冷却水补充水量计算

冷却水补充水量计算
冷却水补充水量计算

冷却水的补水量计算

冷却塔的水量损失包括三部分:蒸发、风吹、排污,即

Qm=Qe+Qw+Qb 或 Qm=QeN/(N-1)

式中:

Qm:冷却塔补充水量

Qe:蒸发水量损失

Qw:风吹水量损失

Qb:排污水量损失

1)蒸发损失水量

Qe=KΔtQ——-(1)

=0.00152x10x8000=121.6 m3/h

式中 :Qe为蒸发损失量;

Δt为冷却塔进出水温度差,℃;

Q为循环水量,m3/h;

K为热量系数,1/℃。

热量系数K值表

注:气温中间值可采用内插法计算。

2)风吹损失水量

对于有除水器的机械通风冷却塔,风吹损失量为

Qw=0.1%Q————-(2)

=0.001x8000=8 m3/h

3)排污和渗漏损失

该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关 .浓缩倍数的计算公式:

N =Cr/Cm

式中 :N为浓缩倍数;Cr为循环冷却水的含盐量;Cm为补充水的含盐量.

根据循环冷却水系统的含盐量平衡,补充水带进系统的含盐最应等于排污,风吹和渗漏水中所带走的含盐量 .

QmCm= (Qw+Qb)Cr

N =Cr/Cm=Qm/(Qw+Qb)=( Qe+ Qw+Qb)/( Qw+Qb)———–(3)

Qm= QeN/(N 一1)

=121.6x6/(6-1)=145.92 m3/h

Qb=Qm-Qe-Qw 或Qb=Qm/(N-1) 一Qw

=145.92/(6-1)-8=16.32 m3/h

注:排污量需根据过滤器反冲洗排水量校核。

浓缩倍数为补充水含盐量和经浓缩后冷却水中的含盐量之比,《建筑给水排水设计手册》推荐N值,一般情况下最高不超过5~6。N值过大,排污和渗漏损失大,必然造成水浪费,N值过小,补水量小,冷却水浓度大,会造成系统的污垢和腐蚀。本工程浓缩倍数N取6。由式(1)可以计算出蒸发水量,再由(2)风吹损失水量,最后由式(3)计算出排污和渗漏损失水量。

洪峰流量的计算

1.1 3.4设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=0.278ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表3.7。

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 摘要:本文分别介绍了国内外在计算生活给水设计秒流量时采用的常用概率理论方法,即亨特概率法和俄罗斯概率法。并对其理论原理,计算方法及特点进行了阐述。最后对两种方法进行比较。 关键词:给水设计秒流量概率法卫生器具 1 前 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表 2 概率计算方 2.1 亨特概率方 2.1.1 亨特概率法的建立 [1 亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量

假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为 (2-1 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下 (2-2 其中:Pm—至多有m个器具同时的概率值 m— 卫生器具同时使用个数设计值 p—用水高峰期单个卫生器具的使用概率 n—管段连接的卫生器具数 Pr—供水保证值,在亨特概率方法中采用0.99 由上式可以得知,在供水保证值Pr给出的情况下,可得在总卫生器具n个中,同时起作用的卫生器具数目r的值 由上式(2-2)知,n个卫生器具中有r个作用,r是0到n的任意数,把r从0到n的概率全部想加起来可得 (2-3 其中:式中符号同前 利用(式2.2)在已知N,P的条件下,可求出满足Pm≥0.99的m值。卫生器具同时使用个数设计值的概念与设计秒流量的概念想对应的计算管段的设计秒流量为 qg=q0 式中 qg——计算管段的设计秒流量,L/S

循环冷却水培训教材

循环xx培训教材 工业生产过程中,往往会产生大量热量,使生产设备或半成品(气体或液体)温度升高,必须及时冷却,以免影响生产的正常运行和产品质量。因水的热容量大,水是吸收和传递热量的良好介质,常用来冷却生产设备和产品。冷却水系统一般可分为直流水系统和循环水系统。 水通过换热器后即排放的称直流系统。若厂区附近水源充足且直接排放而不影响水体时,可采用直流系统。 循环冷却水系统又分为封闭式循环冷却水系统和敞开式循环冷却水系统。 冷却水在完全封闭的、由换热器和管路构成的系统中进行循环时称密闭式循环系统。在密闭式循环系统中,冷却水所吸收的热量一般借空气进行冷却,在水的循环过程中除渗漏外并无其它水量损失,也无排污所引起的环境问题,系统中含盐量及所加药剂几乎保持不变,故水质处理较单纯。但密闭式循环冷却水存在严重的腐蚀剂腐蚀产物问题。密闭式循环系统一般只用于小水量或缺水地区。 冷水流入换热器将热流体冷却,水温升高后,利用其余压流入冷却塔内进行冷却,冷却后的水再用水泵送入换热器循环使用,此系统称为敞开式循环冷却水系统。这种敞开式循环冷却水,由于在循环过程中要蒸发掉一部分水,还要排出一定的浓缩水,故要补充一定的新鲜水(通常称为补水),以维持循环水中的含盐量或某一离子含量在一定值上。 敞开式循环冷却水系统是应用最广泛的系统,也是水质处理技术最复杂的系统。 一水的冷却原理 循环水的冷却是通过水与空气接触,由蒸发散热、接触散热和辐射散热三个过程共同作用的结果。 1蒸发散热水在冷却设备中形成大小水滴或极薄水膜,扩大与其空气的接触面积和俄延长接触时间,使部分水蒸发,水气从水中带走气化所需的热量,从而使水冷却。

洪峰流量的计算

3.4设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=0.278ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表3.7。

饱和蒸气压水压力温度密度表

水蒸气是一种离液态较近的气体,在空气处理中应用广泛,易获得污染小。以实践经验总结出的数据图表作为计算依据 饱和水蒸气压力温度密度表 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力 (P) 密度(ρ) ℃ MPa kg/m3 ℃ MPa kg/m3 100 128 101 129 102 130 103 131 104 132 105 133 106 134 107 135 108 136 109 137 110 138 111 139 112 140 113 141 114 142 115 143 116 144 117 145 118 146 119 147

120 148 121 149 122 150 123 151 124 152 125 153 126 154 127 155 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力 (P) 密度(ρ)℃ MP a kg/m3 ℃ MPa kg/m3 156 184 157 185 158 186 159 187 160 188 161 189 162 190 163 191 164 192 165 193 166 194 167 195 168 196 169 197 170 198 171 199

174 202 175 203 176 204 177 205 178 206 179 207 180 208 181 209 182 210 183 211 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力 (P) 密度(ρ)℃ MPa kg/m3 ℃ MPa kg/m3 212 231 213 232 214 233 215 234 216 235 217 236 218 237 219 238 220 239 221 240 222 241 223 242

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

设计秒流量的计算

附 1、5设计秒流量的计算 1、5、1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量与每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质与水温等因 素并结合供水系统状况来选择与确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

循环冷却水系统和开式冷却水系统概述

循环冷却水系统和开式冷却水系统概述 第一节概述 机组的循环冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,向机房内布置标高较低的被冷却设备提供冷却水。正常运行中,机组循环冷却水由循环水提供,夏季可由矿井水升压泵提供温度较低的补充水做为冷却水源。循环冷却水系统各用户回水因压力较低,汇集后排至循环水塔池内。 设备规范如下: 第二节系统用户 循环冷却水系统用户有:汽轮机润滑油冷油器,闭式水冷却器,电动给水泵电机空冷器,电动给水泵润滑油冷油器,电动给水泵工作油冷油器,汽泵前置泵机械密封冷却器,汽泵机械密封冷却器,小机润滑油冷油器,凝结水泵电机轴承冷却器,发电机定子冷却水冷却器,真空泵循环液冷却器。 三、系统运行 1、投运 ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,开旋转滤网出口门,循环冷却水管道排空气门进行管道排空; ④管道空气排净后,根据需要投入循环冷却水用户。 2、运行维护 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 3、系统停运 当确认系统无用户时,可关闭水源电动门将系统停运。冬季停运后应放尽管道存水进行防冻处理。 开式冷却水系统 第一节概述 机组的开式冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,由两台开

式冷却水泵送至机房内布置较高的被冷却设备和锅炉侧各用户。各用户回水因压力较高,汇集后排至循环水回水管道排至水塔。 第二节系统运行 1、投运(水源选择及排空气、投运时的用户选择) ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,打开旋转滤网出口门、开冷泵入口门和出口门、开式冷却 水管道排空气门进行管道排空; ④管道空气排净后,关闭开冷泵出口门,部分投入开式水用户(),启动一 台开冷泵正常后,根据需要投入开式冷却水用户。 2、运行维护(包括滤网排污) 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 开冷泵运行中应注意压力,声音,振动正常,备用泵备用良好,开式冷却水母管压力正常。 3、系统停运 当确认系统无用户时,可停运开式冷却水泵,关闭水源电动门后将系统停运。冬季停运后应放尽管道存水进行防冻处理。 第三节系统运行注意事项 1、切泵注意事项(防逆止门不严引起倒流) 切换开冷泵时,先启动备用泵,检查备用泵运行正常后,停运运行开冷泵。当运行泵出口门关闭后,投入备用,查出口门开启正常,泵出口压力为其入口压力(确认其出口逆止门严密),切换开冷泵完毕。 2、两台泵均故障时的应对措施 两台开冷泵同时故障时,应立即开启两台开冷泵出口门,利用泵入口

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

流量计算公式

摘要:本文概述了目前用于管道直饮水系统管网设计秒流量的三种算法:传统公式算法、改造传统公式算法和概率公式算法,并比较了这三种算法的计算结果,分析了其中原因。指出传统公式算法和改造传统公式算法都不适用于管道直饮水系统管网的计算,而概率公式算法是一种较为合适的方法。 关键词:管道直饮水设计秒流量算法 0 前言 设计秒流量的计算是管网水力计算的基础,设计秒流量计算正确才能保证整个系统的正常运行。设计秒流量计算偏大,就会导致管径偏大、水泵流量偏大,造成经济上的浪费;同时,管网中的流速偏小,容易导致细菌繁殖,微粒沉积。而如果设计秒流量过小,则会使所选管径过小,造成水头损失过高,浪费能量,严重时出现断流,不能保证用水可靠性。所以,选择一个正确的设计秒流量计算方法至关重要。 1.设计秒流量计算方法概述 目前,用于管道直饮水系统设计秒流量的计算方法大致有三种: (1)算法一(传统公式算法) 即采用建筑生活给水管道设计秒流量计算公式 (1) 取=1.02,=0.0045,公式(1)成为: (2) 其中为设计秒流量(l/s),为当量总数,此公式为水工业工程设计手册《建筑和小区给水排水》[1]所采用。 (2)算法二(改造传统公式算法) 根据1981年出版的《室内给排水工程》[2],住宅生活用水秒不均匀系数与平均日用水量的关系为:

(3) 则 (4) 其中,为秒不均匀系数,为平均日用水量(m3/d)。 (3)算法三(概率公式算法) 关于概率公式算法,首先要引入一个重要概念——龙头使用概率。根据有关资料[3],龙头使用概率可表示为: (5) ——最高峰用水时龙头连续两次用水时间间隔(s); ——期间龙头放水时间(s)。 有了龙头的使用概率之后,可以用概率统计的方法计算出同时用水龙头数量,个龙头额定流量之和便是管道设计秒流量。 、和可用以下方法计算得到。设用水高峰期为下班后的某个半小时内,且此时段内的放水时间均匀分布,则此时龙头的使用概率为: (6) ——高峰期用水定额,l/s; ——管段负荷龙头总数;

电厂循环冷却水系统中的问题解决

电厂循环冷却水系统中的问题解决 2011年7月31日FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3+CO0 +H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应 向右进行 CaCO沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K), 而钢材的导热系数为46. 4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器, 长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别会发生下列氧化反应和还原反应。

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等。 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法。 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表。 2 概率计算方法 2.1 亨特概率方法 2.1.1 亨特概率法的建立[1]

亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量。 假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为: (2-1) 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下: (2-2) 其中:Pm—至多有m个器具同时的概率值; m—卫生器具同时使用个数设计值;

小流域洪峰流量计算的公式

小流域洪峰流量计算的公式 1、推理公式 f Q n s m τ ψ278.0= 当τ≥c t ,时,n s u τψ-=1 当τ c t ,时,n c t n -? ? ? ??=1τψ n H s -= 12424 n --=410ψ ττ () n n n sF L m J ----??? ? ? ?= 414431410278.0τ ()n c s n t 1 1? ???? ?-=μ m Q ——设计频率的洪峰流量(m 3 /s ) ψ ——洪峰径流系数 τ ——汇流历时(h) S ——暴雨雨力(mm/h) n ——暴雨衰减指数,其分界点为1小时,当t<1,取n=n 1,

当t 1,取n=n 2 μ ——产流历时内流域内的平均入渗率(mm/h ) c t ——产流历时 24H ——设计频率的最大 24小时雨量(mm ) 计算步骤 1、根据地形图确定流域的特征参数F 、L 、J 2、由公式4 13 1 F J L =θ计算θ值,并根据相关公式计算汇流参数 m 3、由暴雨μ的参数等值线图确定设计流域的暴雨参数特征值 24 H 、C V 、C S 、n 1或n 2,并由皮尔逊Ⅲ型,结合频率查表, 确定指定频率下的K p 值,由()2412 24H K s K S n p p p -== 4、有《四川省水文手册》,查出 n -44 的值,并根据n s m -?? ? ? ? ???????=44 410383.0θτ计算0 τ值 5、查表确定μ值,并计算n s τμ,查图由n 、n s τμ两坐标 的焦点值,确定洪峰径流系数ψ 6、根据《四川省水文手册》,查出n -41的值,计算流域汇流时间n --=41 ψ ττ,计算τ值

循环冷却水系统调试方案

印尼南加海螺水泥2×18MW燃煤自备电厂项目#1汽轮机循环水系统调试方案编制: 审核: 批准: 中电 2014年8月18日

目录

1 目的 (4) 2 依据 (4) 3 系统说明及设备规: (4) 4 .循环泵启动前应具备的条件 (5) 5 组织分工 (6) 6 使用仪器设备 (6) 7 .循环水泵启动 (6) 8 联锁保护试验 (7) 9 安全注意事项 (7) 10. 停泵操作 (7) 11. 空冷器、冷油器的冲洗 (8) 12. 冷水塔风机试转: (8)

循环冷却水系统调试方案 1 目的 1.1 检验循环水系统设备运行可靠性,保证系统试运顺利进行; 1.2 为凝汽器和辅机设备正常运行提供符合要求的冷却水。 2 依据 2.1 《火电机组达标投产考核标准》 2.2 《火力发电厂基本建设工程启动及竣工验收规程》 2.3 《火电工程调整试运质量检验及评定标准》 2.4 《电力建设施工及验收技术规》 2.5 《火电工程启动调试工作规定》。 2.6 《电力基本建设工程质量监督规定》。 2.7 《电力建设安全健康与环境管理工作规定》 2.8 《电业建设安全工作规程》(热力机械部分) 2.9 设备厂家、设计单位提供的有关图纸资料。 3 系统说明及设备规: 循环水系统的作用是冷却汽轮机的排汽,维持凝结器的真空,并向闭式循环冷却系统提供水源。 3.1 系统说明 循环水系统基本流程:

3.2 设备规 3.2.1循环水泵 型号:HS600-500-550-A 转速:980r/min 流量:3000m3/h 扬程:23m 3.2.2泵电机 型号:YKK450-6TH 转速:990r/min 功率:250KW 额定电压:10000V 标称电流:19.5A 4 .循环泵启动前应具备的条件 4.1 循环水系统的所有设备均已安装完毕; 4.2 系统的阀门挂牌、标注名称正确,阀门动作灵活、无卡涩、开关指示正确; 4.3 热工仪表安装校验完毕,具备投入条件; 4.4 有关热工、电气回路的调试工作已结束; 4.5 现场已清扫,道路通畅,试运区照明充足,通讯施工完善可靠;

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算;

2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算:

彻底根治循环冷却水系统四大难题

彻底根治循环冷却水系统四大难题 一、方案特点 在工业冷却循环水方面,均采用水为能量的传递介质,在循环使用时,水质会浓缩、恶化,产生水垢、污垢、腐蚀、菌藻等,严重影响系统的效率,加大能耗,减少设备使用寿命。 以往通用的化学水处理方式不仅每年需要经费,而且会造成大量含有化学药剂的污水,加大 环境污染,同时会腐蚀管道,甚至造成冷却器穿孔报废。例如,一个保有水量100T的冷冻、冷 却、采暖循环水为例,如果采用传统化学处理方法,一年要用化学药剂10吨、每吨药剂会形成500 立方米的污染水。 针对以上问题,罗德斯尔?循环水水质深度净化方案引进国外先进成熟的变频磁场技术,采用“以水治水、物理吸垢”方式,不仅解决了循环水净化、除垢、杀菌、灭藻、去锈等一系列难题,而且每年保养经费很少,不会产生污染,节电节水,是一种环保节能的新型循环水水质深度净化方案。 循环水优化设备图片 二、罗德斯尔?循环水水质深度净化方案的优势 除垢防垢,使热交换表面始终无垢状态,提高热交换效率 除锈防腐,解决水体红锈问题,延长管道和热交换器使用年限 杀菌灭藻,尤其对军团菌的杀灭,提高安全性能,提高冷却效率 无需停机,提高水资源利用效率和生产连续性 保留原管,即无需改变原有循环水管道 节水环保,大幅减少循环水排放,节省用水,没有污染,保养经费很少 三、设备构成和原理 概述 罗德斯尔?循环水系统优化方案体现的是一种综合性、多功能、环保、节水节能的循环水处理理念和技术,具有补水净化、去垢、灭藻、除锈、杀菌、环保、节能、节水等多重功效,本方案的主要设备为LT系列循环水系统优化设备。 LT系列循环水系统优化设备工作原理 LT 系列循环水系统优化设备是罗德斯尔?循环水系统解决方案的核心设备,该装置由高频发

循环冷却水操作规程

循环冷却水操作规程 1。 前言 造气循环冷却水长期以来受到循环水品质得影响,循环水腐蚀、结垢情况较为严重。为解决循环水得腐蚀结垢问题,经过实验室配方筛选试验工作确认通过化学水处理得方法就是可以解决上述技术问题。根据配方操作要求,提供本操作规程仅供造气分厂造气循环水装置从事水处理工作与管理人员进行操作管理使用。 本操作规程中所记载得内容乃就是一些基本得东西,当设备得运行条件变动时水处理得方法也要作些相应得变更、因此,双方有必要加强经常性得技术上得联系,定期交换技术情报、?2.?系统概况?2。1 补充水质状况,补充水为自备水厂,水质见表一。 表一补充水质

2.2 运行条件:循环水系统运行条件见表二。 表二循环水系统得运行条件 2、3 循环水运行水质:循环水运行水质控制标准见表三

表三循环水冷却水质监控制指标 2、4 系统材质:碳钢、不锈钢 3.1补充水(M) 2。5?地沟流量:400m3/h(絮凝沉降)?3。?术语解释?因蒸发、排污、风吹飞溅而从系统中损失得水量,需要进行补充得水、 3.2蒸发损失(E)?在敞开式循环冷却水系统中,循环冷却水在冷却塔中蒸发而损失得水量。 3.3飞溅与风吹损失(W) 被通风时得气流从系统中带入大气得水量。

3。4排污损失(B排)?为维持系统中一定得浓缩倍数而排出系统得水量、 3。5冷却范围(或温度降)(ΔT)?冷却塔入口与塔底冷水池之间得水温差。 3。6循环量(R):系统中循环得冷却水量。 3。7浓缩倍数(N)?循环水中某种离子(Cl-或K+)得浓度与补充水中对应得某离子(Cl-或K+)得浓度之比;或循环水中电导率与补充水中电导率之比。 3.8系统容积(V)?包括冷却塔、水池、换热器、管道及辅助设备在内得整个系统得容水量。 3。9停留时间(T)?循环水在系统中停留得时间。 4。 配方得现场运行与管理 4、1管理得目得?“三分配方,七分管理”就是长期从事水处理工作得专业工作者从工作中总结出得一条很重要得经验。为了防止冷却水得腐蚀、结垢、粘泥(菌藻)等三种危害造成系统得不必要得损害,必须加强对循环水系统进行正确有序得管理与操作。 4.2一次回水水池(地沟)高浊水处理: 造气循环水经过生产装置后,有80%得水回到一次水池,每小时流量为400m3/h,该回水浊度较高。由于一次回水池沉降速度较慢,有一部分悬浮物来不及沉降就带到二次回水池中,二次回水池得水在打到凉水塔上,大量得悬浮物沉积在凉水塔得填料中,严重影响循环水得冷

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

闭式循环冷却水系统

第三章闭式循环冷却水系统 第一节闭式冷却水系统投运前的检查与操作 3.1.1 检修工作已结束,所有工作票终结,系统完好、现场整洁。 3.1.2 闭式冷却水泵与电机对轮连接完好,地脚螺栓坚固,联轴器防护罩完整牢固,电机接线良好,接地线连接完好。 3.1.3 热工各种表计齐全完整,并投入运行,确证热工保护投入运行。 3.1.4 闭式冷却水系统电动门送电,气动门控制气源送上,压缩空气压力不低于0.5MPa,各阀门开关正常。 3.1.5 关闭闭式冷却水系统所有放水门,开启闭式冷却水系统所有放空气门,系统各用户阀门根据具体情况投入。 3.1.6 开启膨胀水箱出口门及两台闭式冷却水泵入口门。 3.1.7 检查辅机冷却水系统已投入运行20分钟以上,投入一台闭式冷却水冷却器,另一台闭式冷却水冷却器备用。闭式冷却水冷却器投入时先投开式冷却水侧,再投闭式冷却水侧。 3.1.8 检查除盐水正常,凝结水补水系统已准备好。 3.1.9 开启除盐水向膨胀水箱补水门,闭式冷却水系统开始注水。 3.1.10 闭式冷却水系统各空气门见水后关闭。 3.1.11 膨胀水箱水位补至 1000—1600mm,投入膨胀水箱补水调门自动。 3.1.12 按规定进行闭式冷却水泵联锁试验合格。 3.1.13 闭式冷却水泵电机测绝缘合格后送电。 3.1.14 检查闭式冷却水泵出口电动门关闭。 3.1.15 检查投入部分闭式冷却水用户。 3.1.16 通知化学准备化验闭式冷却水水质。 第二节闭式冷却水系统的报警、联锁与保护 3.2.1 报警条件 1. 闭式膨胀水箱水位≤1000mm, 水位低报警, 联开补水调门; ≥1600mm, 联关补水调门; ≥1800mm,水位高报警。 2. 闭式循环水冷却器出口母管压力≤0.35MPa 报警,延时3s 联启备用泵。 3. 闭式循环水冷却器出口母管温度≥38℃报警。 4. 闭式循环泵电机线圈温度≥110℃报警。 5. 闭式循环泵电机轴承温度≥75℃报警,≥80℃延时3s 跳泵。 6. 闭式循环泵轴承温度≥75℃报警,≥80℃延时3s 跳泵。 7. 闭冷水膨胀水箱液位≤200,延时5s跳泵; 8. 闭式循环冷却水泵运行且出口电动门关,延时5S跳泵; 9. 闭式循环冷却水泵运行且入口电动门关,延时3S跳泵。 3.2.2 闭式冷却水泵允许启的条件: 1. 电机各相线圈温度低于110℃;

设计秒流量的计算

附 设计秒流量的计算 1.5.1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量和每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质和水温等因 素并结合供水系统状况来选择和确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

相关文档
最新文档