第13章 有限元分析的装配技术要点

第13章  有限元分析的装配技术要点
第13章  有限元分析的装配技术要点

第13章有限元分析的装配技术

第1节基本知识

一、模型的归档与模型的合并装配

在实际问题中,创建的有限元模型最后必须装配起来形成部件或装配体。将每个有限元模型按一定规则写出,供装配时调用的过程叫模型的归档;将归档的不同有限元模型装配起来,就是模型的合并过程,在模型的合并过程中必须注意合并模型的各种实体对象和属性参数编号的冲突,避免发生重用编号等问题。

ANSYS提供了进行模型合并装配的功能,执行菜单Main Menu>Preprocessor>Archive> Model,有两个选项:一个是Write,用于写出各零件模型;另一个是Read,用于读入各个零件模型。

1.模型的归档—写出

执行菜单路径Main Menu>Preprocessor>Archive> Model>Write,弹出如图13-1所示的模型归档—写出模型文件对话框,各项设置如下。

●Data to Archive:选择All Associated FE and IGES(2 file),写出IGES文件和所有有限元模型及其相关文件信息,包括几何信息、材料属性、组件数据。

●Archive file:输入归档模型文件名,文件后缀为cdb。

●IGES file:输入IGES格式文件。

图13-1 模型归档—写出设置

2.模型的归档读入

执行菜单路径Main Menu>Preprocessor>Archive> Model>Read,弹出如图13-2所示的模型归档—读入模型文件对话框,各项设置如下。

●Data to Archive:选择All Associated FE and IGES(2 file),读入IGES文件和所有有

限元模型及其相关文件信息,包括几何信息、材料属性、组件数据。

●Archive file:输入归档模型文件名,文件后缀为cdb。

●IGES file:输入IGES格式文件。

对于多模型的合并操作,读入归档模型时,必须与归档写出时的操作完全对应。

图13-2 模型归档—读入设置

二、MPC多点约束装配

MPC即Mutipoint Constraint,多点约束方程,其目的是将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一致。

MPC能够连接以下模型。

◆ SOLID模型—SOLID模型。

◆ SOLID模型—SHELL模型。

◆ SHELL模型—SHELL模型。

◆ SOLID模型—BEAM模型。

◆ SHELL模型—BEAM模型。

◆ FE模型—载荷施加点。

在ANSYS中,实现上述MPC技术有三种途径。

一是通过MPC184单元定义模型的刚性或二力杆的连接关系。定义MPC184单元模型与定义杆单元的操作完全一致,而MPC单元的作用可以是刚性杆(类似于CP,但允许考虑几何大位移功能,三个自由度连接关系)或者刚性梁(六个自由度连接关系)。

二是利用约束方程菜单路径Main Menu>Preprocessor>Coupling>Shell/Solid Interface创建板壳—实体之间的装配关系。

三是利用ANSYS接触向导功能定义模型之间的装配关系。选择菜单路径Main Menu>Preprocessor>Modeling>create>Contact Pair,弹出接触向导对话框,按提示创建接触对,并将Basic选项卡中的Contact alogrithm(接触算法)设置为MPC alogrithm,将behavior of contact surface设置为Bound(initial contact)。

MPC技术还支持大位移算法,在实际结构计算时比其它算法更准确。

MPC技术进行有限元分析涉及模型归档的写出、读入技术,模型的临界区域或者刚性区域的装配技术,模型的接触装配技术和模型的MPC接触装配技术。

第2节装配实体的有限元分析实例

案例1——装配体的有限元分析

a) 零件1:圆柱体b) 零件2:轴座c) 装配体

图13-3 装配模型示意图

问题

如图13-3所示,为轴和轴座的装配示意图。零件1为圆柱体,其半径为0.15米,长2米。零件2为轴座,长为1米,厚为0.2米,高为1.5米,孔距底面1米,半径0.15米,并与轴座上部半圆同心。将零件1装配到零件2(2件)孔内,且圆柱体的两端面分别与轴座的侧面平齐。装配模型底面固定,圆柱上部中间施加40 000N的力,计算装配模型的应力和变形情况。

条件

弹性模量为2.0×1011 N/m2,泊松比为0.3。

解题过程

第1步,创建零件1

1.准备工作

(1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹

出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。

(2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,

弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“11”,单击OK按钮完成工作文件名的定义。

(3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change

Title对话框,在Enter New Title项输入标题名,本例中输入“Cylinder”为标题名,然后单击OK按钮完成分析标题的定义。

2.定义单元类型

运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择单元大类为Solid,接着选择Brick 8nod 45(Solid45),单击OK按钮,完成单元类型选择,单击Close按钮完成设置,如图13-4所示。

图13-4 定义单元类型

3.定义材料属性

运行主菜单Main Menu>Preprocessor>Material Props>Material Models命令,系统显示材料属性设置对话框,在材料属性对话框中依次选择Structure、Linear、Elastic、Isotropic,如图13-5所示。完成选择后,弹出材料属性输入对话框,分别输入弹性模量2e11,泊松比0.3,如图13-6所示,单击OK按钮完成材料属性输入并返回图13-5。单击对话框右上方“X”按钮完成材料属性设置。

1

2

3

4

图13-5 进入材料属性设置

图13-6 定义材料属性

4.创建圆柱模型

选择菜单路径Main Menu>Preprocessor> Modeling>Create>V olumes>Cylinder>Solid Cylinder,弹出Solid Cylinder对话框,设置下列选项。

●WP X:圆柱底面圆心X坐标,输入0。

●WP Y:圆柱底面圆心Y坐标,输入0。

●Radius:圆柱体的半径,输入0.15。

●Depth:圆柱体的高度,输入2。

等轴侧显示图形。

5.划分圆柱体网格

运行主菜单Main Menu>Preprocessor>Meshing>MeshTool命令,出现MeshTool菜单,按Size Control项中Globle后Set按钮,弹出单元尺寸定义对话框,在Element edge length项中输入0.05,按OK按钮结束单元尺寸定义;Mesh项选择V olume,Shape项选择Hex,选择Sweep(扫掠划分器);单击Sweep按钮划分网格,在出现的Volume Sweep对话框中单击Pick All按钮,系统将自动完成网格划分。划分网格结果如图13-7所示。

图13-7 划分网格结果

6.定义加载关键点

选择菜单路径Main Menu>Preprocessor> Modeling>Create>Keypoints>In Active CS,定义关键点10,其坐标为(0,0.15,1)。

7.写出模型数据文件

选择菜单路径Main Menu>Preprocessor>Archive Model>Write,弹出写归档文件对话框如图13-1所示,输出文件名定义为cylinder,具体设置如下。

●Data to Archive:选择All Associated FE and IGES(2 file),写出IGES文件和所有有限元模型及其相关文件信息,包括几何信息、材料属性、组件数据。

●Archive file:输入归档文件名,cylinder.cdb。

●IGES file:输入IGES格式文件名,cylinder.iges。

单击OK按钮结束。存储有限元分析模型,退出前处理器。

第2步,创建零件2

1.准备工作

(1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。

(2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作

文件名为“22”,单击OK按钮完成工作文件名的定义。

(3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change

Title对话框,在Enter New Title项输入标题名,本例中输入“Block”为标题名,然后单击OK按钮完成分析标题的定义。

2.定义单元类型和材料属性与第1步之2,3相同。

3.创建轴座模型

(1)创建矩形选择菜单路径Main Menu>Preprocessor> Modeling>Create>Areas>

Rectangle>By Dimensions,弹出创建矩形对话框,输入坐标如图13-8所示。

图13-8 绘制矩形

(2)创建圆选择菜单路径Main Menu>Preprocessor>Modeling>Create>Areas>

Circle>Solid Circle命令,在对话框中分别输入X=0,Y=1,Radius=0.5,单击OK按钮,完成。

(3)平面相加运行主菜单Main Menu>Preprocessor>Modeling>Operate>Booleans> Add>Areas命令,在弹出的拾取对话框中单击Pick All按钮完成布尔加操作。

(4)拖拉面成体选择菜单路径Main Menu>Preprocessor>Modeling>Operate>Extrude> Areas>By XYX Offset,弹出拖拉面偏移量设置对话框,设置如图13-9所示。单击OK按钮。

图13-9 拖拉面偏移设置

(4)创建圆柱体选择菜单路径Main Menu>Preprocessor>Modeling>Create>V olumes>

Cylinder>Solid Cylinder命令,在对话框中分别输入X=0,Y=1,Radius=0.15,Depth=0.2,单击OK按钮完成。

(5)布尔减操作运行主菜单Main Menu>Preprocessor>Modeling>Operate>

Booleans>Subtract>V olumes命令,在弹出的拾取对话框中先拾取全部,单击OK按钮,再拾取小圆柱体,单击OK按钮完成布尔减操作。

等轴侧显示图形。

4.划分轴座网格

运行主菜单Main Menu>Preprocessor>Meshing>MeshTool命令,出现MeshTool菜单,按Size Control项中Globle后Set按钮,弹出单元尺寸定义对话框,在Element edge length项中输入0.1,按OK按钮结束单元尺寸定义;Mesh项选择V olume,Shape项选择Hex,选择Sweep (扫掠划分器);单击Sweep按钮划分网格,在出现的Volume Sweep对话框中单击Pick All 按钮,系统将自动完成网格划分。划分网格结果如图13-10所示。

图13-10 零件划分网格结果

5.写出模型数据文件

选择菜单路径Main Menu>Preprocessor>Archive Model>Write,弹出写归档文件对话框如图13-1所示,输出文件名定义为block,具体设置如下。

●Data to Archive:选择All Associated FE and IGES(2 file),写出IGES文件和所有有限元模型及其相关文件信息,包括几何信息、材料属性、组件数据。

●Archive file:输入归档文件名,block.cdb。

●IGES file:输入IGES格式文件名,block.iges。

单击OK按钮结束。存储有限元分析模型,退出前处理器。

第3步,采用MPC技术装配模型并求解及后处理

1.准备工作

(1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮

完成清空数据库。

(2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,

弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“Assembly”,单击OK按钮完成工作文件名的定义。

(3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change

Title对话框,在Enter New Title项输入标题名,本例中输入“Assembly”为标题名,然后单击OK按钮完成分析标题的定义。

2.装配模型

(1)读入归档文件选择菜单路径Main Menu>Preprocessor>Archive Model>Read,弹

出读入归档文件对话框如图13-11所示,读入文件名分别定义为cylinder和block,其中block 读入两次,具体设置如下。

●Data to Archive:选择COMB Associated DB and SOLID(1 file)。

●Solid Model Format:选择ANSYS Neutral File,写出ANSYS中性文件。

●Archive file:输入归档文件名。

单击OK按钮结束。

执行取Utility Menu>Select>Everything。

执行取Utility Menu>Plot>V olumes。连续读入的模型如图13-12所示。

图13-11 读入归档文件

图13-12 读入的几何模型

(2)装配几何模型选择菜单路径Main Menu>Preprocessor> Modeling>Create>Move /Modify>Volumes,弹出体移动对话框,拾取圆柱体,单击OK按钮,弹出的偏移量设置对话框,DY项输入1,其它默认,按OK按钮完成圆柱体移动。

选择菜单路径Main Menu>Preprocessor> Modeling>Create>Copy>Volumes,弹出体复制对话框,拾取轴座,单击OK按钮,弹出的偏移量设置对话框,DZ项输入1.8,其它默认,按OK按钮完成轴座的移动。

完成模型装配,装配结果如图13-12所示。

3.创建接触装配

(1)装配模型显示为面选进入前处理器,模型显示为面。选择菜单路径Utility>Menu> Plot>Areas。

(2)创建接触装配选择菜单路径Main Menu>Preprocessor>Modeling>Create>Contact Pair,弹出图13-13所示的接触管理器。

图13-13 接触管理器

单击接触管理器左上角的按钮,弹出图13-14所示的定义接触对目标面对话框。设置选项如下。

●Target Surface:目标面的对象,选择Areas。

●Target Type:目标类型,选择Flexible即柔性目标面。

单击Pick Target按钮,用鼠标拾取圆柱体的2个外圆弧,单击Apply按钮,返回图13-14。

图13-14 定义接触对目标面对话框

单击Next按钮弹出图13-15所示的定义接触对接触面对话框。设置下列选项。

●Contact Surface:接触面的对象,选择Areas。

●Contact Element Type:接触面类型,选择Surface-to-Surface,即面-面接触。

单击Pick Contact按钮,用鼠标拾取每个轴座的2个内壁圆弧(或输入面号1,3,10,11),单击Apply按钮,返回图13-15。

图13-15 定义接触对接触面对话框

单击Next按钮弹出如图13-16所示的接触绑定设置对话框。设置如下,

●Include initial penetration:包括初始渗透。

●Friction:Material ID选择1,Coefficient of Friction项为空。

单击Optional settings按钮弹出定义接触绑定属性设置对话框如图13-17所示。

在该对话框中,Contact algorithm(接触算法)设置为MPC algorithm即MPC算法。其它按图中设置。按OK返回图13-16,按Create按钮创建接触对,结果如图13-18。

按Finish按钮,关闭接触管理器。选择菜单路径Utility Menu>Select>Everything。

图13-16 接触对设置对话框

图13-17 接触绑定属性设置-基本属性选项卡设置

图13-18 创建接触对

4.施加约束和载荷

(1)施加约束执行菜单Utility Menu>Plot>Areas显示模型为面。运行主菜单Main

Menu>Solution>Define Loads>Apply>Structural>Displacement>On Areas,出现拾取菜单,依次选择轴座底面(或输入6,18),单击OK按钮出现约束定义对话框,如图13-19所示,选择All DOF约束所有自由度,其它项默认,再单击OK按钮,完成约束定义。

(2)施加载荷运行主菜单Main Menu>Solution>Define Loads>Apply>Structural>

Force/Moment>On Nodes命令,出现拾取菜单,在输入框输入1 210(坐标为x=0,y=1.15,z=1的节点编号),单击OK按钮出现载荷定义对话框,如图13-20所示,载荷类型为力,数值为40 000N,再单击OK按钮完成载荷的施加。

图13-19 施加约束

图13-20 施加载荷

5.求解

运行主菜单Main Menu>Solution>Current LS命令,出现Solve Current Load Step对话框,单击/STAT Command窗口菜单/STAT Command>File>Close关闭/STAT Command窗口,然后单击Solve Current Load Step菜单中OK按钮确定,计算机开始进行求解,求解完成后出现“Solution is done”提示表示求解完成,单击Close按钮完成求解。

选择菜单路径Main Menu>Finish退出求解器。

9.查看分析结果

(1)显示节点(单元)位移云图运行主菜单Main Menu>General Postproc>Plot Results>

Contour Plot>Nodal Solu(or Element Solu)命令,选择DOF Solution>Displacement Vector sum 合位移,单击OK按钮,节点位移云图如图13-21所示。

(2)显示合应力云图运行主菜单Main Menu>General Postproc>Plot Results> Contour

Plot> Nodal Solu(or Element Solu)命令,选择Stress>V on Mises stress合应力,单击OK按钮,节点应力云图如图13-22所示。

图13-21 显示变形图

图13-22 应力等值云图

第3节本章小结

1.几何模型的写出和读入

每一个零件模型建立时应赋予其单元属性、材料属性、实常数,网格划分完毕后,以All Associated FE and IGES(2 file)选项归档几何模型,读入模型时采用相同选项。

2.创建接触对

建立几何模型时,尽量使生成的图形简化,否则,会给以后的创建接触对带来麻烦。如在创建小圆时,如果在拉伸前生成圆,则圆柱内表面由4个面组成,而本例做法只有2个面。

创建接触对和加载时,要充分利用选择技术,否则,施加载荷会非常困难。

装配图技术要求

装配图中的尺寸标注 装配图中,不必注全所属零件的全部尺寸,只需注出用以说明机器或部件的性能、工作原理、装配关系和安装要求等方面的尺寸,这些必要的尺寸是根据装配图的作用确定的。一般只标注以下几类尺寸: 1.性能尺寸(规格尺寸) 它是表示机器或部件的性能、规格的尺寸。这类尺寸在设计时就已确定,是设计机器、 了解和选用机器的依据。如图11—2球阀的管口直径φ20。 2.装配尺寸 装配尺寸包括作为装配依据的配合尺寸和重要的相对位置尺寸。

(1) 配合尺寸它是表示两零件间配合性质的尺寸,一般在尺寸数字后面都注明配合代号。配合尺寸是装配和拆画零件图时确定零件尺寸偏差的依据。如图11—10柱塞泵中的 等. (2) 相对位置尺寸它是表示设计或装配机器时需要保证的零件间较重要相对位置的尺寸,也是装配、调整和校图时所需要的尺寸,如图11—10柱塞泵中的尺寸91、32。 3.安装尺寸 表示将机器或部件安装在地基上或与其他部件相连时所需要的尺寸。如图11—10柱塞泵中的安装孔4×φ9和中心距120、75及锥销孔2×φ6和定位尺寸18、18。 4.外形尺寸 表示机器或部件外形的总长、总宽、总高的尺寸。它反映了机器或部件的大小,是机器或部件在包装、运输和安装过程中确定其所占空间大小的依据。如图11—10柱塞的总长17 5、总宽70、总高94。 5.其他重要尺寸 它是设计过程中经过计算确定或选定的尺寸,但又不包括在上述几类尺寸之中和重要尺寸。这类尺寸在拆画零件图时,同样要保证。如轴向设计尺寸、主要零件的结构尺寸、主要定位尺寸、运动件极限位置尺寸等。如图11—10柱塞泵中的尺寸5(凸轮偏心距)、M14×1.5—6g(单向阀体头部外螺纹)、φ5(单向阀体头部内孔)、32(油杯和凌晨向阀的安装位置)。 上述五类尺寸,在每张装配图上不一定都有,有时同一尺寸可能具有几种含义,分属于几类尺寸。例如图11—2中的尺寸115+1.1既是球阀装配图中的相对位置尺寸,又是外形尺寸(9)。因此,装配图中究竟标注哪些尺寸,要根据具体情况分析确定。 二、装配图中的技术要求 用文字或符号在装配图中说明对机器或部件的性能、装配、检验、使用等方面的要求和条件,这些统称为装配图中的技术要求。如图11—2、图11—10中的技术要求。

课程设计二氧化硫吸收塔

课程设计二氧化硫吸收塔

一、课程设计任务书 1.1、设计题目: 设计一座填料吸收塔,用于脱除混合气体中的SO2,其余为惰性组分,采用清水进行吸收。 1.2、工艺操作条件: (1)操作压力常压 (2)操作温度:25℃ 表一工艺操作条件 1.3、设计任务: (1)吸收方案和工艺流程的说明 (2)填料吸收塔的工艺计算; (3)填料吸收塔设备设计; (4)制备工艺流程图、设备图; (5)编写设计说明书。 二、设计方案的确定 2.1、吸收剂的选择 吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高(具有多个理论级的分离能力)的显著优点而广泛应用。用水吸收SO2属中等溶解度的吸收过程,选用逆流吸收流程。因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。 2.2 填料的选择

填料的选择包括确定填料的种类,规格及材料。填料的种类主要从传质效率,通量,填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。填料的材质分为陶瓷、金属和塑料三大类。对于水吸收S02的过程、操作、温度及操作压力较低,工业上通常选用所了散装填料。本设计中采用散装填料,工业常用的主要有选用DN16、DN25、DN38、D N50 、DN76等几种规格。同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。塑料填料具有质轻、价廉、耐冲击、不易破碎等优点,多用于吸收、解吸、萃取等装置。但其缺点是表面润湿性能差,在某些特殊场合,需要对其表面进行处理,以提高表面润湿性能。 综合各点因素,在所了散装填料中,塑料阶梯环填料的综合性能较好,故此选用塑料阶梯环填料。 表2 填料尺寸与塔径的对应关系 2.3设计步骤 本课程设计从以下几个方面的内容来进行设计 (一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。 三、装置的工艺计算: 3.1基础物性数据 3.1.1 液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下: 密度为ρL=997.1 kg/m3 粘度为μL=0.0008937 Pa·s=3.2173kg/(m·h) 表面张力为σL=71.97 dyn/cm=932731 kg/h2

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

支座的有限元分析

支座的有限元分析 —基于UG8.0与ANSYS Workbench 摘要:采用三维软件UG8.0建立的支座模型,并将三维模型导入到ANSYS Workbench,在Workbench中,对其进行结构强度、刚度校核以及模态分析,得到其在工作载荷下的变形、应力和模态频率,并在结构尺寸上进行优化设计,使其在结构强度上得到改进与加强。关键词:支座;UG8.0;ANSYS Workbench;有限元 Abstract: using 3d software UG8.0 established contact ball bearing model, and the three dimensio nal model is imported to ANSYS Workbench, the Workbench, its structural strength, rigidity and modal analysis, get it under the working load of the deformation, stress and modal frequency, and carries on the optimization design on the structure size, in the structure strength is improved and st rengthened. Keywords:contact ball bearing;finite element ;UG8.0;ANANSYS Workbench 0引言 支座作为多向活动部件的连接装置,主要受来自复杂部件的随机变化载荷的作用力,由于载荷力复杂多变,且局部应力集中地现象存在,导致球形接触面产生不规则破坏。以前的设计方案基本是粗略的,对于结构尺寸不能做到很精确的设计,使用效果不怎么好。本文利用UG8.0三维设计软件对支座进行参数化建模,并运用UG与ANSYS Workbench软件间的接口,将模型导入到ANSYS Workbench中,对其进行结构强度、刚度校核以及模态分析。有限元是一种在工程分析工程中常用的解决复杂问题的近似的数值分析方法,ANSYS程序中加入了许多新的技术,非线性、子结构以及更多的单元类型被加入程序,从而使程序具有更强的通用性。同时,ANSYS还提供了强大和完整的联机说明系统详尽的联机帮助系统,使用户能够不断深入学习并完成一些深入的课题。并因在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用。本文将分析在载荷的作用下,支座的变形,应力等,并显示强大的ANSYS的求解结果。

最新化工吸收塔

化工吸收塔

前言: 在 化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目 的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次化工原理课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

设计任务书 一、题目 净化含氮2%的废气,气体处理量为5150Nm3/h. 二、原始设计数据 1. 2.净化要求:99.9% 3.操作条件: (1)操作压力:常压(1atm) (2)操作温度:30℃ 4.吸收液:清水 三、设计内容 1.吸收流程选定 2.填料塔塔径、塔高等工艺尺寸的计算及输送机械的选型 四、设计要求 1.写出设计说明书 2.给出工艺流程 3.绘出填料塔的总装配图 4.输送机械选型

内容摘要 1.操作条件和工艺参数的计算 2.塔设备和附件的选择 3.塔设备的装配图 工艺流程图及说明

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

最终版_化工原理课程设计(水吸收氨填料吸收塔设计)

水吸收氨课程设计 目录 第一节前言 (5) 1.1 填料塔的主体结构与特点 (5) 1.2 填料塔的设计任务及步骤 (5) 1.3 填料塔设计条件及操作条件 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3填料的类型与选择 (6) 2.3.1 填料种类的选择 (6) 2.3.2 填料规格的选择 (6) 2.3.3 填料材质的选择 (7) 2.4 基础物性数据 (7) 2.4.1 液相物性数据 (7) 2.4.2 气相物性数据 (7) 2.4.3 气液相平衡数据 (8) 2.4.4 物料横算 (8) 第三节填料塔工艺尺寸的计算 (9) 3.1 塔径的计算 (9) 3.2 填料层高度的计算及分段 (10) 3.2.1 传质单元数的计算 (10) 3.2.3 填料层的分段 (12) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (13)

4.1 塔内件类型 (13) 4.2 塔内件的设计 (13) 4.2.1 液体分布器设计的基本要求: (13) 4.2.2 液体分布器布液能力的计算 (13) 注:14 1填料塔设计结果一览表 (14) 2 填料塔设计数据一览 (14) 3 参考文献 (16) 4 后记及其他 (16) 附件一:塔设备流程图 (17) 附件二:塔设备设计图 (17)

化工学院关于专业课程设计的有关要求(草案)专业课程设计是学生学完专业基础课及专业课之后,进一步学习工程设计的基础知识,培养学生工程设计能力的重要教学环节,也是学生综合运用相关课程知识,联系生产实际,完成以单元操作为主的一次工程设计的实践。为了加强我院本科学生专业课程设计这一重要实践教学环节的规范化管理,保证专业课程设计工作有序进行及教学质量,特制定专业课程设计的有关要求并请遵照执行。 一、选题要求 选题应以单元操作的典型设备为对象,进行单元操作过程中相关的设备与工艺设计,尽量从科研和生产实际中选题。为了保证专业课程设计的质量和工作量,选题要求1人1题。 二、设计说明书文本要求 (一)、字数要求:2000字以上 (二)、打印要求:用A4纸打印;左边距3厘米、右边距2厘米、上边距3厘米、下边距2.5厘米;行距20磅;页码居中 字体、字号要求(包括装订顺序): 1、封面 由学院统一制定格式 2、设计任务书 3、目录(宋体、4号),其余(宋体、小4号) 4、正文(宋体、小4号字)、一级标题(宋体、3号字、加粗)、二级标题(宋体、4号字、加粗) 正文内容主要包括:概述与设计方案简介;设计条件及主要物性参数表;工艺设计计算(内容较多,应根据设计计算篇幅适当划分为若干小节,使之条理清晰);辅助设备的计算及选型;设计结果汇总表(物料衡算表,设备操作条件及结构尺寸一览表);设计评述(设计的评价及学习体会)。 5、参考文献(宋体、5号字)

岩土工程有限元分析软件

岩土工程有限元分析软件 PLAXIS 2D 2015? 案例教程 北京市古城西街19号研发主楼4层,100043

目录 新奥法(NATM)隧道开挖 (1) 1.1 输入 (2) 1.2生成网格 (5) 1.3计算 (6) 1.4 结果 (8)

新奥法(NATM)隧道开挖 本例利用PLAXIS分析NATM隧道施工过程。NATM是在地下开挖时,利用喷射混凝土作为临时支护,保证开挖稳定性的一种施工方法。 图1.1 项目几何尺寸 目标: ●模拟NATM隧道施工(β法)。 ●用重力加载生成初始应力。

PLAXIS 2D AE案例教程:新奥法(NATM)隧道开挖 1.1 输入 1.1.1一般设置 ●打开PLAXIS 2D AE软件,在出现的快速选择对话框中选择一个新的项目。 ●在工程属性窗口的工程标签下,键入一个合适标题。 ●在模型标签下,模型(平面应变)和单元(15-Node)保持默认选项。 ●保持单位和一般设置框为默认值。 ●在几何形状设定框中设定土层模型尺寸xmin=-50,xmax=50,ymin=0,ymax=35。 ●点击OK即关闭工程属性窗口,完成设定。 1.1.2土层定义 利用钻孔生成土层,模型中考虑11m厚的泥灰岩,这层的底部y min=0作为参考点,定义土层: 在x=-22处创建第一个钻孔。 ●修改土层窗口将出现。为钻孔添加三层土。钻孔Borehole_1第一层的深度为0.指 定第一层土的顶部和底部值为24。第二层土层的顶部=24和底部=11.第三层土层的 顶部=11和底部=0。 ●单击在修改土层窗口的底部钻孔按钮。 ●在出现的菜单中选择添加选项。添加钻孔窗口出现。 ●指定第二个钻孔的位置为x=-14. ●注意:钻孔Borehole_1的特性复制给了Borehole_2。 ●Borehole_2第一层的深度也是0。修改土层的顶部=30和底部=30.第二层土顶部=30 和底部=11。第三层土顶部=11和底部=0. ●指定第三个钻孔的位置为x=-7. ●Borehole_3第一层土顶部=35和底部=30.第二层土顶部=30和底部=11,。第三层土 的顶部=11和底部=0. ●所有钻孔设置水头高度为y=0m。土层分布如图1.2。 ●根据表1.1定义土层材料属性,并分别指定给相应土层(图1.2). ●关闭修改土层窗口,切换到结构模式定义结构单元。 图1.2 土层分布

脱硫吸收塔拆除方案

-、工程概况__________________________ 2 _____ 二、编制依据及.............. 2 ........ 三、机具... ... .... .. 2 ___ __ 四、人力资源 __________________________ 2 _____ 五、进度安排 3 _____ 六、拆除顺序 3 _____ 七、安全文明施工注意事项____________________ 3 八、人员素质要求 _________________________ 5- 九、 ______________________________________ 危险辩识与风险评价 5 一 十、吊车参数表 吸收塔拆除施工方案 一、工程简况

现有脱硫系统,为石膏湿法烟气脱硫技术。塔高约为37.50M,直径约为12.20M; —台顶接式搅拌器,除雾器,分布器,上下层平台等设施;采用衬磷防腐;净烟气接口采用顶接式布置。此次改造工程将现有吸收塔拆除保留底板并进行修复后新安装喷淋塔。 二、编制依据及构造要求 1、《山东省建设工程安全管理文件资料汇编》; 2、《现有吸收塔装配图》; 3、《起重作业规范》 4、脚手架搭设规范2011 JGJ130-2011 三、机具: 四、人力资源: 1 .拆除人员按照双岗(两班)配置

2.拆除人员组织机构

五、进度安排: 六、主要拆除工序: (一)、施工作业流程 工器具准备、办理工作票-内部排浆-塔体附属设备拆除-塔顶盖拆除T塔内部件拆 除—塔体拆除—底部渣浆清理 (二)、施工拆除前工作:排浆 #6脱硫机组停运之后,启动两台石膏排浆泵,将浆液排送至事故浆液箱,然后启动事故浆液泵,将浆液排至灰渣前池。 待事故浆液泵起跳之后(浆液容量低于事故浆液泵启动条件),开启本体排污门,将石膏排至地坑,启动地坑泵,将浆液排至事故浆液箱,启动事故浆液泵,将浆液排至 灰渣前池。整个流程需要20个小时左右,同时吸收塔出口搭设 脚手架,准备切割烟道用

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

课程设计二氧化硫吸收塔

一、课程设计任务书 1.1、设计题目: 设计一座填料吸收塔,用于脱除混合气体中的SO2,其余为惰性组分,采用清水进行吸收。 1.2、工艺操作条件: (1)操作压力常压 (2)操作温度:25℃ 表一工艺操作条件 1.3、设计任务: (1)吸收方案和工艺流程的说明 (2)填料吸收塔的工艺计算; (3)填料吸收塔设备设计; (4)制备工艺流程图、设备图; (5)编写设计说明书。 二、设计方案的确定 2.1、吸收剂的选择 吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高(具有多个理论级的分离能力)的显著优点而广泛应用。用水吸收SO2属中等溶解度的吸收过程,选用逆流吸收流程。因用水作为吸收剂,且SO2不作为产品,故采用纯溶剂。

2.2 填料的选择 填料的选择包括确定填料的种类,规格及材料。填料的种类主要从传质效率,通量,填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。填料的材质分为陶瓷、金属和塑料三大类。对于水吸收S02的过程、操作、温度及操作压力较低,工业上通常选用所了散装填料。本设计中采用散装填料,工业常用的主要有选用DN16、DN25、DN38、D N50 、DN76等几种规格。同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。塑料填料具有质轻、价廉、耐冲击、不易破碎等优点,多用于吸收、解吸、萃取等装置。但其缺点是表面润湿性能差,在某些特殊场合,需要对其表面进行处理,以提高表面润湿性能。 综合各点因素,在所了散装填料中,塑料阶梯环填料的综合性能较好,故此选用塑料阶梯环填料。 表2 填料尺寸与塔径的对应关系 2.3设计步骤 本课程设计从以下几个方面的内容来进行设计 (一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。 三、装置的工艺计算: 3.1基础物性数据 3.1.1 液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下: 密度为ρL=997.1 kg/m3 粘度为μL=0.0008937 Pa·s=3.2173kg/(m·h)

workbench大型机械装配体有限元计算(工作经验总结)

大型机械装配体的有限元分析步骤 1.模型简化: 由于模型较大,建议将模型分成几个模块去简化,简化后的模型试画网格,能完成则初步证明模型合格。 (1)其中对于不重要的小孔,小倒角能去就去,螺纹孔必须去掉,否则严重影响网格划分; (2)复杂的标准件,螺栓可简化为去螺纹的螺柱,或直接去掉; (3)焊缝处理,除非专门校核焊缝强度,一般将焊缝等同于母体材料; (4)焊缝坡口,间隙必须填满,这才符合实际。 2.模型的检查: 简化模型后需要检查干涉,检查模型有无间隙,有无干涉,有无多余的线、面。 (1)干涉处理:重新修改模型,如果通过布尔求和,干涉部位消失可不处理;(2)间隙处理:通过三维软件进行剖视图检查,或者通过布尔求和,有间隙部件则不能求和。 3.模型的快速网格划分: 在此推荐先采用默认网格进行划分。采用默认网格划分的优点是速度特别快,这样非常有利于发现问题,便于进一步修改模型。 但是也有特例:如果模型比较大,且有很多小特征,比如倒角、倒圆,则不容易划分成功,需要设置小的sizing进行处理。 4.网格划分失败针对策略: 网格划分失败的千差万别,必须仔细分析,这也是有限元分析的乐趣之一。原因主要如下; (1)模型不准确。模型存在干涉、间隙、多余的线、面等。 (2)划分网格方法不当,重新设置sizing,设置新的网格划分方法等。 5.网格数量与内存匹配 网格比较耗内存,一般100万网格,需要10G内存。普通的笔记本4G-8G,能计算的网格也就在40万-80万左右,超过此数值则计算非常耗时,有时甚至不能计算。

对此可采用如下策略: (1)对称模型:进行二分之一,或者四分之一的计算; (2)不对称模型:建议粗化网格,或者采用局部模型分析; 6.网格质量分析: (1)skewness越小越好,一般<0.7可以接受; (2)element quality 越大越好,最好为1; (3)雅克比比率:Jacobian Ratio,越小越好,最好为1; (4) aspect ratio。最好的值为1。值越大单元越差。 (5)warping factor。0说明单元位于一个平面上,值越大说明单元翘曲越厉害。网格模型一般都为0; (6)parallel deviation。0最好。网格模型一般都为0。 参数中前4项比较重量,多次修改网格后尽量达到标准。 7.载荷和约束的施加 这是很关键的一步,必须对模型的受力有准确的分析,否则结果不正确。过约束,计算结果小;欠约束,计算结果大。 (1)学会理论力学、材料力学; (2)对于特别小的面施加力,网格比较很小,否则力传递不下去; 8.结果分析 最好有试验进行对比,没有试验有之前的经验值也可。如果都没有,那么需要仔细分析结果。 (1)应力集中点:对于单独的应力特别大的点,可以忽略,或者用子模型法进行重新计算; (2)对于大型模型,在workbench中有2中计算方法:1)整体布尔求和后求解,2)单个部件通过Form new part 进行求和。通常情况下,用布尔求和的方法,计算的应力要小些; (3)最好设置不同的sizing,多计算几次,如果结果比较接近,则证明计算结果比较准确;

各种有限元分析软件比较

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1.模流分析;2.结构强度分析;3.电磁场分析;4.谐响应分析(比如查找共振频率);5. 铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 workbench是一个综合性的有限元分析软件,几乎囊括了所有有限元分析领域,传统的优势领域有强度分析、谐响应分析和电磁分析。workbench是ansys

CO2吸收塔设计

摘要 塔设备是化工、炼油生产中最重要的设备之一,是一种重要的单元操作设备。它可使气(或汽)液或液液两相之间进行充分接触,达到相际传质及传热的目的。常见的、可在塔设备中完成的单元操作有:蒸馏、吸收、解收、萃取、气体的洗涤等。此外,工业气体的冷却与回收、气体的湿法制作和干燥,以及兼有气液两相传质和传热的增湿和减湿等也可在塔设备中完成。 塔设备按其结构特点可以分为板式塔、填料塔和复合塔3类。本次设计选用填料塔作为吸收塔,主要考虑填料塔的以下优点:填料塔结构简单、压力降小,传热效率高,便于采用耐腐蚀的材料制造等,对于热敏性及容易起泡的物料更显出优越性。 本次设计内容包括:发展概况及应用的了解,塔体的选型,填料的选择,工艺计算(包括物料衡算,模拟计算,工艺尺寸计算,高度计算,压降计算,分布装置设计,支撑装置设计);机械计算(包括塔釜设计,上部筒体机械设计,开孔与开孔补强计算,强度设计和稳定设计,支座的选型和设计,接管的选用,法兰的选取),设备的制造及安装等,最后利用CAD将其装配图和部分零件图分别绘制出。 关键词:填料塔;二氧化碳;气液传质;逆相混合

Abstract Tower is one of the most important equipment in chemical industry and oil production, it is also an important handling equipment. It will enable gas(or steam) liquid or liquid-liquid connnecting fully and reaching the purposes of transfering media and heat . Commonly, operation can be completed in tower are: distillation, absorption, of the admission, extraction, washing of the gases. In addition, recycling and cooling of gas in industrial , the gas production of wet and dry, and both two-phase of gas-liquid mass transfering and heat transfering by the humidification and wet,could also be done in the tower. The struction of tower can be divided into plate tower, packed tower and the tower due to its characteristics . The packed tower is choosen as the absorber in the design, Given to the following advantages of the tower: the structure of the tower is simple, the pressure is small , the efficiency of heat conveying is high , and it could be made by corrosion-resistant materials easily, such as manufacturing, thermosensitive and sparkling materials more easily Demonstrate superiority. The design includes: Development and application of knowledge of the tower, and the selection of the structer about the tower, the choice of packing terms and caculating(including the caculating about material balance, simulation caculating, process size, height, the pressure drop, the distribution of design, Design Support Unit); mechanical calculations (including the reactor design of the tower, the design of the upper shell, the opening and the opening reinforcement, the strength of the design and stability of the design, the selection and design of the bearing ,the choice to take over, the selection of flange ), The manufacture the map of assemble and parts with the help of CAD. Key words:Packed tower;Carbon dioxide;Gas-liquid mass transfer; Reverse mixed

相关文档
最新文档