电化学与化学动力学

电化学与化学动力学
电化学与化学动力学

物理化学习题三

《电化学》与《化学动力学》习题

一、选择题

1、 浓度为m 的 Al 2(SO 4)3溶液中,正负离子的活度系数分别为-+γγ,,则平均活度系数±γ为( )

A.(108)1/5m ;

B.(γ+2

γ-3)1/5m ;C.(γ+2γ-3)1/5;D.(γ+3γ-2)1/5。

2、质量摩尔浓度为m 的CuSO 4水溶液,其离子平均活度±a 与离子平均活度系数±r 及m 之间的关系为 。

A. ±a = ±r · m

B. ±a = 4 1/4±r · m

C. ±a = 4 ±r · m

D. ±a = 2 1/4

±r · m 3、电池反应(1):2MnO 4-+5SO 32-+6H +==2Mn 2++5SO 42-+3H 2O, 所对应电池的电动势为E (1),Gibbs

函数变为△r G m (1);电池反应(2):MnO 4-+25SO 32-+3H +==Mn 2++25SO 42-+2

3H 2O 所对应电池的电动势为E (2),Gibbs 函数变为△r G m (2)在相同的条件下,则( )

A.△r G m (1)=△r G m (2),E (1)=E (2);

B.△r G m (1)=2△r G m (2),E (1)=E (2);

C.△r G m (1)=△r G m (2),E (1)=2E (2);

D.△r G m (1)=2△r G m (2),2E (1)=E (2) 。

4、电解质溶液的摩尔电导率随溶液浓度的增加而 。

A. 减小

B.增大

C.先减小后增大

D.先增大后减小

5、将AgNO 3、CuCl 2、FeCl 3三种溶液用适当装置串联,通一定电量后,各阴极上析出金属的 。

A. 质量相同

B. 物质的量相同

C. 还原的离子个数相同

D. 都不相同

6、在相距1m 、电极面积为1m 2的两电极之间和在相距10m 、电极面积为0.1m 2

的两电极之间,分别放入相同浓度的同种电解质溶液,则二者 。

A. 电导率相同,电导相同;

B. 电导率不相同,电导相同;

C. 电导率相同,电导不相同;

D. 电导率不相同,电导也不相同。

7、有甲、乙两电池如下,其电势关系为 。

甲:Pt ,H 2 (p θ)│HCl(0.01M)║HCl(0.1M)│H 2(p θ),Pt

乙:Pt ,H 2(p θ)│HCl(0.01M) │ Cl 2 (p θ)-Cl 2(p θ)│HCl(0.1M)│H 2(p θ),Pt

A. E 甲 = 0.5E 乙

B. E 甲 = E 乙

C. E 甲 =2 E 乙

D. E 甲 = 4E 乙

8、某电池可以写成如下两种形式:

甲:1/2 H 2 ( p θ) + AgI (s)→ Ag (s) + HI (a )

乙: H 2 ( p θ) + 2AgI (s)→ 2Ag (s) + 2HI (a ) 则 。

A. E 甲 = E 乙,K 甲 =K 乙

B. E 甲 ≠ E 乙,K 甲 =K 乙

C. E 甲 = E 乙,K 甲≠ K 乙

D. E 甲 ≠ E 乙,K 甲 ≠ K 乙

9、电池 (1)Cu (s)│Cu +(a Cu +)║C u + (a Cu +),Cu 2+ (a Cu 2+)│Pt (s)

(2)Cu (s)│Cu 2+ (a Cu 2+)║Cu + (a Cu +),Cu 2+ (a Cu 2+)│Pt (s)

的反应均可写成Cu (s) + Cu 2+ (a Cu 2+) 2Cu + (a Cu +),此两电池的标准电池电动势E θ及电池反应的标准Gibbs 自由能变化Δr G θ的关系为 。

A. Δr G θ,E θ均相同

B. Δr G θ相同,E θ不同

C. Δr G θ不同,E θ相同

D. Δr G θ, E θ均不同

10、298K 时电池Pt (s) │H 2 ( p θ)│HCl (m )│H 2 ( 0.1p θ) │Pt (s)的电池电动势为 。

A. 0.118V

B. ?0.059V

C. 0.0295V

D. ?0.0295V

11、已知298K 时,Hg 2Cl 2 (s) +2e → 2Hg (l) +2 Cl -(a Cl - ) φθ

= 0.27 V ,

AgCl (s) + e → Ag (s) + Cl - (a Cl - ) φθ= 0.22 V ,当电池反应为

Hg 2Cl 2 (s) +2Ag (s) →2AgCl (s) +2Hg (l)时,其标准电池电动势为 。

A. 0.050V

B. ?0.170V

C. ?0.085V

D. 0.025V

12、蓄电池在充电和放电时的反应正好相反,则其充电时正极和负极、阴极和阳极的关系为 。

A. 正负极不变,阴阳极不变

B. 正负极不变,阴阳极正好相反

C. 正负极改变,阴阳极不变

D. 正负极改变,阴阳极正好相反

13、标准氢电极是 。

A. Pt ,H 2 ( p θ)│OH - (a OH - = 1)

B. Pt ,H 2 ( p θ)│OH - (a OH - =10-7)

C. Pt ,H 2 ( p θ)│H +(a H +=10-7)

D. Pt ,H 2 ( p θ)│H + (a H += 1)

14、对于一个反应,下列说法正确的是

A.ΔS 越负,反应速度越快

B.ΔH 越负,反应速度越快

C 活化能越大,反应速度越快 D.活化能越小,反应速率越快

15、某反应在一定条件下平衡的转率25%,当有催化剂存在时,其转化率应当 25%

A.大于

B.小于

C.等于

D.大于或小于

16、任一基元反应,反应分子数与反应级数的关系是

A.反应级数等于反应分子数

B.反应级数小于反应分子数

C.反应级数大于反应分子数

D.反应级数大于或等于反应分子数

17、下列电极中,不属氧化—还原电极的是 。

A. Pt ,H 2| H +

B. Pt|Tl 2+,Tl 3+

C. Pt|Fe 2+,Fe 3+

D. Pt| Sn 2+,Sn 4+

18、 已知电池反应:Zn+2HCl==H 2(g )+ZnCl 2……… △r G m(1),E (1),K O (1) 21Zn+HCl==21H 2(g )+2

1ZnCl 2……△r G m(2),E (2),K O (2),在相同条件下,则 A. △r G m(1)=2△r G m(2),E (1)= E (2) , K O (1) = [K O (2)]

1/2; B. △r G m(1)=△r G m(2), E (1)= 2E (2) ,K O

(1)= K O (2) C. △r G m(1)=2△r G m(2),E (1)= E (2) , K O (1)= [K O (2)]2;

D. 2△r G m(1)=△r G m(2),2E (1)= E (2) ,[K O (1)]2= K O

(2)。

19、下列对于催化剂特征的描述中,不正确的是

A.催化剂只能改变反应到达平衡的时间,对已经达到平衡的反应无影响

B.催化剂在反应前后自身的化学性质和物理性均不变

C.催化剂不影响平衡常数

D.催化剂不能实现热力学上不能发生的反应。

20、气体反应碰撞理论的要点是( )

A.全体分子可看作是刚球,一经碰撞便起反应

B.在一定方向上发生了碰撞,才能引起反应

C.分子迎面碰撞,便能引起反应

D.一对反应分子具有足够能量的碰撞,才能引起反应

二、 填空题

1.浓度为m 的Al 2(SO 4)3溶液中正、负离子的活度系数分别为+γ和-γ,则:离子平均活度系数 ±γ= ,离子平均质量摩尔浓度±m = ,离子平均活度 ±a = 。

2.已知∞Λm (H +) =349.82×10 -4S · m 2· mol -1, ∞Λm (Ac -) = 40.9×10 -4S · m 2

· mol -1,而实验测得某醋酸溶液的 m Λ(HAc)=5.85×10 -4S · m 2· mol -1,此溶液中醋酸的电离度α = 。

3、298K 时,∞Λm (KAc)= 0.01144 S · m 2· mol -1,∞Λm (1/2K 2SO 4)=0.01535S · m 2· mol -1,∞

Λm (1/2H 2SO 4)=0.04298S · m 2· mol -1

,则该温度下 ∞Λm (HAc)= 4.在温度一定和浓度比较小时,增大弱电解质溶液的浓度,则该弱电解质的电导率κ ,摩尔电导率 m Λ 。(增大、减小、不变)

5.已知:V Zn Zn o 762.0)/(2-=+?在298.16K 及标准状态下将反应:

Zn+2HCl==ZnCl 2+H 2(g)组成原电池,正极反应式为___________________,负极反应式为_______________________。其电池符号为________________________。

6.已知:o ?(Cu 2+/Cu)=0.337v ;o ?(Fe 3+/Fe 2+)=0.771v ,在298.16K,及标准状态下将反应:2Fe 3++Cu== 2Fe 2++Cu 2+设计成原电池。正极反应式为_____________________,负极反应式为________ ___。其电池符号为_____________________.标准平衡常数为______________。

7.在双液电池中不同电解质溶液间或不同浓度的同种电解质溶液的接界处存在 电势,通常采用加 的方法来减少或消除。

8.某电池反应可写成(1)H 2 ( p

θ) + Cl 2 ( p θ) == 2HCl (a H +) 或 (2)1/2H 2 ( p θ) + 1/2Cl 2 ( p θ) == HCl (a H +),这两种不同的表示式算出的E 值 ,

E θ

值 ,Δr G m 值 ,K 值 。(填相同或不同)

9、原电池Ag ,AgBr │Br -(0.1mol·kg -1)‖Ag +(0.1mol·kg -1

)│Ag 所代表的电池反应为 ;已知 298 K 时该电池的标准电动势E θ = 0.728 V ,则该反应的平衡常数K θ

= 。 10.某反应的速率常数k=4.20×10-2S -1,初始浓度为0.10mol ·dm -3,则该反应的半衰期2

1t 为 。

11.某放射性同位素的蜕变为一级反应,已知某半衰期 2

1t =6d (天),经过16d 后,该同位素的衰变率为_____。

12.根据电动势突变时加入滴定液的体积确定被分析离子的活度的方法称为 ,该方法更适用于 难以监控滴定终点的反应。

13.原电池的电动势常用 进行测定,而不能用 直接测定。

14.测定溶液的pH 值,可以用氢电极和已知电极电势的参比电极组成电池,常用的参比电极是 ,氢电极是 ,但由于制作和使用不方便,常用 代替。

15、设物质A 可发生两个平行的一级反应:(a )C B A Ea ka +??

→?, (b )E D A Eb

kb +??→?, 式中,B 和C 是需要的产品,D 和E 为副产物。设两反应的频率因子相等且与温度无关,E a >E b ,则反应(a)和反应(b)相比,速率较大的反应是 ,升高温度对 更有利。

16、气相有效分子碰撞理论的基本观点是 。

三、 判断题

1.化学电池的电动势决定于电池内的氧化还原反应,因此,对应着一定的电池总反应必有确定的电动势值。( )

2.电池反应是可逆反应的电池,一定是可逆电池。( )

3.离子独立运动定律既可应用于无限稀释的强电解质溶液,又可应用于无限稀释的弱电解质溶液。( )

4.催化剂能改变反应历程,降低反应的活化能,并改变反应的△r G m o ( )

5、温度升高,活化分子的数目增多,即活化分子碰撞数增多,反应速率加快。( )

6、化学反应速率取决于活化能的大小,活化能越大,k 越小,活化能越小,k 越小。( )

7.因为离子的平均质量摩尔浓度 ±m 与平均活度系数 ±γ有相似的定义式,所以我们可以认为m B = V m ±。 ( )

8.复杂反应是由若干个基元反应组成的,所以复杂反应的分子数是基元反应分子数之和。( )

9.当某反应对物质A 的反应级数为负值时,该反应的速率随物质A 的浓度升高而减小。( )

10.对于一个在定温、定压下,不做非膨胀功的化学反应来说,△G 越负,反应速度越快。( )

11.某一反应A →B ,A 的半衰期为30分钟,那么该反应进行完全所需的时间为60分钟。( )

12.已知反应2A →P 为零级反应,A 的半衰期为30分钟,由此可知,A 消耗3/4所需的时间为45分钟。( )

13.凡是反应级数为分数的反应都是复杂反应,凡是反应的数为1,2和3的反应都是基元反应。( )

14.催化剂加速反应到达平衡是由于它提高了正反应的速率,同时降低可逆反应的速率。( )

15.某反应在一定的条件下的平衡转化率为48%,但在该条件下反应进行了较长时间,转化率只有8.5%,合适的催化剂可提高转化率,但不会超过48%。( )

四、简答题

1、质量作用定律对于总反应式为什么不一定正确?

2、Zn 和Ag 插在HCl 溶液中所构成的原电池是否是可逆电池?为什么?

3、根据碰撞理论,温度增加反应速率提高的主要原因是什么?

4、下列两个反应设计成电池,此两个电池的E θ、电池反应的ΔG θ及K θ是否相同?为什么?

(1)H 2(g)+1/2O 2(g)→H 2O(l)

(2)2H 2(g)+ O 2(g)→2H 2O(l)

5、已知电池Ag-AgCl(s)|HCl (m=0.01 mol·kg -1)| Cl 2

(g, p θ)| Pt 在25℃时,E=1.135V ,如果以m=0.10

mol·kg -1代替m=0.01 mol·kg -1的HCl ,电池电动势将

改变多少?

6、为什么说催化剂不影响化学平衡,不改变化学反应的

可能性?

7、试说明电解质溶液的电导率K 与浓度的关系,并说明

原因。

五、计算题

1、放射性同位素1532

P ——→1632S+β,10d 后样品的活性降低了38.42%,求衰变的速率常数

κ/Sm -1 6 2 C/mol.L-1 8 HAc 4 0 10 20 40 70 KCl HCl KOH 10 电导率与浓度的关系

k 和半衰期t 1/2

2、写出下列电池Pb (s)│Pb 2+(a Pb 2+=0.01)║Cl - (a Cl - =0.5)│Cl 2 ( p θ) │Pt (s)的电极反应和电池反应,并计算298K 时电池的电动势E 、Δr G m 以及K θ,并指明电池反应能否自发

进行?已知φ =0.13 V ,φ =1.36 V 。

3、电池Sb (s) │Sb 2O 3 (s)│pH= 3.98的缓冲溶液║饱和甘汞电极,298K 时测得电池电动

势E = 0.230V ;如果将pH= 3.98的缓冲溶液换为待测pH 值的溶液,298K 时测得电池电动

势E = 0.345V ,试计算待测溶液的pH 值。

4、将下列反应Sn 2+(a Sn 2+) +Pb 2+(a Pb 2+) → Sn 4+(a Sn 4+) +Pb (s )设计为原电池,计算298K

时电池反应的Δr G θ和平衡常数K θ。已知φ =-0.15V ,φ =0.13V 。 5、已知反应CCl 3COOH =CO 2+CHCl 3在90℃时速率常数为k=3.11×10-4S -1, 70℃时速率常数为k=1.7×10-5S -1,求该反应在80℃时完成70%需多少分钟?

6、298K 时电池Ag|AgCl|HCl (aq )|Hg 2Cl 2|Hg ,的E=0.0455V ,温度系数K V T

E p /1033.3)(4-?=??,

求当278K 电池产生1mol 的电量时,电池反应的E,△r G m ,△r H m , 'max W ,△r S m ,Q R , △r U m 。

7、配制每毫升400单位的某种药物溶液,十一个月后,经分析每毫升含有300单位,若此药物溶液的分解服从一级反应,问:(1)配制40天后其含量为多少?(2)药物分解一半,需多少天?

8. 反应A+B =C+D 的速率方程为r=kc A ,c A0=300mol/m 3,在320K 时t 1/2=2.16×103s 。求(1)该反应进行到40分钟时的反应速率是多少?(2)A 物质反应掉32%时所需时间为多少分钟?

9.已知298 K 时电池Zn │ZnCl 2(0.1mol·kg -1)│AgCl │Ag 的电动势E =1.015 V ,其温度系数 (?E/?T)p =-4.29 ? 10―4 V·K ―1。(1)写出电极反应及电池反应;(2)计算电池反应的Δr G m 、Δr S m 、Δr H m 及此过程的可逆热效应Q R 。

10. 溴乙烷的分解反应在650K 时速率常数为2.14×10 -2s -1,若经10min 使反应完成90%,应在什么温度下进行反应。已知E a = 229.3 kJ · mol -1。

11. 电池Zn(s)|Zn 2+(a =0.1)‖Cu 2+(a =0.01)|Cu(s),已知298K 时,

=-0.763V, =0.337V 。(1)写出电极反应和电池反应;(2)计算电池电动势;(法拉第常数 F = 96485 C.mol -1)。(3)计算电池反应的自由能变;(4)电池反应的平衡常数。

12.电池Hg|Hg 2Br 2(s)| Br -(aq)|AgBr(s)|Ag ,在标准压力下,电池电动势与温度的关系是:E=68.04/mV+0.312×(T/K -298.15)/ mV, 写出通过1F 电量时的电极反应与电池反应,计算25℃时该电池反应的Δr G m θ,Δr H m θ,Δr S m θ。

电化学原理知识点

电化学原理知识点

电化学原理 第一章绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极原电池(-)电解池(+) 阴极:发生还原反应的电极原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在 的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向 的水分子性质,受这种相互作用的水分子层称为 水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值, 反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、 液态物质和溶剂,这一标准态就是它们的纯物质 状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: i i i x αγ=∑=221i i z m I I A ?-=± γlog

注:上式当溶液浓度小于0.01mol ·dm-3 时才 有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2) 离子运动速度。 当量电导(率):在两个相距为单位长度的平行 板电极之间,放置含有 1 克当量电解质的溶液 时,溶液所具有的电导称为当量电导,单位为Ω -1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量 电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动是独 立的,这时电解质溶液的当量电导等于电解质全 部电离后所产生的离子当量电导之和: 同一离子在任何无限稀溶液中极限当量电导值 不变! L A G κ= KV =λN c N c k 1000=λ-++=000λλλ

电化学原理及其应用(习题及答案)

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是(C) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是Zn |Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+ Eθ(Cu2+/Cu)=(1) , Eθ(Sn4+/Sn2+)=(2) 则有(C) A. (1) = (2) B. (1)<(2) C. (1)>(2) D. 都不对 二、填空题 1.将下列方程式配平 3PbO2 + 2 Cr3+ + ____H2O___ =1Cr2O72—+ 3Pb2+ + __2H+___ (酸性介质) 2MnO2 + 3 H2O2 +__2OH-___ =2MnO4—+ ___4H2O______ (碱性介质)2.现有三种氧化剂Cr2O72—,H2O2,Fe3+,若要使Cl—、Br—、I—混合溶液中的I—氧化为I2,而Br-和Cl-都不发生变化,选用Fe3+最合适。(EθCl2/Cl-=1.36V, EθBr2/Br-=1.065V, EθI2/I-=0.535V) 3.把氧化还原反应Fe2++Ag+=Fe3++Ag设计为原电池,则正极反应为Ag++ e = Ag,负极反应为Fe3++e= Fe2+ ,原电池符号为Pt︱Fe3+(c1),Fe2+(c2)‖Ag+(c3)︱Ag。 4.在Mn++n e=M(s)电极反应中,当加入Mn+的沉淀剂时,可使其电极电势值降低,如增加M的量,则电极电势不变 5.已知EθAg+/Ag=0.800V, K sp=1.6×10—10则Eθ(AgCl/Ag)= 0.222V。 6.已知电极反应Cu2++2e=Cu的Eo为0.347V,则电极反应2Cu - 4e =2Cu2+的Eθ值为0.347V 。7.用氧化数法配平下列氧化还原反应。 (1)K2Cr2O7+H2S+H2SO4K2SO4+Cr2(SO4)3+S+H2O K2Cr2O7+3H2S+4H2SO4 =K2SO4+Cr2(SO4)3+3S+7H2O

电化学腐蚀力学

电化学腐蚀动力学 20世纪40年代末50年代初发展起来的电化学动力学是研究非平衡体系的电化学行为及动力学过程的一门科学,它的应用很广,涉及能量转换(从化学能、光能转化为电能)、金属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显示出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作用。 电化学动力学中的一些理论在金属腐蚀与防护领域中的应用就构成了电化学腐蚀动力学的研究内容,主要研究范围包括金属电化学腐蚀的电极行为与机理、金属电化学腐蚀速度及其影响因素等。例如,就化学性质而论,铝是一种非常活泼的金属,它的标准电极电位为-1.662V。从热力学上分析,铝和铝合金在潮湿的空气和许多电解质溶液中,本应迅速发生腐蚀,但在实际服役环境中铝合金变得相当的稳定。这不是热力学原理在金属腐蚀与防护领域的局限,而是腐蚀过程中反应的阻力显著增大,使得腐蚀速度大幅度下降所致,这些都是腐蚀动力学因素在起作用。除此之外,氢去极化腐蚀、氧去极化腐蚀、金属的钝化及电化学保护等有关内容也都是以电化学腐蚀动力学的理论为基础的。电化学腐蚀动力学在金属腐蚀与防护的研究中具有重要的意义。 第一节腐蚀速度与极化作用 电化学腐蚀通常是按原电池作用的历程进行的,腐蚀着的金属作为电池的阳极发生氧化(溶解)反应,因此电化学腐蚀速度可以用阳极电流密度表示。 例如,将面积各为10m2的一块铜片和一块锌片分别浸在盛有3%的氯化钠溶液的同一容器中,外电路用导线连接上电流表和电键,这样就构成一个腐蚀电池,如2-1。 图2-1 腐蚀电池及其电流变化示意图

查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外 电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。 让我们观察一下该腐蚀电池接通后其放电流随时间变化的情况。 外电路接通前,外电阻相当于无穷大,电流为零。 在外电路接通的瞬间,观察到一个很大的起始电流,根据欧姆定律其数值为 o o 3k a -0.05(0.83)= 4.41011090 I R ??---==?+始安培 式中o k ?-——阴极(铜)的开路电位,伏; o a ?——阳极(锌)的开路电位,伏; R ——电池系统的总电阻,欧姆 在达到最大值I 始 后,电流又很快减小,经过数分钟后减小到一个稳定的电 流值I 稳=1.5×10-4 安培,比I 始 小约30倍 。 为什么腐蚀电池开始作用后,其电流会减少呢?根据欧姆定律可知,影响电 流强度的因素是电池两极间的电位差和电池内外电路的总电阻。因为电池接通后 其内外电路的电阻不会随时间而发生显著变化,所以电流强度的减少只能是由于 电池两极间的电位差发生变化的结果。实验测量证明确实如此。 图2-2表示电池电路接通后,两极电位变化的情况。从图上可以看出,当电 路接通后,阴极(铜)的电位变得越来越小。最后,当电流减小到稳定值I 稳时两 极间的电位差减小到(k ?-a ?),而k ?和a ? 分别是对应于稳定电流时阴极和阳极 的有效电位。由于k a -??()比(o o k a -??)小很多,所以,在R 不变的情况下, I 稳 = k a -R ?? 必然要比I 始小很多。

电化学原理知识点

电化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动 i i i x αγ=∑ =2 2 1i i z m I I A ?-=±γlog L A G κ= KV =λN c N c k 1000=λ- ++=000λλλ

电化学分析法(最全)汇总

电化学分析法 [日期:2011-06-24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。 电化学分析法可分为三种类型。第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。 电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。 第一节电势分析法 电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。 直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。应用最多的是测定溶液的pH。近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。 电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。电势滴定法确定的滴定终点比指示剂确定的滴定终点更为准确,但操作相对麻烦,并且需要仪器,所以电势滴定法一般适用于缺乏合适的指示剂,或者待测液混浊、有色,不能用指示剂指示滴定终点的滴定分析。 基本原理 在电势分析法中,构成原电池的两个电极,其中一个电极的电极电势能够指示被测离子活度(或浓度)的变化,称为指示电极;而另一个电极的电极电势不受试液组成变化的影响,具有恒定的数值,称为参比电极。将指示电极和参比电极共同浸入试液中构成一个原电池,通过测量原电池的电动势,即可求得被测离子的活度(或浓度)。 例如某种金属M与其金属离子Mn+组成的指示电极Mn+/M,根据能斯特公式,其电极电势可表示为:

电极过程动力学 电化学

吸附对电极/溶液界面性质的影响: ①在电极/溶液界面上不但有静电吸附,而且有特性吸附,只有当电极表面剩余电荷足够多时,静电吸附足够大时,特性吸附才消失; ②当电极表面发生吸附时,电毛细管曲线和微分电容发生变化; ③由于静电吸附和特性吸附共同存在,会出现超载吸附与三电层结构; ④无特性吸附时,分散层电位与紧密层电位方向相同,当有阴离子特性吸附时,紧密层与分散层方向相反。

电极过程——电极表面附近薄液层中进行的过程与电极表面上发生的过程的总称。 电极过程单元步骤: ①液相传质——反应粒子向电极表面传递; ②表面转化(前置)——反应粒子在电极表面或附近液层发生某些转化; ③电化学——反应粒子在电极/溶液界面得到电子或失去电子; ④表面转化(后置)——反应产物在电极表面或附近液层发生某些转化; ⑤a、新相生成——反应产物不溶时,反应产物生成新相; b、液相传质——反应产物可溶时,产物粒子从电极表面向溶液中或溶液电极内部迁移。电极极化——电流通过电极时,电极电势偏离平衡电极电势的现象。 过电势——表示某一电流密度下极化电势与平衡电势之差。 ①阳极过电势: ②阴极过电势: 控制步骤——电极过程中最慢的单元步骤。 极化曲线——电极上电势随电流密度变化的关系曲线。 传质过程(溶液): ①对流——物质粒子随液体流动而移动。 A、自然对流——液体各部分之间由于存在浓度差或温度差产生的密度差或密度梯度而产生的对流; B、强制对流——通过搅拌而引起的对流。 ②扩散——溶液中某一组分由于存在浓度梯度(或化学势梯度)而发生该组分向减少这种梯度的方向转移的过程。 ③电迁移——带电粒子在电场梯度或电势梯度的作用下而引起的迁移过程。 扩散层——通过电流时,由于物质迁移缓慢而引起浓度发生扩散的液层。 稳态扩散——溶液中任意一点的浓度不再随时间变化的扩散过程。 (扩散速度与时间无关,反应粒子浓度分布只与空间有关,扩散层厚度一定) 非稳态扩散——溶液中任意一点的浓度随时间变化的扩散过程。 (反应粒子浓度同时是空间和时间的函数,扩散层厚度随时间变化) 扩散电流密度——由带电粒子的扩散引起的电流。 极限扩散电流密度——电极反应所能达到的最大电流密度。

高三化学一轮复习:电化学原理及其应用

电化学原理及其应用 1.家蝇的雌性信息素可用芥酸(来自菜籽油)与羧酸X在浓NaOH溶液中进行阳极氧化得到。 电解总反应式为: 则下列说法正确的是( ) A.X为C2H5COOH B.电解的阳极反应式为:C21H41COOH+X-2e-+2H2O―→C23H46+2CO2-3+6H+ C.电解过程中,每转移a mol电子,则生成0.5a mol雌性信息素 D.阴极的还原产物为H2和OH- 解析:A项根据原子守恒可判断X为C2H5COOH;B项由于电解质溶液为浓NaOH,因此阳极反应式应为C21H41COOH+X-2e-+60H-―→C23H46+2CO2-3+4H2O;C项根据电解总反应可知每生成1 mol雌性信息素转移2 mol电子,则C项正确;D项阴极的还原产物为H2,OH-并非氧化还原产物. 答案:AC 2.下列关于铜电极的叙述正确的是( ) A.铜锌原电池中铜是负极 B.用电解法精炼粗铜时,粗铜作阴极 C.在镀件上电镀铜时可用金属铜做阳极 D.电解稀硫酸制H2和O2时铜做阳极 解析:铜锌原电池中锌活泼,锌做负极;电解精炼铜时,粗铜中的铜失去电子,做阳极; 电镀铜时,应选用铜片做阳极,镀件做阴极,含有铜离子的溶液做电镀液。电解稀硫酸时,铜做阳极,失电子的是铜而不是溶液中的OH-,因而得不到氧气。 答案:C 3.普通水泥在固化过程中自由水分子减少并产生Ca(OH)2,溶液呈碱性。根据这一特点,科学家发明了电动势(E)法测水泥初凝时间,此法的原理如图所示,反应的总方程式为:2Cu +Ag2O===Cu2O+2Ag。 下列有关说法不正确的是( ) A.工业上制备普通水泥的主要原料是黏土和石灰石

电化学原理知识点(完整资料).doc

【最新整理,下载后即可编辑】 电化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的 真实溶液与理想溶液的偏差。 i i i x αγ=

规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的 关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符 号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的 相互作用,此时离子的运动是独立的,这时电解质溶液的当量电导等于电解质全部电离后所产生的离子当量电导之和: 同一离子在任何无限稀溶液中极限当量电导值不变! 离子淌度:单位场强(V/cm )下的离子迁移速度,又称离子绝对运动速度。 离子迁移数:某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数。 ∑= 2 2 1i i z m I I A ?-=±γlog L A G κ=KV =λN c N c k 1000=λ- ++=000λλλE V U + +=E V U - -=

电化学原理及其应用(习题及答案)

电化学原理及其应用 (习题及答案) https://www.360docs.net/doc/c56319340.html,work Information Technology Company.2020YEAR

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是( C ) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为 O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是 Zn | Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应 2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+

电化学原理及其应用

5月6日晨测:化学原理及其应用(时间:40分钟) 可能用到的相对原子质量: Cu -64 Zn -65 1.(2020·广西省桂林市高三联合调研)钠硫电池以熔融金属钠、熔融硫和多硫化钠(Na 2S x )分别作为两个电极的反应物,固体Al 2O 3陶瓷(可传导Na +)为电解质,总反应为2Na+xS Na 2S x ,其反应原理如图所示。下列叙述正 确的是( ) A .放电时,电极a 为正极 B .放电时,内电路中Na +的移动方向为从b 到a C .充电时,电极b 的反应式为S x 2--2e -=xS D .充电时,Na +在电极b 上获得电子,发生还原反应 2.(2020·吉林省吉林市高三二调)金属(M)-空气电池具有原料易得,能量密度高等优点,有望成为新能源汽车和移动设备的电源,该类电池放电的总反应方程式为:2M +O 2+2H 2O =2M(OH)2。 (已知:电池的“理论比能量”指单位质量的电极材料理论上能释放出的最大电能)下列说法正确的是( ) A .电解质中的阴离子向多孔电极移动 B .比较Mg 、Al 、Zn 三种金属-空气电池,Mg -空气电池的理论比能量最高 C .空气电池放电过程的负极反应式2M -4e -+4OH -=2M(OH)2 D .当外电路中转移4mol 电子时,多孔电极需要通入空气22.4L(标准状况) 3.(2020·福建省龙岩市高三质量检测)我国某科研团队设计了一种新型能量存储/转化装置(如下图所示)。闭合K 2、断开K 1时,制氢并储能;断开K 2、闭合K 1时,供电。下列说法错误的是( ) A .制氢时,溶液中K +向Pt 电极移动 B .制氢时,X 电极反应式为22Ni(OH)e OH NiOOH H O ---+=+ C .供电时,Zn 电极附近溶液的pH 降低

电分析化学联用技术

电分析化学联用技术 一光谱电化学 1. 概述 常规的电化学研究方法是以电信号为激励和检测手段,得到的是电化学体系的各种微观信息的总和,难以直观、准确地反映出电极/溶液界面的各种反应过程、物种浓度、形态的变化,这对正确解释和表述电化学反应机理带来很大的问题。近三十年来,通过把谱学方法(紫外可见光、拉曼和红外光谱)和扫描微探针技术应用于电化学原位( in-situ)测试,从分子水平上认识电化学过程,形成了光谱电化学 和扫描显微电化学新的测试体系,比较方便地得到了电极/界面分子的微观结构、吸附物种的取向和键接、参与电化学中间过程的分子物种,表面膜的组成与厚度等信息[ 1~3] ,特别是近年光谱电化学引入了非线性光学方法新技术,开展了时间分辨为毫秒或微秒级的研究,使研究的对象从稳态的电化学界面结构和表面吸附扩展、深入到表面吸附和反应的动态过程[4 ] ;而扫描隧道显微镜及相关技术的应用,提高了空间分辨率,可以观察到电极表面结构和重构现象、金属沉积过程、金属或半导体表面的腐蚀过程,极大地拓宽了电化学原位测试应用范围,已经成为在分子水平上原位表征和研究电化学体系的不可缺少手段。本文主要综述光谱电化学、扫描显微电化学等原位测试技术的原理、方法、最新进展和应用情况。 光谱电化学是一种将光谱技术与电化学方法结合在一个电解池内同时进行测量的方法。通常,以电化学为激发信号,以光谱技术进行监测,各自发挥其特长。用电化学方法容易控制物质的产量和定量产生试剂等,而用光谱法有利于鉴别物质。在传统的电化学反应的研究中,是依靠电极电势或电流的测量,来研究该电化学反应的机理和测量电化学反应的动力学参数。电流是此反应的反应速率的直接量度,但电流仅代表电极上所有反应过程的总速率,却不能提供反应产物和中间体鉴定的直接信息。另外,在研究电极、电解质溶液界面结构中,是利用电容的测量和计算得到理论值,并不能从分子水平上得到信息。而将紫外、红外和核磁共振等光谱技术应用于电化学电池的现场研究,可以从中得到有关反应中间体,电极表面的性质,如吸附取向,排列次序和覆盖度等信息。该领域称为光谱电化学,是当今电化学研究中最活跃的领域之一。40多年来,光谱电化学得

电化学原理及其应用

第4章电化学原理及应用 5课时 教学目标及基本要求 1. 明确原电池及相关的概念。了解电极的分类,了解电极电势的概念。 2. 能用能斯特方程式进行有关计算。能应用电极电势的数据判断氧化剂、还原剂的相对强弱及氧化还原反应自发进行的方向和程度。 3. 了解摩尔吉布斯自由能变与原电池电动势,标准摩尔吉布斯自由能变与氧化还原反应平衡常数的关系。 4. 了解电解、电镀、电抛光的基本原理,了解它们在工程上的应用。了解金属腐蚀及防护原理。 教学重点 1. 原电池符号的书写 2. 影响电极电势的因素 3. 电极电势与吉布斯的关系 4. 电极电势的应用 教学难点 1. 电极类型 2. 能斯特方程及相关计算 3. 应用电极电势判断氧化剂、还原剂的相对强弱 本章教学方式(手段)及教学过程中应注意的问题 本章采用多媒体结合板书的方式进行教学。 在教学过程中注意 1. 原电池的设计 2. 浓度、酸度对电极电势的影响 3. 电极电势的应用 主要教学内容 4.1 原电池(Electrochemical cell) 任何自发进行的氧化还原(oxidation-reduction) 反应,只要设计适当,都可以设计成原电池

用以产生电流。 4.1.1 原电池的结构与工作原理 Zn(s)+Cu2+(aq)=Zn2+(aq)+Cu(s) 负极Zn(s) → Zn2+(aq)+2e-(Oxidation) 正极Cu2+(aq)+2e-→ Cu(s) (Reduction) 总反应:Zn(s)+ Cu2+(aq) → Zn2+(aq)+ Cu(s) 原电池的符号(图式)(cell diagram) 表示: 如铜- 锌原电池, : Zn ∣ZnSO4(c1) ┊┊CuSO4(c2) ∣Cu 规定:(1) 负极(anode) 在左边,正极(Cathode) 在右边,按实际顺序从左至右依次排列出各个相的组成及相态; (2) 用单实竖线表示相界面, 用双虚竖线表示盐桥; (3) 溶液注明浓度,气体注明分压; (4) 若溶液中含有两种离子参加电极反应, 可用逗号隔开,并加上惰性电极. 4.1.2 电极类型 按氧化态、还原态物质的状态分类: 第一类电极:元素与含有这种元素离子的溶液一起构成的电极。 (1) 金属──金属离子电极: Zn2+| Zn ;Cu2+| Cu ;Ni2+| Ni (2) 气体——离子电极: H+ |H2(g) | Pt 2H+ + 2e-=H2(g) Cl-| Cl2(g) | PtCl2(g) + 2e-=2Cl- 第二类电极: (1) 金属──金属难溶盐电极: 甘汞电极:Cl-|Hg2Cl2(s)| Hg Hg2Cl2(s) + 2e-=2 Hg (s) + 2 Cl- 银-氯化银电极:Cl-| AgCl(s) | Ag AgCl(s) + e-=Ag (s) + Cl- (2) 金属──难溶金属氧化物电极: 锑—氧化锑电极:H+ ,H2O(g) | Sb2O2(s) |Sb Sb2O2(s) + 6 H+ + 6 e-=2Sb +3H2O(g) 第三类电极: 氧化还原电极: MnO4-,Mn2+| Pt 2 MnO4-+ 16H+ + 10e-→ 2Mn2++8H2O 4.2 电极电势

c03-电化学腐蚀动力学

第三章电化学腐蚀动力学 §3-1 电化学腐蚀过程——电极过程动力学基础 一. 电极过程的特征[1] 电化学腐蚀本质上是一种电极过程。 电化学反应是在两类导体界面上发生的有电子参加的氧化反应或还原反应。电极本身既是传递电子的介质,又是电化学反应的反应点。为了使这个反应在一定电位下得以在电极与溶液界面间顺利进行,不可避免地会涉及到某些与之有联系的物理和化学变化。通常将电流通过电极与溶液界面时所发生的一连串变化的总和,称为电极过程。 在两类导体界面上发生的电极过程是一种有电子参加的异相氧化还原反应。电极相当于异相反应的催化剂。因此,电极过程应当服从异相催化反应的一般规律。首先,反应是在两相界面上发生的,反应速度与界面面积的大小和界面的特性有关。其次,反应速度在很大程度上受电极表面附近微薄液层中反应物和产物的传质过程(溶液中朝着一定方向输送某种物质的过程)的影响。如果没有传质过程,则反应物来源断绝或产物疏散不出去,反应自然不能持续地进行。此外,这类反应还与新相(气体、晶体等)生成过程密切相关。但是,电极过程除了具有一般异相催化反应的共性外,还有它自己的特殊性。界面电场对电极过程速度具有重大作用。界面间电位差只要改变0.1V左右,就足以使反应速度成十倍地增加。 根据对电极反应历程的分析研究得知,它是由一系列性质不同的单元步骤组成的。除了接续进行的步骤之外,还可能由平行的步骤存在。其中包括三个必不可少的接续进行的单元步骤。1. 反应物粒子自溶液内部或自液态电极内部向电极表面附近输送的单元步骤,称为液相传质步骤;2. 反应物粒子在电极与溶液界面间得电子或失电子的单元步骤,称为电子转移步骤;3. 产物粒子自电极表面向溶液内部或向液态电极内部疏散的单元步骤,这也是个液相传质步骤;或者是电极反应生成气态或晶态(例如形成金属晶体)的产物,这个步骤称为新相生成步骤。 有时在步骤1与步骤2之间,还可能存在着反应物粒子得失电子之前,于界面附近液层中或电极上进行的某些变化,称为前置的表面转化步骤。在某些电极过程中,步骤2与步骤3之间也可能存在着电子转移步骤产物进一步转化为其它物质的反应,称为后继的表面转化步骤。 电极过程在电极与溶液界面间进行,可以用一般的表示异相反应速度的方法来描述电极过程的速度v r,即以单位表面上所消耗的反应物摩尔数表示,其单位是摩尔/秒·米2。例如反应物O与电子结合形成产物R的总反应可表示为 O + ne = R,其中n为一个反应物粒子O 在反应中所需要的电子数。在电极反应的前后还有液相传质过程等步骤存在。因为在稳态下进行的各步骤速度应当相等,故可根据单位时间内这个电极反应式所需要的电量来表示这个电极过程的反应速度。 由法拉第定律可知,电极反应所消耗的反应物的克当量数等于电极上通过电量的法拉第数。因此,可将摩尔数表示的反应速度转化为克当量数,然后再将它转换成以库仑表示的电量。 在上述反应式中每个反应物粒子需要消耗n个电子。物质O的摩尔数乘以n则为克当量

2018年-电化学原理与方法思考题

电化学原理与方法复习思考题 第一章绪论 1.你认为电化学体系与其它电子导体构成的电路体系的根本区别是什么? 2.简述电极反应的基本历程。 3.三电极体系指的是什么?三电极体系中有那些回路, 在每个回路中是否有电流 流过? 4.电化学反应与普通氧化还原反应的区别是什么? 5.电化学测量过程中一般采用三电极体系,为什么? 6.为什么电流或电流密度可以表示电化学反应的速度? 第二章电极-溶液界面结构 1.出现相间电势的可能原因有哪些?举例说明? 2.解释概念:内电为、外电位、表面电势、电化学势、零电荷电势、 3.金属/溶液相间平衡电势是如何建立的,以Zn|ZnSO4(α =1,水溶液)为例说明。 4.阐明电极|溶液界面双电层电容与紧密层和分散层电容的关系? 5.理想极化电极和理想不极化电极。 6.金属电极中电子在各能级上是如何分布的? 7.画出金属电极带净正电荷或负电荷时“电极/溶液”界面的电势分布曲线。 8.什么是ψ1效应?画出金属电极带净正电荷或负电荷并出现ψ1效应时的“电极/ 溶液”界面的电势分布曲线。 第三章传质过程动力学 1.液相传质过程有哪些,写出它们的作用范围? 2.液相传质过程有无电子转移?当该步骤成为电极过程的控速步骤时,该步骤的 速度如何表示?为什么? 3.当液相传质步骤成为电极过程的控速步骤时,能否应用能斯特方程?如果能应 注意什么?为什么? 4.什么是稳态和非稳态?造成稳态和非稳态的原因是什么?

5.列出理想情况下和实际情况下的稳态扩散过程的电流表达式。 6.解释概念:扩散层的有效厚度、稳态极限扩散电流密度 7.按以下情况列出电化学反应O+ne R在液相传质为控制步骤下的稳态I~?曲 线:反应生成独立相、反应产物可溶、开始反应前O与R均存在且可溶。 8.已知一个电化学反应,如何通过实验证明其是扩散控制过程? 9.液相传质过程为控制步骤时,用恒电位阶跃的暂态动力学关系说明单纯扩散过 程能否建立稳态传质过程。 10.解释液相传质过程为控制步骤时,恒电流阶跃暂态过程中“过渡时间”的概念 及物理意义。 11.对于电化学反应O+ne R,列出静止液层中平面电极上电位阶跃时的暂态电 流表达式。 第四章电化学步骤的动力学 1.当一个电子传递反应的交换电流密度较大时,线性电位扫描为什么会出现电流 峰?在峰电流是否对应与稳态扩散过程中的极限扩散电流? 2.电极过程中的电子传递控制和扩散控制 3.解释概念:极化、过电位、交换电流密度 4.外电流密度(I)与过电位之间(η)的线性关系和半对数关系各在什么条件下出 现?这是否意味着电化学极化有两种截然不同的动力学特征? 5.电极电势以哪两种不同的方式影响电化学反应速度的速度?阐述在上述两种 方式中电极电势如何影响电化学反应的速度? 6.从理论上推导出Tafel关系。 7.在不同的平衡电位下,交换电流密度是否相同?为什么? 8.对于电子传递步骤控制的电极过程,如何确定电极反应的基本动力学参数? 9.为什么说决定电化学极化程度的主要因素是净电流密度与交换电流密度的相 对大小? 10.从所学的电化学动力学方程推导出平衡时电极电势的能斯特方程。 11.当电化学极化和浓差极化共存时,利用I,i?和I d分析造成过电位的主要原因。 12.当电化学极化和浓差极化共存时,如何利用暂态恒电位阶跃法确定电极反应(电

电化学分析【电化学方法总结】

电化学分析【电化学方法总结】 循环伏安法 1 定义:循环伏安法(Cyclic Voltammetry) 以等腰三角形的脉冲电压加在工作电极上,控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化反应,记录电流- 电势曲线。 单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀速变化(扫描速度为v=dE/dt),扫描到第1个换向电位后,某些仪器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再扫描到最终电位)。 多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描多圈,最后扫描到最终电位。 2 特点:

Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。 Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。 Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S 型。 3 所得: Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa /i pc ≈1;E pa /E pc ≈2.3RT/nF。 Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV 峰电流测量不太容易精确。

Ⅲ:判断其控制步骤和反应机理,若i p ∝v ,则此过程为表面控制,发生在电极表面;若i p ∝v 1/2,则此过程为扩散控制,发生在溶液中。 循环伏安法可作用于可逆的电极过程,也可作用于不可逆或准可 逆的电极过程以及各种伴随航行反应的过程,不同的电极过程分别阳极峰电势E pa 和阴极峰电势E pc ,并给出峰电位差△E p 和峰电 流之比。对于可逆波,E pc =E1/2-1.109RT/nF E pa =E1/2+1.109RT/nF △ Ep=2.219RT/nF=58/n mV(25℃) 4. 应用: 循环伏安法最为重要的应用是定性表征伴随氧化还原反应的前行 或后行化学反应。这些化学反应的发生直接影响了电活性组分的表面浓度,出现在许多重要的有机和无机化合物的氧化还原过程中。循环伏安法也能够用于评价电活性化合物的界面行为。基于峰电流的测定,循环伏安法也可应用于定量分析,需要适当的方法确定基线。扣除背景的循环伏安可用于测定较低浓度的物质。

电化学原理之浓差极化和电化学极化

电化学极化和浓差极化的动力学研究 摘要:电极过程的进行速度在金属保护、腐蚀分析等电化学实践领域有重要应用,加深对它的理解很有必要。电极反应速度由控制步骤,即速度最慢的单元步骤决定。本文讨论了电化学反应和液相传质这两个单元步骤的动力学规律,以及当整个电极反应由电化学极化控制、浓差极化或者是两类极化共存时的极化规律。 关键词:控制步骤;电化学极化;浓差极化;过电位;极化电流 引言 电极过程是由一系列性质不同的单元步骤串联组成的复杂过程,一般有液相传质、前置转化、电化学反应、随后转化和反应后的液相传质五个步骤。每一步骤都有不同的特性,步骤的反应速度取决于其活化能,当某一步骤的速度远远小于其他步骤,则整个电极反应速度等于这个最慢步骤,一般称之为控制步骤。文献指出,只要整个反应中有一个步骤的活化能比其余高出8~10KJ/mol以上,则能成为控制步骤;而当两个单元步骤的活化能相差不到4KJ/mol时,它们的反应速度相差不到5倍,则可能同时成为控制步骤,称为混合控制。混合控制的规律比较复杂,但仍会有一个控制步骤起较主要的作用。因此研究控制步骤的规律对于了解整个电极反应的速度规律,以及控制电极反应的速度和反应进行的方向均有重要意义。本文中主要讨论的是电化学反应步骤和液相传质步骤的动力学规律,并讨论当其成为控制步骤时的极化规律。 电化学反应步骤指反应物质在电极/溶液界面得失电子,从而发生还原或氧化反应的过程。这一单元步骤包括了化学反应和电荷传递两步,是整个电极过程的核心步骤。当电化学反应步骤成为电极过程的控制步骤时,电极反应的速度就取决于电化学反应步骤。电极过程最重要特征之一就是由于电子参与反应,电极电位的改变将对反应速度将从热力学和动力学两个方面产生影响,因此讨论电化学反应步骤时先从电极电位的影响谈起。 由于液相中的反应粒子需要通过传质过程输送至电极表面,反应产物也需要

高考化学复习专题:电化学原理及其应用(含答案)

专题三电化学原理及其应用 命题规律 电化学内容是高考试卷中的常客,对原电池和电解池的考查往往以选择题的形式考查两电极反应式的书写、两电极附近溶液性质的变化、电子的转移或电流方向的判断等。在第Ⅱ卷中会以应用性和综合性进行命题,如与生产生活(如金属的腐蚀和防护等)相联系,与无机推断、实验及化学计算等学科内知识综合,尤其特别注意燃料电池和新型电池的正、负极材料分析和电极反应式的书写。题型新颖,但不偏不怪,只要注意基础知识的落实,以及能力的训练便可以从容应对。 考点研析 考点一原电池原理及应用 1.(2009·福建理综,11改编)控制合适的条件,将反应2Fe3++2I-2Fe2++I2设计成如下图所示的原电池。下列判断不正确的是 ( ) A.反应开始时,乙中石墨电极上发生氧化反应 B.反应开始时,甲中石墨电极上Fe3+被还原 C.电流计读数为零时,反应达到化学平衡状态 D.电流计读数为零后,在甲中溶入FeCl2固体,乙中石墨电极为负极 试回答: (1)乙池中若换为Fe电极和FeCl2溶液,则原电池是怎样工作的? (2)电流计读数为零后,若在乙中溶入KI固体,则原电池反应能继续发生吗?若向甲中加入固体Fe呢?

2.(2010·安徽理综,11)某固体酸燃料电池以CsHSO 4固体为电解质传递H + ,其基本结构见下图,电池总反应可表示为:2H 2+O 2===2H 2O ,下列有关说法正确的是 ( ) A .电子通过外电路从b 极流向a 极 B .b 极上的电极反应式为:O 2+2H 2O +4e - ===4OH - C .每转移0.1 mol 电子,消耗1.12 L 的H 2 D .H + 由a 极通过固体酸电解质传递到b 极 3.(2010·广东理综,23改编)铜锌原电池(如下图)工作时,下列叙述正确的是 ( ) A .正极反应为:Zn -2e - ===Zn 2+ B .电池反应为:Zn +Cu 2+ ===Zn 2+ +Cu C .在外电路中,电子从正极流向负极 D .盐桥中的K + 移向ZnSO 4溶液 考点二 电解原理及其应用 4.(2009·安徽理综,12)Cu 2O 是一种半导体材料,基于绿色化学理念设计的一制取Cu 2O 的电解池示意图如下,电解总反应为:2Cu +H 2O=====通电 Cu 2O +H 2↑。下列说法正确的是( ) A .石墨电极上产生氢气 B .铜电极发生还原反应 C .铜电极接直流电源的负极 D .当有0.1 mol 电子转移时,有0.1 mol Cu 2O 生成 5.以惰性电极电解CuSO 4溶液。一段时间后取出电极,加入9.8 g Cu(OH)2后溶液与电解前相同,则电解时电路中流过的电子为 ( ) A .0.1 mol B .0.2 mol C .0.3 mol D .0.4 mol

相关文档
最新文档