,但当n 较大时,验证就很麻烦。特别是n 可取所有正整数时逐一验证是不可能的。因此,我们需要寻求一种方法:通过有限个步骤的推理,证明n 取所有正整数都成立。 (二)研探新知 1、了解多米诺骨牌游戏。 可以看出,只要满足以下两条件,所有多米诺骨牌就都能倒下: (1)第一块骨牌倒下; (2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。 思考:你认为条件(2)的作用是什么? 可以看出,条件(2)事实上给出了一个递推关系: 当第k 块倒下时,相邻的第k+1块也倒下。 这样,要使所有的骨牌全部倒下,只要保证(1)(2)成立。 2、用多米诺骨牌原理解决数学问题。 思考:你认为证明数列的通过公式是n a n 1= 这个猜想与上述多米诺骨牌游戏有相似性吗?你能 类比多米诺骨牌游戏解决这个问题吗? 分析: 多米诺骨牌游戏原理 通项公式 n a n 1= 的证明方法 (1)第一块骨牌倒下。 (1)当n=1时a1=1,猜想成立 (2)若第k 块倒下时,则相邻的第k+1块也倒下。 (2)若当n=k 时猜想成立,即 k a k 1= ,则当n=k+1时猜想也成立,即 111+=+k a k 。

相关文档
最新文档