高温高压岩石三轴压力试验平台技术参数

高温高压岩石三轴压力试验平台技术参数
高温高压岩石三轴压力试验平台技术参数

高温高压岩石三轴压力试验平台技术参数

一、功能要求

主要用于高压-温度-应力-岩石三轴试验,可广泛用于岩石力学各个行业中涉及到多场耦合问题。主要达到的功能有:

1、自动测量、控制、数据采集、处理、绘制曲线及打印曲线报告(抗压强度、围压、轴向变形、径向变形、泊松比、弹性模量等)。

2、完成常温及高温岩石(含软岩)单轴压缩全过程曲线试验。

3、完成常温及高温岩石(含软岩)三轴压缩全过程曲线试验。

4、完成常温及高温岩石(含软岩)单轴压缩蠕变试验。

5、完成常温及高温岩石(含软岩)三轴压缩蠕变试验。

6、完成常温及高温岩石(含软岩)渗流试验。

二.技术要求

(1)主机技术参数

进关证明,否则不予验收。

(2)计算机与软件技术要求

1)计算机:i5处理器,8G内存、2G独立显卡、2T硬盘存储、23寸以上液晶显示器及各种设备所需软硬件

2)能实现力(应力)、变形(应变)、位移(伸长)三种全闭环控制方式,并且达到三种控制方式可以在试验过程中无冲击平滑转换,完成各种试验方法所要求的全自动程序控制试验。

3)能够在试验前后都可录入试样参数和修改试样参数,可以以单根或批量录入试样参数。

4)实时动态显示试验状态,自动采集、存储数据、绘制多种试验曲线、计算试验结果,求取特征值抗压强度、围压、轴向变形、径向变形、泊松比、弹性模量)。

5)全程的应力、应变控制完全符合国际、国家、行业标准中要求的控制方式。曲线可局部

放大或缩小,同组试验曲线可叠加对比。

6)试验结果可以任意存取,对曲线进行再分析;包括数据重新计算、曲线重现等。

三.售后服务

(1)合同签订后,180天内完成交货、安装、培训工作,不能按承诺时间交货需按相关规定缴纳违约金。

(2)整机原厂免费质保2年以上,有专职的维修和培训团队并提供培训质保方案.

(3)服务响应时间8小时以内,从保修至维修完毕不超过72小时。

(4)超出质保期,提供免费电话咨询服务,维修收取成本费。

四.其他要求及注意事项

(1)投标设置最高限价,超出限价的,视为废标。

(2)设备安装运输过程中,引起拆墙、拆门及还原等费用由投标企业全部承担;实验室改造(1次以内)引起的设备拆装、运输、调试等费用由投标企业全部承担,投标企业可以和设备需求单位联系实地考察。

(3)投标企业中标签订合同后,须向学校财务缴纳合同额5%的质量保证金,一年后无质量问题返还。

(4)投标人对所投设备有详尽的配置清单,对主要、核心部件的选材、供应商等信息有详细说明,且技术参数响应表与招标要求一一对应,描述清晰。

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

管道试压标准

12.3.1 强度试验前应具备下列条件: 1 试验用的压力计及温度记录仪应在校验有效期内。 2 试验方案已经批准,有可靠的通信系统和安全保障措施已进行了技术交底。 3 管道焊接检验、清扫合格。 4 埋地管道回填土宜回填至管上方0.5m以上,并留出焊接口。 12.3.2 管道应分段进行压力试验,试验管道分段最大长度宜按表12.3.2执行。 表12.3.2管道试压分段最大长度 设计压力PN(MPa) 试验管段最大长度(m) PN≤0.4 1000 0.4<PN≤1.6 5000 1.6<PN≤4.0 10000 12.3.3 管道试验用压力计及温度记录仪表均不应少于两块,并应分别安装在试验管道的两端。 12.3.4 试验用压力计的量程应为试验压力的1.5~2倍,其精度不得低于1.5级。 12.3.5 强度试验压力和介质应符合表12.3.5的规定。 表12.3.5强度试验压力和介质 管道类型设计压力PN(MPa) 试验介质试验压力(MPa) 钢管PN>0.8 清洁水 1.5PN PN≤0.8 压缩空气 1.5PN且≮0.4 球墨铸铁PN 1.5PN且≮0.4 钢骨架聚乙烯复合管PN 1.5PN且≮0.4 聚乙烯管PN(SDR11) 1.5PN且≮0.4 PN(SDR17.6) 1.5PN且≮0.2 12.3.6 水压试验时,试验管段任何位置的管道环向应力不得大于管材标准屈服强度的90%。架空管道采用水压试验前,应核算管道及其支撑结构的强度,必要时应临时加固。试压宜在环境温度5℃以上进行,否则应采取防冻措施。 12.3.7 水压试验应符合现行国家标准《液体石油管道压力试验》GB/T16805的有关规定。 12.3.8 进行强度试验时,压力应逐步缓升,首先升至试验压力的50%,应进行初检,如无泄漏、异常,继续升压至试验压力,然后宜稳压1h后,观察压力计不应少于30min,无压力降为合格。 12.3.9 水压试验合格后,应及时将管道中的水放净,并按本规范第12.2节的要求进行吹扫。 12.3.10 经分段试压合格的管段相互连接的焊缝,经射线照相检验合格后,可不再进行强度试验。 12.4 严密性试验 12.4.1 严密性试验应在强度试验合格,管线全线回填后进行。 12.4.2 试验用的压力计应在校验有效期内,其量程应为试验压力的1.5~2倍,其精度等级、最小分格值及表盘直径应满足表12.4.2 的要求。 表12.4.2试压用压力表选择要求 量程(MPa)精度等级最小表盘直径(mm)最小分格值(MPa) 0~0.1 0.4 150 0.0005 0~1.0 0.4 150 0.005

浅析岩石单轴压缩变形试验的影响因素

浅析岩石单轴压缩变形试验的影响因素 在实际工作中,由于对岩石力学性质评论是公路、铁路等工程地质勘察不可或缺的要素,因此采取岩石单轴压缩试验这种最通用的试验方法,研究岩石变形,成为岩石力学问题的重要内容之一,这也对实际工程施工原料选择起到一定的参考作用。这个问题的研究由于操作起來比较方便,理论基础比较明显,所以被广泛应用于工程实践和各种科研工作中。作者试图按照这个理论的思路,简单分析岩石单轴压缩变形试验的影响因素,进而为相关科研和实际工程施工提供一些有参考价值的东西。 标签:岩石;单轴压缩变形;影响 引言 岩石单轴压缩变形试验是检验岩石抗压承载力的一种试验,属于物理试验的范畴。文章中提出的试验模型主要是用花岗岩、泥岩两种规则形状的岩石作为试样,用单轴荷载来进行压力作用,来测定其纵向和横向的变形量,进而形成相应的应力—应变曲线,得出弹性模量及泊松比。作者以花岗岩和泥岩两种岩石为试验样本,采取弹性模量试验对两种岩石的受力变形等情况进行对比和分析,来具体总结影响岩石压缩变形试验的主要因素有哪些。 1 弹性模量的概念及其取值方法 1.1 弹性模量的概念 弹性理论是以应力、应变的线性关系为基础的一种理论,其中应力与应变之比就是弹性模量,从力学角度来看它表示岩石材料的坚硬程度,更具体地来说是指岩石材料在压缩或拉伸时,材料对弹性变形的抵抗能力,这是在本类试验中应用的重要基础理论和概念。 1.2 岩石弹性模量的取值方法 根据国际岩石力学学会实验室和现场试验标准化委员会的《岩石力学试验建议方法》,岩石弹性模量的取值方法主要是割线弹性模量及泊松比的取值方法,以抗压强度50%时的变形量为基础,在纵向应力—应变曲线上的原点与应力相应于极限抗压强度50%处的应力点的连线,其斜率为割线模量,横向应变与纵向应变的比值就是泊松比。一般来说,在实际工作中,大多数岩石这个应力水平下仍处于弹性范围内,很少出现细微裂缝扩展乃至断裂破碎等现象。 2 影响岩石弹性模量的主要因素 2.1 构成岩石的矿物及岩石物理性质的影响

气压严密性试验为工作压力多少倍

先进事迹 本人负责西区储运设施罐区项目管理,罐区有62具罐约23万m3,总重约6500吨,罐区及泵房工艺管道、地下排污管道等合计约25000米,罐体保温约5万 m2。我在工作中严格执行集团、能源公司及指挥部的各项制度要求,以安全第一、质量为先的工作原则,在工作中克服材料有时不能及时到货,尽量协调调整各个工作环节,在保证安全质量情况下,全力保证各项工作按照集团、能源公司及指挥部的年计划执行。在各项材料计划及各个月的计划审批时,做到严格审批按照相关标准审核,在保证施工所需材料同时尽量节约使用材料,现场随时敦促施工单位节约使用材料,保证物尽其用,不使用的材料及时回收,以便二次回收使用。在现场变更方面积极与施工单位协商,采用安全合适的变更方法,以便加快施工进度,保证项目的施工进度。 在项目建设工程中,我积极服从领导的各项安排,与各个部门的同志精诚合作并得到大家的积极配合,项目的顺利完成这与大家的努力和我们指挥部的全员的协作是分不开的。在工作中我在某些方面也缺乏实践经验,对于小部分检查工作做得不彻底, 以及缺少和施工单位及指挥部各个部门的沟通,这些都是需要在以后的工作中继续改进。 气压试验 气压试验可以分为两种情况,一种是用于输送气体介质管道的强度试验,一种是用于输送液体介质的严密性试验。气压试验所用的气体为压缩空气或惰性气体。 使用气压做管道严密性试验时,应在气压强度试验以后进行。气压试验的一般规定: (1)用于试验氧气管道的应是无油质的空气。 (2)气压试验前,应对管道及管路附件的耐压强度进行验算,验算时采用的安全系数不得小于2.5。气压强度试验压力为设计压力的1.15倍,真空管道为 0.2MPa。 (3)强度试验合格后,降至设计压力,用涂肥皂水(铝管应用中性肥皂水)方法检查如无泄漏、稳压,则严密性试验为合格。 例: 输送有爆炸性危险介质的工业管道,安装完毕后应进行的压力试验包括( )。A.强度试验 B.严密性试验 C.真空度试验 D.泄漏量试验 答案:ABD 3、管道试压的一般规定 (1)一般热力管道和压缩空气管道用水介质进行强度及严密性试验;煤气管道和天然气管道用气体作介质进行强度及严密性试验;氧气管道、乙炔气管道和输油管道用水作介质进行强度试验,再用气体作介质进行严密性试验。各种化工工艺管道

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

燃气管道强度及严密性试验规范

5.5工业炉、燃气锅炉及冷热水机组供燃气系统安装的检验 5.5.1用气设备为通用产品时,其燃气、自控、鼓风及排烟等系统的检验应符合产品说明书或设计文件的规定。 检验方法: 检查设备铭牌、产品说明书和设计文件。 5.5.2用气设备为非通用产品时,其燃气、自控、鼓风及排烟等系统的检验应符合下列规定: 1燃烧器的供气压力,必须符合设计文件的规定; 2用气设备应符合现行国家标准GB 50028的规定; 3检验方法: 检查设备铭牌、产品说明书和设计文件。 5.5.3设置在半地下室、地下室的用气设备的检验应符合现行国家标准GB 50028的有关规定。 检验方法: 检查设备铭牌、产品说明书和设计文件。 5.6烟道的检验 5.6.1烟道的设置及结构的检验必须符合用气设备的要求或符合设计文件的规定。 检验方法: 观察和查阅设计文件。 5.6.2烟道抽力应符合现行国家标准GB 50028的有关规定。 检验方法:

压力计测量。 5.6.3防倒风装置(风帽)应结构合理。 检验方法: 观察和查阅有关资料。 5.6.4水平烟道的长度应符合现行国家标准GB 50028的有关规定。 检验方法: 观察、尺量和查阅设计文件。 5.6.5水平烟道应有 0.01坡向用气设备的坡度或符合设计文件规定的坡度。 检验方法: 观察和用水平尺测量。 5.6.6用镀锌钢板卷制的烟道的检验应符合下列规定: 1卷缝均匀严密,烟道顺烟气流向插接,插接处没有明显的缝隙,没有明显的 弯折现象; 2检查数量: 居民用户抽查20%,但不少于5处,商业及工业用户为全部;3检验方法: 观察。 5.6.7用钢板铆制的烟道的检验应符合下列规定: 1铆接面平整无缝隙,铆接紧密牢固,表面平整,铆钉间隔合理,排列均匀整

岩石常三轴试验中应变测量技术样本

岩石常规三轴试验中位移和应变测量技术 哑咣嘿

1 岩石常规三轴试验 随着现代化经济进程, 基础设施的完善, 工程建筑的兴盛、新型材料的应用、地质灾害频发、环境保护的倡导。三轴试验已经广泛应用于岩土工程、建筑材料、地质灾害研究与应用等领域。在众多的三轴试验当中, 常规三轴压缩试验是最为基础也是应用最为广泛的试验。特别在岩土工程领域, 岩石三轴试验承担着边坡稳定、巷道(隧道)围岩维护等与岩石品质密切相关的科学研究和工程应用的重任。 1.1 常规三轴压缩试验 三轴压缩试验一般分为常规三轴压缩试验( 又称假三轴压缩试验) 和真三轴压缩试验, 其中前者的试样处于等侧向压力的状态下, 而后者的试样处于三个主应力都不相等的应力组合状态下。一般情况下岩石所处环境中水平方向压力相当, 只有竖直方向上存在较大差异, 本文所讨论的是常规三轴压缩试验。 常规三轴试验用圆柱或棱柱试件进行测试, 试件放在试验舱中轴线处, 一般使用油实现对试件侧向压力的施加, 用橡胶套将试件与油隔开。轴向应力由穿过三轴室顶部衬套的活塞经过淬火钢制端面帽盖施加于试件之上。经过贴在试件表面的电阻应变片能够测量局部的轴向应变和环向应变[1]。 根据《工程岩体试验方法标准》[2]中的三轴压缩试验为强度

试验。由不同侧压条件下的试件轴向破坏荷载计算不同侧压条件下的最大主应力, 并根据最大主应力及相应施加的侧向压力, 在坐标图上绘制莫尔应力圆; 应根据莫尔—库仑强度准则确定岩石在三向应力状态下的抗剪强度参数, 应包括摩擦系数和粘聚力c值。 试验机的发展由早期简单的篮子盛有重物加载到杠杆系统加载再到液压加载, 经历了近5 个世纪。20 世纪30 年代到60 年代, 人们在为增加压力机的刚度而努力, 直到出现了液压伺服技术, 并结合提高试验机的刚度才形成了能够绘制材料全应力-应变曲线较为成熟的技术[3]。 1.2 液压三轴试验机

岩体力学实验

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.J216型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnh< 50 mnh< 100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2.加工精度: a平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5- 1 所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b直径偏差:试样两端的直径偏差不得大于0.2mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持一定的湿度,但试样不得接触水面 四?电阻应变片的粘贴 1. 阻值检查:要求电阻丝平直,间距均匀,无黄斑,电 阻值 一般选用120欧姆,测量片和补偿片的电阻差值不超 过 0.5 ◎ 2. 位置确定:纵向、横向电阻应变片粘贴在试样中部, 纵 向、横向应变片排列采用T ”形,尽可能避开裂隙,节理 等弱面。 3. 粘贴工艺:试样表面清洗处理 -涂胶一贴电阻应变片 -固化 处理一焊接导线一防潮处理。 五?实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风 化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方 向测量直径计算平均值。 缝隙 图5-2试样轴向偏差度检测示意图 图5-3电阻应变片粘贴

压力管道的强度及严密性试验

压力管道的强度及严密性试验 相关标签: ?强度 ?压力管道 ?严密性 (1)压力管道在全部实施回填前应进行强度及水密性试验。管 道强度及水密性试验应采用水压试验法进行试验。水压试验前,除接日外。管道两侧及管顶以上回填土高度不应小于0.5m;管径大于 DN900的钢管道,应控制管顶的竖向变形。管道在水压试验合格后,应及时回填其余部分土。 (2)在管道水压试验前,应编制包括后背及堵板、进水管路、 排气孔、加压及测压设备、排水疏导、升压分段划分、试验管段稳定和试验安全措施等在内的试验设计。 (3)管道水压试验的分段长度不宜大于1. 0km,非金属压力 管道的试验段长度宜更短些。 (4)试验管道在水压试验中将产生较大的管端推力,管段的后 背应设在非扰动土或人工后背上;当土质松软时,应采取可靠的加固措施。后背墙面应平整,并与管道轴线相垂直。 (5)水压试验时,若采用弹簧压力计其精度不应低于1. 5级, 最大量程为试验压力的1. 3~1.5倍,表壳公称直径不得小于150mm,使用前须进行校正;水泵,压力计应安装在试验段下游的端部与管道轴线垂直的支管上。 (6)管道水压试验前应对管道安装进行合格性检查,管配件的 支墩及锚固设施须达设计强度,未设支墩及锚固设施的管件,应采取

加固措施,管渠的混凝土强度应达到设计规定,试验管段所有敞口应封堵严实,不得渗水,此外,试验管段不得采用阀门作堵板,不得有消火栓、水锤消除器及安全阀等附件。 (7)试验管段灌满水后.宜在不大于工作压力条件下,于试压前进行充分浸泡。铸铁管、球墨铸铁管和镶管无水泥砂浆衬里浸泡时间不少于24h;有水泥砂浆衬里浸泡时间不少于48h预应力、自应力混凝土管及现浇钢筋混凝土管渠,管径小于或等于1000mm时,浸 泡时间不少于48h:管径大于1000mm时,则不少于72h. (8)在管道试压升压时,管道内应排除积气,升压过程中,如发现压力计显示异常,且升压较缓时,应重新排气后再行升压。试验升压应分级升压,每级升压后应及时检查后背、支墩、管身及接口,无异常后,再继续后级升压。水压试验过程中须采取必要的保护安全措施,并严禁在试压过程中对管身、焊缝和接口进行敲打或修补。修补应在管段卸压后进行。

承压设备的强度试验和严密性试验

承压设备的强度试验和严密性试验 本章适用于同时具备下列条件的承压设备和强度试验和严密性试验: a.工作压力为正压。 b.工作介质为气体或最高工作温度低于标准沸点的液体。 2.8.1承压设备应作强度试验和严密性试验,但对于设计无强度试验要求或同时具有下列条件的承压设备,可不作强度试验,仅作严密性试验: a.在制造厂已作过强度试验,并具有合格证; b.外表无损伤痕迹。 2.8.2强度试验应采用液压法进行,如设计规定采用气压法或因设备结构及操作条件限制只能采用气压法时,则必须有可靠的安全措施。 2.8.3需作强度试验的承压设备,其严密性试验应在强度试验合格后进行。设备的介质为液体时,严密性试验应采用液压法;设备的工作介质为气体或易燃、有毒介质时,严密性试验应采用气压法。 2.8.4强度试验和严密性试验的试验介质应符合下列要求: a.用水作试验介质时,水质应洁净;当设备材料为奥氏体不锈钢时,水中的氯离子含量不得超过25ppm. b.用压缩空气作试验介质时,压缩空气应洁净. c.设备有禁油要求时,试验介质严禁含有油脂.

d.试验介质的温度不得低于50C;对于材质有冷脆倾向的承压设备,应根据材质的脆性转变温度确定试验介质的最低温度,以防脆裂. 2.8.5试验使用的压力表,应经校验合格后并有封印且在校验合格的有效期内;压力表的表盘刻度极限值为试验压力的1.5~3倍,最好选用2倍;压力表的精度:对于试验压力小于16 kgf/cm2的 2.5级;对于试验压力等于或大于16 kgf/cm2的应不低于1.5级;压力表的表盘直径应不小于100mm。2.8.6强度试验的试验压力和持压时间应符合下表的规定. 对于壁温等于或大于2000C的承压设备,其强度试验压力P t T 应按下表规定的试验压力P T乘以[σ]/[ σ]t,即 式中P t T_____壁温等于或大于2000C的强度试验压力,kgf/cm2 P T____壁温小于2000C的强度试验压力(见表26),kgf/cm2 [σ ]____试验温度下材料的许用应力, kgf/cm2 [σ]t____设计工作温度下的许用应力, kgf/cm2 当[σ ]/ [σ]t之比值大于1.8时取1.8. 2.8.7强度试验升压分级逐步、缓慢进行,无异常情况方可继续升压,在达到规定的试验压力的持压时间后,将压力降至工作压力,对被试验的设备作检查,不得有异常变形现象。

水压试验的全过程

1.一般要求 管道安装完毕后,应按设计要求对管道系统进行压力试验。按试验的目的可分为检查管道力学性能的强度试验、检查管道连接质量的严密性试验、检查管道系统真空保持性能的真空试验和基于防火安全考虑而进行的渗漏试验等。除真空管道系统和有防火要求的管道系统外,多数管道只做强度试验和严密性试验。管道系统的强度试验与严密性试验,一般采用水压试验,如因设计结构或其他原因,不能采用水压试验时,可采用气压试验。 (1)压力试验应符合下列规定: 1)压力试验应以液体为试验介质。当管道的设计压力小于或等于0.6MPa时,也可采用气体为试验介质,但应采取有效的安全措施。脆性材料严禁使用气体进行压力试验。 2)当现场条件不允许使用液体或气体进行压力试验时,经建设单位同意,可同时采用下列方法代替: A、所有焊缝(包括附着件上的焊缝),用液体渗透法或磁粉法进行检验; B、对接焊缝用100%射线照相进行检验。 3)当进行压力试验时,应划定禁区,无关人员不得进入。 4)压力试验完毕,不得在管道上进行修补。 5)建设单位应参加压力试验,压力试验合格后,应和施工单位一同按规范规定填写管道系统压力试验记录。 (2)压力试验前应具备的条件: 1)试验范围内的管道安装工程除涂漆、绝热外,已按设计图纸全部完成,安装质量符合有关规定。 2)管道上的膨胀节已设置了临时约束装置。 3)试验用压力表已校验,并在周检期内,其精度不得低于1.5级,表的满刻度值应为被测压力的1.5~2倍,压力表不得少于2块。 4)符合压力试验要求的液体或气体已经备齐。 5)按试验的要求,管道已经固定。 6)对输送剧毒流体的管道及设计压力大于等于10MPa的管道,在压力试验前,下列资料已经建设单位复查: A、管道组成件的质量证明书; B、管道组成件的检验或试验记录; C、管子加工记录; D、焊接检验及热处理记录; E、设计修改及材料代用文件。 7)待试管道与无关系统已用盲板或采取其他措施隔开。 8)待试管道上的安全阀、爆破板及仪表元件等已经拆下或加以隔离。 9)试验方案已经过批准,并已进行了技术交底。 2.水压试验的程序、步骤、方法 水压试验的程序、步骤方法如下: 1)连接。将试压设备与试压的管道系统相连,试压用的各类阀门、压力表安装在试压系统中,在系统的最高点安装放气阀、在系统的最低点安装泄水阀。 2)灌水。打开系统最高点的放气阀,关闭系统最低点的泄水阀,向系统灌水。试压用水应使用纯净水,当对奥氏体不锈钢管道或对连有奥氏体不锈钢管道或设备的管道进行试验

强度试验的一般要求

1,强度试验的一般要求。 (1)管道焊接检验、清扫合格后方能进行强度试验作业,试验压力必须满足设计压力。 (2)管道应进行分段进行压力试验,试验管道分段最大长度宜按表执行管道试压分段最大长度设计压力PN(Mpa)试验管段最大长度(m) PN≤0.410000.4

岩石三轴强度实验细则

试验五岩石三轴剪切强度试验 (一)目的与意义 测定在有限侧压条件下,岩石根据强度及变形特征,并借助三轴实验,结合抗拉,抗压实验结果,确定岩石的极限应力圆包络线(强度包络线)。 (二)定义是指岩石在三向应力作用下,抵抗破坏的能力。 岩石三轴试验是将岩石样品放在三向应力状态下的压力室内,测其强度和变形,通过试验可确定岩石的强度包络线,并计算出内聚力c 和内摩擦系数。 (三)基本原理 岩石室内三轴实验是在三向应力状态下测定和研究岩石试件强度及变形特征的一种室内实验。本实验是在13δδδ<=条件下进行的,即为常规三轴实验。 (一)设备与材料 1. 实验设备:(1)岩石三轴应力实验机;(2)压力室;(3)油泵; (4)岩石钻样机;(5)岩石切样机;(6)岩石磨平机 2. 实验材料:(1)液压油;(2)游标卡尺;(3)乳胶膜;(4)三角尺; (5)量角器;(6)活扳子;(7)螺丝刀;(8)记号笔; (9)钳子;(10)记录纸;(11)标准岩石样品50×100mm ; (12)胶布;(13)电笔。 三轴试验:1、真三轴:1σ>2σ>3σ; 2、假三轴(常规三轴):1σ>2σ=3σ,等围压。 岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必需有保持侧压力稳定的稳压装置。 (二)试验步骤 岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必须有保持侧压力稳定的稳压装置。 1.三轴试验样品数量不少于5块,不同围压1块; 加工精度,测量试件尺寸: 1)尺寸:(1)圆柱体试件直径Φ48~54mm ,高100mm ;

(2)试件直径与高度,或边长之比为1:2.00~2.50。 2)精度:(1)、两端面的平行度最大误差不超过0.05mm ; (2)、在试件整个高度上,直径误差不超过0.3mm ; (3)、端面应垂直试件轴,最大偏差不超过0.25度。 2 .测量好试件尺寸后,用耐油橡胶或乳胶质保护套,能有效防止油液与样品接触。然后放入压力室内,打开排气阀,盖上压帽,拧紧,向压力室注油,直至油液达到预定位置。排静压力室空气,关闭排气阀。(如在三轴条件下测其变形,同试验二变形试验)。 3.侧压力(围压)的选择,应考虑下列条件: ①最小侧压力的选择,应根据工程实际情况,并考虑测向压力装置的精度; ②选定的侧压力需使求出的莫尔包络线能明显的反映出所需要的应力区间; ③适当照顾包络线的各个阶段。 我们选择侧压力5、10、15、20、25MPa 。 4.试验开始,以每秒0.05MPa 的加荷速率施加侧向压力和轴向压力,待到加至预定压力值时,使其保持稳定,然后再以每秒0.8-1.0MPa 的加荷速率施加轴向荷载,直至试件破坏,记录破坏时的最大轴向荷载及侧向压力值。 5.试验结束后,取出试样进行描述,量出最大主应力作用面和破坏面之间的夹角。 (六)资料整理: 目前国内外对于三轴试验成果整理的方法不太统一,国际岩石力学学会和现场标准化委员会在岩石力学试验建议方法中曾对资料整理作出规定。考虑到和国际标准化的一致性,采用国际岩石力学学会的建议方法,用下列方法整理资料: 1、按下式计算不同侧向压力下的轴向应力:A P = 1σ×10 (5-1) 式中:1σ——不同侧压力下的应力值 MPa ; P ——破坏时的最大轴向荷载 N 或kN ; A ——试件横截面积 cm 2。 2、根据轴向应力1σ和侧向应力3σ求出岩石的φ,c 值,以)(2 131σσ-为纵坐

测定岩石三轴压力条件下的强度与变形参数

测定岩石三轴压力条件下的强度与变形参数 一、基本原理 岩石三轴压力条件下的强度与变形参数主要有:三轴压缩强度、内摩擦角、内聚力以及弹性模量和泊松比。室内三轴压缩实验是将岩石试样放在一密闭容器内,施加三向应力至试件破 坏,在加压过程中同时测定不同荷载下的应变值。绘制( 13 σ-σ)-ε应变关系曲线以及 强度包络线,求的岩石的三轴压缩强度( 1 σ)、内摩擦角(?)、内聚力(c)、以及弹性模量(E)和泊松比(μ)等参数。 根据应力状态的不同,可将三轴压缩实验分为真三轴压缩实验,应力状态为: 1230 σ≠σ≠σ>,及假三轴压缩实验(或称等测压三轴压缩实验)应力状态为 1230 σ>σ=σ>,本实验采用假三轴压缩试验。 二、仪器设备 1、岩石三轴应力试验机,该试验机由如下几部分组成。 (1)三轴应力室(图3——17):由压力室缸体、进油口、传力压杆等组成。要求穿力杆端面光滑平整,平整度应为0.005mm。 (2)轴向加载系统:由主体、电动高压电泵及控制台等组成,要求该系统有足够的吨位,并能连续加荷,另外上、下承压板需互相平行,其中之一配有球面座,轴向荷载约5000kN。(3)侧向加载系统:由控制台、电动油泵、增压器和高压输油管组成,该机最大侧向压力可达150MPa。 如无专门的三轴应力试验机,也可以用普通的压力机,配上符合要求的简易三轴应力室和手摇油泵(侧向加载装置)代替。 2试样制备设备:钻石机、切石机、磨石机等。 3变形量测设备:百分表及表座或电阻应变仪,电阻应变片等。 4烘箱、干燥箱、煮沸设备或真空抽气设备。 5其他:卡尺、乳胶套等。 三、操作步骤 1、试样制备 (1)试样规格:采用直径为5cm、高为10cm或直径为10cm,高为20cm的圆柱体。(2)试样加工精度:试样周边应光滑,沿整个高度上的直径误差不超过0.3mm;试样端面不平整小雨0.2mm,两端面不平整度最大不超过0.05mm;试样端面应垂直于试样轴线,其最大偏差不应超过0.25. (3)试件数量:视实验目的、受力方向和含水状态等要求而定,每种受力方向和含水状态需制备5~7块。 2、试样描述和尺寸量测 描述内容包括:岩石名称、结构构造、矿物成分等岩性特点及试件形态、结构面情况及与加荷方向的关系等。 3、试样处理 (1)按实验要求的含水状态进行含水状态处理,方法同实验4. (2)实验前试件的防油处理,步骤如下:首先,在试件表面涂一层(如聚乙烯醇缩醛胶或类似的胶液);待胶液干后,在试件侧面套上耐油乳胶套,对于试件较多或坚硬裂隙不发育

实验五岩石单轴压缩实验DOC

实验五岩石单轴压缩实验 一. 实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600 型液压材料试验机; 5.JN-16 型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三. 试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnrK 50 mnrK 100 mm的立方体,由于岩石松软不能制取标准试样时, 可采用非标准试样,需在实验结果加以说明

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于 0.1mm 检测方法如图5-1所示,将 试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动 试样百分表指针的摆动幅度小于10格。 b 直径偏差: 试样两端的直径偏差不得大于 0.2 mm,用游标卡尺检查。 c 轴向偏差: 试样的两端面应垂直于试样轴线。检测方法如图 5-2所示,将试样放 在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持 一定的湿度,但试样不得接触水面。 纵向、横向应变片排列采用“T”形,尽可能避开裂隙,节 理等弱面。 3. 粘贴工艺:试样表面清洗处理一涂胶一贴电阻应变片一固化处理一焊接导线一防潮 四.电阻应变片 1.阻值 检查- 克电 阻丝平 阻值一般选用 120欧姆, 测量片和补偿片的电阻差值不超过 0.5 Q o 1—百分表2-百分表架3-试样4 1—直角尺2-试样 2.位置确定:纵向、横向电阻应变片粘贴在试样中部, 的粘贴 F 直,间距均匀,无黄斑, 3-水平检测台

高温高压岩石三轴压力试验平台技术参数 一、功能要求 主要用于高压

高温高压岩石三轴压力试验平台技术参数 一、功能要求 主要用于高压-温度-应力-岩石三轴试验,可广泛用于岩石力学各个行业中涉及到多场耦合问题。主要达到的功能有: 1、自动测量、控制、数据采集、处理、绘制曲线及打印曲线报告(抗压强度、围压、轴向变形、径向变形、泊松比、弹性模量等)。 2、完成常温及高温岩石(含软岩)单轴压缩全过程曲线试验。 3、完成常温及高温岩石(含软岩)三轴压缩全过程曲线试验。 4、完成常温及高温岩石(含软岩)单轴压缩蠕变试验。 5、完成常温及高温岩石(含软岩)三轴压缩蠕变试验。 6、完成常温及高温岩石(含软岩)渗流试验。 二.技术要求 (1)主机技术参数

进关证明,否则不予验收。 (2)计算机与软件技术要求 1)计算机:i5处理器,8G内存、2G独立显卡、2T硬盘存储、23寸以上液晶显示器及各种设备所需软硬件 2)能实现力(应力)、变形(应变)、位移(伸长)三种全闭环控制方式,并且达到三种控制方式可以在试验过程中无冲击平滑转换,完成各种试验方法所要求的全自动程序控制试验。 3)能够在试验前后都可录入试样参数和修改试样参数,可以以单根或批量录入试样参数。 4)实时动态显示试验状态,自动采集、存储数据、绘制多种试验曲线、计算试验结果,求取特征值抗压强度、围压、轴向变形、径向变形、泊松比、弹性模量)。 5)全程的应力、应变控制完全符合国际、国家、行业标准中要求的控制方式。曲线可局部

放大或缩小,同组试验曲线可叠加对比。 6)试验结果可以任意存取,对曲线进行再分析;包括数据重新计算、曲线重现等。 三.售后服务 (1)合同签订后,180天内完成交货、安装、培训工作,不能按承诺时间交货需按相关规定缴纳违约金。 (2)整机原厂免费质保2年以上,有专职的维修和培训团队并提供培训质保方案. (3)服务响应时间8小时以内,从保修至维修完毕不超过72小时。 (4)超出质保期,提供免费电话咨询服务,维修收取成本费。 四.其他要求及注意事项 (1)投标设置最高限价,超出限价的,视为废标。 (2)设备安装运输过程中,引起拆墙、拆门及还原等费用由投标企业全部承担;实验室改造(1次以内)引起的设备拆装、运输、调试等费用由投标企业全部承担,投标企业可以和设备需求单位联系实地考察。 (3)投标企业中标签订合同后,须向学校财务缴纳合同额5%的质量保证金,一年后无质量问题返还。 (4)投标人对所投设备有详尽的配置清单,对主要、核心部件的选材、供应商等信息有详细说明,且技术参数响应表与招标要求一一对应,描述清晰。

实验五岩石单轴压缩实验

实验五岩石单轴压缩实 验 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3.试样数量:每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d,以保持一定的湿度,但试样不得接触水面。 四. 超过 1—百分表 2-百分表架 3-试样 4 2. 部,纵向、横向应变片排列采用“┫”形,尽可能避开裂 隙,节理等弱面。

压力管道的强度试验压力计算

压力管道的强度试验压力计算 摘要:在当今的工业生产过程中,压力管道是非常重要的生产设备,对工业生产的安全性、生产质量以及生产效率均有非常深远的影响。在本文中,以工业生产压力管道的选用实例作为分析基础,对压力管道的强度通过试验压力的方式进行了计算,了解了在选择压力管道的时候应该注意的要点,通过量化的手段,让我国工业生产中的压力管道在选择上更为合适,提高压力管道的工作质量。 关键字:压力管道强度试验压力计算 受到压力管道在工业生产过程中具有关键性地位的影响,在当今进行压力管道的安装是,通常会进行管道强度的试验,来对压力管道是否合格进行较为准确的量化判断。特别是在一些大型工业的压力管道施工过程中,基本上设计单位并不会直接给出强度试验中的压力大小,而需要施工单位进行自主计算。通过对强度试验的准确计算,才能够更好地保证压力管道的质量。本文为了更为直观地进行压力管道的强度试验压力计算,选取了我国某石化企业中压力管道施工过程中的强度试验进行分析,展开了相关的计算方法以及压力管道在选用与安装过程中的注意要点。 一、工程概况 该项压力管道工程位于我国东北某石油化工企业,压力管道系统是整个企业生产设备施工中非常重要的一部分,可维持整个石化生产过程的进行。而在施工之前,为了确保压力管道的施工质量,需要在对强度试验的压力进行计算,以便于最终确定合适的压力管道施工方案。压力计算所得到的结果,将提交该石化企业、施工监理方以及当地的相关技术质量监督部门进行审核确认,之后再开始正式的施工工作。由于对管道的压力计算过程较为繁琐,因此需要将其列出来作为管道施工的一部分,进行单独的考虑,提高压力管道的结构稳定性。已知的数据包括了化工生产的一些常规设计指标,比如说管道系统的设计温度为300℃左右,设计管道工作压力大小为9.5MPa左右,压力管道所提供的材料为20G的材质,管道的公称压力为16MPa。通过这几项基本条件,可以开始压力管道强度试验的压力计算。 二、压力管道强度试验压力计算内容 在得到了压力管道工程的施工背景以及施工目标之后,为了提高施工效率以及保证施工质量,在施工之前即需进行强度试验。在强度试验中,对压力的计算成为了非常重要的一项工作,直接关系到管道的正常工作运行。为了保证管道的强度试验压力计算的准确性,需要根据实际情况,考虑到多方面的因素。 1.压力计算中可能使用到的设计参数 3.计算结果

岩石三轴压缩及变形试验打印

辽宁工程技术大学 岩石三轴压缩及变形试验 岩石三轴压缩及变形试验 一、概述 岩石三轴试验,是在三向应力状态下测定岩石的强度和变形的一种方法。本指导书介绍的是侧向等压的三轴试验。 本规定可用于测定烘干和饱和状态的的试样,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~110 C 下烘24h 。 (2)饱和状态的试样,按7.1规定的进行饱和。 为了便于资料分析,在进行三轴试验的同时,应制样测定岩石的抗拉强度和单轴抗压强度。 二、试样备制 (1)试样可用钻孔岩心或坑槽探中采取的岩块,试样备制中不允许人为裂隙出现。 (2)试样为圆柱体,直径不小于5cm ,高度为直径的2~2.5倍。试样的大小可根据三轴试验机的性能和试验研究要求选择。 (3)试样数量,视所要求的受力方向或含水状态而定,每种情况下必须制备5~7个。 (4)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm 。两端面的不平行度最大不超过0.05mm 。端面应垂直于试样轴线,最大偏差不超过0.25度。 三、试样描述 试样描述见7.3。 四、主要仪器设备 (1)试样加工设备,量测工具与有关检查仪器见7.4.1,7.4.2。 (2)电阻应变片、粘结剂、万用表等。 (3)电阻应变仪(或数据采集器)、压力传感器、引伸仪等。除用电阻应变仪外,也可用精度能达到0.1 %和量程能满足变形测定需要的其它仪表。 (4)三轴应力试验机(见图11)。 五、试验程序 5.1试样的防油处理 首先在准备好的试样表面上涂上薄层胶液(如聚乙烯醇缩醛胶等),待胶液凝固后,再在试样上套上耐油的薄橡皮保护套或塑料套,与试样两端的密封件配合,以防止试样试验中进油及试样破坏后碎屑落入压力室。 5.2安装试样 把密封好的试样放置于保护筒中,将压力室顶部的螺旋压帽组件卸下并吊装在横梁上升起,然后将放置于保护筒中的试样,用卡杆吊放入三轴试验机的压力室内。保护筒的下端有一凸出的球柱,此时要注意使球柱对准压力室底部中心的圆销孔,并放置平稳。试样在压力室中安置好后,即可向压力室内注油,直至油液达到预定的位置为止,然后用螺旋压帽组件封闭压力室。 5.3安装测量变形仪表 (1)用测微表或位移传感器适用于测定试样的纵向变形,测表可按装在压力室

相关文档
最新文档