橡胶颗粒沥青混合料降噪特性研究综述

橡胶颗粒沥青混合料降噪特性研究综述
橡胶颗粒沥青混合料降噪特性研究综述

沥青混合料及其力学性能分析

沥青混合料及其力学性能分析 摘要:目前我国高等级公路主要采用沥青路面结构形式,沥青混合料性能的好 坏直接影响到公路的服务功能和使用年限。现代重载交通要求沥青混合料具有优 良的高温稳定性和其它性能;为提高沥青混合料的性能、实现混合料性能的优化,近年来先后出现了大量的新材料和新理论。本文首先对沥青混合料的级配构成原 理进行了分析,其次对其力学性能做出了分析。 关键词:沥青混合料力学性能级配构成 1引言 随着生产力的发展,现代道路工程的特点反映出愈来愈鲜明的功能化。为了 满足日趋复杂、高效的现代化生产过程和日益上涨的生活水平所提出的各种功能 要求,道路工程的使命愈来愈艰难。从这个意义上看,现代道路工程面临着一场 革命作为道路工程中广泛使用的一种复合材料,沥青混合料是由沥青、矿粉、集料、等多种具有不同力学特性、不同几何形状尺寸的材料所构成的具有多相结构 的非各向同性材料。本文主要对沥青混合料及其力学性能进行了研究,希望能够 为沥青混合料的技术发展提供帮助。 2新型沥青混合料的级配构成原理分析 2.1沥青玛蹄脂碎石混合料(SMA) 沥青玛蹄脂碎石(简称SMA)是一种由沥青、矿粉及纤维稳定剂组成的沥青 玛蹄脂混合料填充于间断级配的矿料骨架中所形成的沥青混合料。其4.75mm以 上的集料含量在70%-80%左右,同时小于0.075mm的填料含量通常达到10%,而0.6-4.75mm的颗粒通常仅有10%左右,而AC-I型混合料的0.6-4.75mm的颗粒通 常达30%。因此SMA混合料是典型的由填料填充在粗集料形成的骨架空隙中形成的骨架密实结构。 2.2多碎石沥青混凝土(SAC) 多碎石沥青混凝土(SAC;)是由我国沙庆林院士于1988年提出的一种沥青 混凝土结构形式。其定义为;4.75mm以上的碎石含量占主要部分的密实级配沥 青混凝土。 SAC是在总结我国传统的工型和II型沥青混凝土的有缺点的基础上提出的。 我国传统的工型沥青混凝土空隙率为设计3-6%,因此耐久性好、透水性小,但表面构造深度较小;同时由于细集料试用较多,粗集料悬浮于沥青和细集料所组成 的密实体系中,因此混合料的稳定性随温度的增加下降明显,从而易出现车辙等 病害。 2.3大粒径沥青混凝土(LSAM) 根据以有的研究成果,LSAM的的典型特点是颗粒尺寸大、粗集料含量高、粗集料接触程度高和主骨架稳定性高。LSAM中粗集料的排列特征和级配对混合料 的体积特征有着较大的影响,甚至起着决定性的作用,也即粗集料间必须充分形 成石一石接触的骨架特征。对于LSAM的骨架特征有两个重要指标;骨架稳定度 和骨架接触度。 2.4SuperPAVE沥青混合料 SuperPAVE推荐的级配采用了0.45次方级配图,此级配图是以Fuller最大密 实度理论(n=0.45)为基础,即此图的对角线即为最大密实度线,级配曲线越靠 近对角线,混合料的密实度越大。为便于级配的选择和创新,SuperPAVE摒弃了 传统的对各个筛孔的通过率都严格控制的方法,而改为仅对关键筛孔(如公称最

沥青混合料的疲劳试验及其影响因素

沥青混合料的疲劳试验及其影响因素 摘要:疲劳特性的研究方法概括起来包括两种即现象学法和力学近似法。应用现象学法主要是进行疲劳试验,得出疲劳寿命与施加应力或应变的关系。力学近似法是将应力状态的改变作为开裂、几何尺寸及边界条件、材料特性及其统计变异性的结果来考虑,并对裂缝的扩展和材料中疲劳的重分布所起的作用进行分析,从而它有助于人们认识破坏的形成和发展的机理。 关键词:沥青混合料疲劳特性现象学法力学近似法 1 概述 路面使用期间,在气侯环境因素和车轮荷载的重复作用下,损伤逐渐累积,路面结构强度逐渐下降,当荷载作用次数超过一定次数之后,在荷载作用下路面内产生的应力就会超过性能下降后的结构抗力,使路面出现裂纹,产生疲劳断裂破坏。这是由于材料内部存在缺陷或非均匀性,引起应力集中而出现微裂隙,应力的反复作用使微裂隙逐渐扩展、汇合,从而不断减少有效的承受应力的面积,造成材料的刚度和强度逐步下降,最终在反复作用一定次数后导致破坏。材料抵抗疲劳破坏的能力,可用达到疲劳破坏时所能经受的重复应力大小(或称疲劳强度)和作用次数(称为疲劳寿命)来表示。疲劳破坏是当前沥青路面破坏的主要形式之一。沥青路面的耐久性是指沥青路面在使用过程中承受各种外界因素的作用,其性质能保持稳定或较小发生变化的特性。沥青混合料的抗疲劳性能是评价沥青路面耐久性的一个重要指标。 2沥青混合料的疲劳试验 疲劳破坏作为沥青路面的三大破坏形式之一,人们对其试验研究方法给予了很大的关注,归纳起来可以分为四类:一是实际路面在真实行车荷载作用下的疲劳破坏试验,如美国的AASHO试验路,历时三年才完成;二是足尺路面结构在模拟行车荷载作用下的疲劳试验,包括环道试验和加速加载试验,如南非的重

泡沫沥青混合料的特性

文章编号:1671-2579(2003)03-0093-04 泡沫沥青混合料的特性 拾方治,吕伟民 编译 (同济大学,上海市 200092) 摘 要:根据国外有关试验研究,介绍了泡沫沥青混合料的组成、试件的不同成型方法 及有关泡沫沥青混合料性质的试验,并通过对各种试验结果的分析,得出泡沫沥青混合料的 一些特性。 关键词:泡沫沥青混合料;冷再生;特性研究 就地冷再生工艺是使用专业道路再生机械将旧路面材料破碎,注入稳定剂(如石灰、水泥、乳化沥青和泡沫沥青等)以改善再生材料的结构特性。就地冷再生常用泡沫沥青作为稳定材料。泡沫沥青(或膨胀沥青)是空气、水和热沥青的混合物。 本文通过介绍澳大利亚Griffith大学工学院最近有关泡沫沥青混合料的研究成果,初步总结出泡沫沥青混合料的特性,并希望有助于国内在泡沫沥青方面的研究与应用。 1 泡沫沥青混合料的组成 1.1 集料 国外研究表明,用于泡沫沥青稳定的集料范围从优质的碎石到低等级骨料。破碎的混凝土、建筑碎石、炉渣和纯净集料都能与泡沫沥青较好地粘合,而其中一个关键因素就是要有如图1所示的级配曲线。通过试验发现符合图中区域A的材料,其泡沫沥青稳定适用于重交通道路;符合区域B的材料适用于轻交通道路,而且它可以通过加入粗集料调整到区域A;区域C 的材料因缺少石屑而不适合作泡沫沥青稳定。 1.2 泡沫沥青 膨胀率(发泡倍数)和稳定性(持续时间)是泡沫沥青的两个主要性能指标。膨胀率是指在发泡状态下沥青体积与未发泡状态下体积之比;稳定性是指泡沫沥青达到最大体积后缩小到最大体积之半的持续时间。软质沥青通常具有较好的发泡特性。然而沥青的选择很大程度上受环境温度的影响,通常认为最好的发泡效果是使膨胀率和稳定性都达到最优。沥青用量范围的上、下限分别由混合料稳定性损失和水敏感性加以限制。粘结料的最佳含量一般与材料的级配尤其是石屑在混合料中的含量有关,通常为3%~4%左右。此外,为了达到一定发泡性能所需用水量与所用沥青类 型有关。 图1 泡沫沥青混合料集料分级说明 1.3 添加剂 如果再生材料中石屑不足,那么加入水泥或石灰添加剂则有助于加快沥青的分散作用。值得注意的是通过加入一定的表面活性添加剂,只需60s左右的持续时间就能达到15以上的发泡倍数。 2 泡沫沥青稳定料击实 确定泡沫沥青稳定材料的最佳压实度比普通沥青混合料复杂得多,因为这里使用了两种润滑剂(水和沥 第23卷 第3期 2003年6月 中 外 公 路 93收稿日期:2002-10-31

沥青发泡效果与泡沫沥青混合料性能的相关性

第11卷第5期2008年10月 建筑材料学报 JOURNAI。OFBUII.DINGMATERIAI。S V01.11,NO.5 OCt.,2008 文章编号:1007—9629(2008)05一0555一06 沥青发泡效果与泡沫沥青混合料性能的相关性 栗关裔,李立寒 (同济大学道路与交通工程教育部重点实验室,上海200092) 摘要:通过室内发泡试验,对沥青发泡效果的影响因素和变化范围进行了评价;制备了不 同发泡效果的泡沫沥青混合料,探讨了发泡效果与泡沫沥青混合料性能的相关性;通过模 拟沥青混合料拌和试验过程,分析了拌和过程与集料对沥青混合料发泡效果的影响因素; 提出了沥青发泡效果评价指标的建议值,以指导泡沫沥青冷再生技术的工程应用. 关键词:泡沫沥青;发泡效果;膨胀比;半衰期;劈裂强度 中图分类号:TU528.42文献标识码:A RelationshipbetweenAsphaltFoamingEffect andFoamedAsphaltMixturePerformance LIGuan—yi?L工Li—han (KeyLaboratoryofRoadandTrafficEngineeringofMinistryofEducation。 TongjiUniversity,Shanghai200092,China) Abstract:First,influencingfactorandchangingrangeofasphaltfoamingwereevaluatedbylabo—ratorytest.Second,foamedasphaltmixturewaspreparedwithdifferentfoamingrateandtheirphysicalandmechanicalproperties weretestedforclarifyingtherelationshipbetweenfoamingrateandfoamedasphaltmixture.Third,mixingprocessoffoamedasphaltmixtureWaSsimulatedtostudyhowmixingandmovingaggregatesaffectedasphaltfoaming.Finally,propositionalval—ueoffoamedasphaltevaluationindexisindicatedasitsapplicationguidance. Keywords:foamedasphalt;foamingeffect;expansionratio;halflife;indirect tensilestrength 在高温沥青中喷入压缩空气和水后,迅速汽化的水微粒可在沥青内部形成众多蜂巢状膨胀空气室,导致沥青的体积急剧膨胀,粘度降低,使其可以直接与常温集料进行拌和,从而实现沥青混合料的冷法施工[1’2].沥青的发泡效果与泡沫沥青混合料的施工和易性关系密切,也会对泡沫沥青混合料的性能产生影响,是泡沫沥青冷再生的关键技术之一. 目前,评价沥青发泡效果的主要技术指标为膨胀比和半衰期.前者是指沥青发泡时的最大体积与沥青原体积的比值,沥青的膨胀比越大,施工和易性越好;后者是指沥青发泡达到最大体积时起至泡沫消散到最大体积一半时所需的时间(s),半衰期越长,沥青泡沫衰减越慢,则施工中能提供的有效拌和时间越长.为了保证泡沫沥青混合料的生产质量,应同时对膨胀比和半衰期提出要求.为此,一些学者和机构通过沥青发泡试验,对发泡效果评价指标提出了相应的要求,具体数值见表1.由表1可见,目前,国内外对沥青发泡效果的要求不尽相同,膨胀比为8~15,半衰期为i0~20S. 收稿日期:2007一10--18}修订日期:2007—11—14 作者简介:栗关膏(1984一),男,河南驻马店人,同侪大学硕士.E-mail;liguanyi2001@163.coIll 万方数据

浅析沥青混合料的技术性能和标准

2011年第8期(总第210期) 黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI No.8,2011(Sum No.210) 浅析沥青混合料的技术性能和标准 攸立准 (衡水公路工程总公司) 摘 要:在工程实践中,会出现各项性能要求之间的矛盾情况,有时会顾此失彼,因此在设计和施工过程中要因地制宜,抓住主要矛盾,深入细致地对各项性能指标的影响因素按照工艺施工阶段进行质量控制。下面简要对沥青混合料的技术性质和标准进行阐述。关键词:沥青混合料;技术性质;标准;要求中图分类号:U416.217 文献标识码:C 文章编号:1008-3383(2011)08-0069-01 收稿日期:2011-04-28 1高温稳定性 1.1车辙的形成机理及影响因素 (1)失稳型车辙 这类车辙是由于沥青路面结构层在车轮荷载作用下,内部材料流动,产生横向位移而发生,通称集中在轮迹处。 (2)结构型车辙 这类车辙是由于路面结构在交通荷载作用下产生整体 永久变形而形成, 主要是由于路基变形传递到面层而产生。(3)磨耗型车辙 由于沥青路面结构顶层的材料在车轮磨耗和自然环境匀 速下持续不断的损失而形成。分析以上原因, 影响沥青路面车辙的因素主要有集料、结合料、混合料类型、荷载、环境等。此 外,压实方法会直接影响混合料的内部结构,从而产生车辙。1.2混合料稳定性的评价方法 影响沥青混合料高温稳定性的主要因素有沥青的用量、沥青的粘度、矿料的级配、矿料的尺寸、形状等。提高路面的高温稳定性,可采用提高沥青混合料的粘结力和内摩擦阻力的方法,增加粗骨料含量可以提高沥青混合料的内摩阻力。适当提高沥青材料的粘度,控制沥青与矿料比值,严格控制 沥青用量,均能改善沥青混合料的粘结力。这样可以增强沥 青混合料的高温稳定性。 1.3沥青路面车辙的防治措施 对于失稳型车辙,可以通过以下方法减缓:确保沥青混合料中含有较高的经过破碎的集料;集料中要含有足够的矿粉;大尺寸集料要具有较好的表面纹理和粗糙度;集料级配中要含有足够的粗颗粒;沥青结合料要有足够的粘度;集料颗粒表面的沥青膜要具有足够厚度,确保沥青与集料间的粘聚力。 对于结构型车辙通过以下方法可以减缓:确保基层设计满足工程实践要求;基层材料满足规范要求,含有较多经破碎的颗粒;混合料内含有足够的矿粉;基底应充分的压实,工后不产生附加压密;路基压实后应满足规范要求;磨耗型车辙可通过交通管制、改善混合料级配来防治。2低温抗裂性 沥青混合料随着温度的降低,变形能力下降。路面由于低温而收缩以及行车荷载的作用,在薄弱部位产生裂缝,从而影响道路的正常使用。因此,要求沥青混合料具有一定的低温抗裂性。 沥青混合料的低温裂缝是由混合料的低温脆化、低温缩裂和温度疲劳引起的。混合料的低温脆化是指其在低温条 件下, 变形能力降低;低温缩裂通常是由于材料本身的抗拉强度不足而造成的;对于温度疲劳,因温度循环而引起疲劳破坏。 沥青路面低温开裂受多种因素制约,就沥青材料选择和 沥青混合料设计而言,应注意以下几点:注意沥青的油源,在 严寒地区采用针入度较大, 粘度较低的沥青,但同时也应满足夏季的要求;选用温度敏感性小的沥青有利于减少沥青路面的温度裂缝;采用吸水率低的集料,粗集料的吸水率应小于2%;采用100%轧制碎石集料拌制沥青混合料;控制沥青用量在马歇尔最佳用量0.5%范围内对裂缝影响小,但同时也应保证高温稳定性;采用应力松弛性能好的聚合物改性沥 青;掺加纤维, 使用改性沥青。3耐久性 3.1沥青路面的水稳定性 经常会看到,路面在水损害后会出现松散、剥离、坑洞等病害,严重影响路面的使用。沥青路面的耐久性主要依靠沥青与集料之间的粘附程度,水和矿料的作用破坏了沥青与集料之间的粘附性,是影响沥青路面耐久性的主要因素之一。而影响沥青与集料间粘结力的因素包括沥青与集料表面的界面张力、沥青与集料的化学组成、沥青粘性、集料的表面构造、集料的空隙率、集料的清洁度及集料的含水量、集料与沥青拌和的温度。 3.2沥青路面的耐老化性 另一个影响沥青混合料耐久性的是热老化。沥青材料在拌和、摊铺、碾压过程中以及沥青路面的使用过程中都存在老化问题。老化过程可分为施工中的短期老化和道路使用中的长期老化。 (1)沥青短期老化 沥青短期老化可分为三个阶段。 ①运输和储存过程的老化。沥青从炼油厂到拌和厂的热态运输一般在170?左右,进入储油罐,温度有所降低。 调查资料表明,这一过程中沥青老化非常小 。②拌和过程的热老化。加热拌和过程中,沥青是在薄膜 状态下受到加热,比运输过程中的老化条件严酷的多。沥青混合料拌和后,沥青针入度降低到拌和前沥青针入度的 80% 85%。因此,拌和过程引起的沥青老化是严重的,是沥青短期老化的最主要阶段。 ③施工期的老化。沥青混合料运到施工现场摊铺、碾压完毕,降温至自然温度,这一过程中裹覆石料的沥青薄膜仍处于高温状态。沥青混合料在摊铺、碾压和降温期间,沥青热老化进一步发展。 (2)长期老化 混合料中的沥青长期老化是一个漫长而复杂的过程,具有如下特点。 ①沥青路面在使用早期针入度急剧变小,随后变化缓慢,大体发生在 1 4年之间。②沥青老化主要发生在路表与大气接触部分,在深度0.5cm 左右的沥青针入度降低幅度相当大。 ③沥青混合料的空隙率是影响沥青老化的主要原因。④当路面中的针入度减小到35 50之间时,路面容易产生开裂,针入度小于25时路面容易产生龟裂。4抗滑性 用于高等级公路沥青路面的沥青混合料,其表面应具有一定的抗滑性,才能保证汽车高速行驶的安全性。 沥青混合料路面的抗滑性与矿质集料为表面性质、混合料的级配组成以及沥青用量等因素有关。为提高路面抗滑性,配料时应特别注意矿料的耐磨光性,应选择硬质有棱角 的矿料。沥青用量对抗滑性影响也非常敏感, 沥青用量超过最佳用量的0.5%, 即可使抗滑系数明显降低。另外,含蜡量对沥青混合料行滑性有明显影响,我国 《公路工程沥青及沥青混合料试验规程》(JTJ052-93)的《重交通量道路路用石油沥青技术要求》提出,含蜡量应不大于3%,在沥青来源有困难时对下面层路面可放宽至4% 5%。 · 96·

分析水驱导数曲线评价方法

分析水驱导数曲线评价方法 摘要对水驱特征去曲线进行分析,用来对油藏水驱开发动态进行开发和评价,得到地质储量的计算结果。在水驱特征的曲线的累计过程中,将部分信息进行了掩盖,得到了水驱开发动态的及时的评价,导致评判的结论和计算的结果不准确。因此,为了解决这一问题,将导数的敏感性特征加以引入,得到相应的水驱特征的导数的计算方法。经过实例结果表明,水驱特征导数的曲线能够准确方便地评价油藏水效果。 关键词导数曲线;水驱特征;油藏工程 引言 油藏工程中,需要对一些时间和空间的函数的特征变化曲线来对油藏开发进行效果的分析,得到了一些累计的特征函数的指标,水驱特征曲线法进行了油藏开采的过程,具有实用的优点[1]。在实际应用中,利用甲型水驱特征进行油藏水驱开发动态的评价和分析,得到了油藏水驱开发指标和地质的储量的分析。根据水驱的深入开发的原理,甲型水驱特征曲线呈现了直线的特征,在坐标系上由于水驱特征的函数的变动在小范围数据中不敏感,将中后期的开发措施进行了分析和开发,得到了中后期的措施效果,不能将水驱开发动态进行准确的评价,寻求到更加具有敏感性的水驱评价的方法。 1 导数曲线的引入和分析 在石油行业中,压力导数曲线用于解释现代试井的广泛应用,对与导数的函数的敏感性具有很好的解释结果。将水驱特征曲线进行了效果的分析和评价。甲型水驱特征的曲线以累计的油产量为横坐标,累计的产水量形成了纵坐标,对数坐标在开发的中后期呈现出明显的直线段,并且形成了常用的直线斜率,其特征函数方程为: Wv为累计产水量,Np 为累计产油量,a,b为常数。 利用直线段的斜率将水驱地质的储量进行计算,得到了多种的常用的关系式为: 其中,N为当前的水驱地质储量。 在较高的含水阶段,油田单位累计的摻水的水油比为常数,导数的曲线能够反映出当前的生产状况,与整体生产状况对比得到了当前以及中后期的措施效果的独特作用[2]。 在对产水的导数进行计算的时候,采用的数据是月度的产量以及数据,油田的生产不是连续的,计算出来的导数的曲线的波动范围较大,不利于进行评价,

水驱油田开发效果评价方法综述及发展趋势_张继风

第24卷第3期2012年6月 岩性油气藏 LITHOLOGIC RESERVOIRS Vol.24No.3 Jun.2012 水驱油田开发效果评价方法综述及发展趋势 张继风 (中国石油大庆油田有限责任公司勘探开发研究院,黑龙江大庆163712) 摘要:对国内外水驱油田所应用的开发效果评价方法,包括状态对比法、系统动态分析法、模糊综合评判法、灰色系统理论法等进行了评价,分析了各种方法存在的优点和不足,指出状态对比法及模糊综合评判法比较适合油田应用,并对各种评价方法在应用与研究过程中存在的问题和将来的发展趋势进行了较深入的探讨。研究成果对水驱油田开发效果评价方法优选及研究具有一定的指导意义和参考价值。 关键词:水驱油田;开发效果;评价方法;发展趋势 中图分类号:TE341文献标志码:A 0引言 油田开发效果评价贯穿于油田的整个开发过程,是明确挖潜方向、确定调整措施的重要手段。合理而正确地评价油田开发效果,总结经验,吸取教训,以指导油田更加合理、高效地开发,具有极为重要的意义。 综合考虑注水开发油田的开发合理性可以追溯到20世纪50年代初。1955年美国Guthrie等[1]利用多元回归分析法得到预测注水油田的水驱可采储量的经验公式;1967年美国石油学会(API)提出了预测注水油田的水驱可采储量的经验公式,并得到广泛的应用[2]。前苏联从20世纪50年代开始考虑注水油田开发合理性的研究,并与美国油田开发的主要指标进行对比,提出了本国油田注水开发的指标变化范围,同时根据多因素线性相关分析理论,对开发效果的影响因素进行了分析,得出了很多实用的经验性结论,为后来油田开发效果评价奠定了基础。我国从20世纪50年代以来,也开始进行水驱开发效果研究,经过几十年的发展,形成了多种评价方法,大多通过确定一个或多个评价指标并与给定的评价标准进行对比,或者采取将几个评价指标联立并运用数学方法进行综合评判等手段来评价开发效果。当前较为明显的发展趋势是运用各种数学方法,如模糊数学、运筹学、多元统计分析、系统分析等对各种指标或参数进行综合评价,以期得到合理、正确的评价结果。 1评价方法 1.1状态对比法 所谓状态对比法[3]是指将理论(标准)曲线与实际的生产曲线进行对比,根据两者之间偏离情况来进行评价。常用的对比曲线有含水率与采出程度关系曲线、存水率与含水率关系曲线、含水上升率与含水率关系曲线、存水率与采出程度关系曲线等。不同的研究者常常会选择一个或多个指标进行评价分析。其理论曲线的确定主要采用理论计算法、矿场单层注水开采试验分析法、密闭取心检查井资料统计法和国外油田开发资料统计对比法等方法。由于状态对比法简单、明了,得到了广泛的应用[4-6]。 对该方法的改进之一是提出了新的评价指标,如王国先等[7]提出的即时含水采出比或累积含水采出比(用任一时刻的综合含水比或累积综合含水比除以与之相对应的采出程度);卢俊[8]提出的注入倍数增长率(采出单位地质储量的注入孔隙体积倍数增长值),从注水角度来评价和预测油田调整挖潜的效果;王文环[9]提出的应用理想系数、实际采出程度和含水关系曲线与理论采出程度和含水关系曲 文章编号:1673-8926(2012)03-0118-05 收稿日期:2012-03-08;修回日期:2012-04-25 第一作者简介:张继风,(1977-),男,硕士,工程师,主要从事开发规划和油藏工程研究工作。地址:(163712)黑龙江省大庆市让胡路区勘探开发研究院开发规划室。电话:(0459)5095336。E-mail:zhangjifeng@https://www.360docs.net/doc/c56735072.html,

道路沥青混合料的种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐 久;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%

沥青及沥青混合料疲劳性能影响因素

沥青及沥青混合料疲劳性能影响因素 作者:林敏 来源:《装备维修技术》2020年第07期 摘要:近年来,随着我国经济和科技的不断进步,人们对日常生活水平的质量要求越来越高。建筑作为人们日常生活和工作必不可少的一部分,人们对其质量要求也存在着定的关注。为了更好地保证沥青混合材料在使用中的抗疲劳性能,逼着对相关的沥青混合料进行了分析。分析研究发现,不同类型的沥青混合料疲劳寿命是与其应力之间有一定的联系。应力比增加,那么滤镜混合材料疲劳寿命就会随之减少。除此之外,还有一系列的研究发现,都有了一定的结果。 关键词:沥青混合料;疲劳性能;影響因素 在一些桥梁路面的基础施工过程中,沥青材料的使用是必不可少的。但是近年随着行车荷载力等方面的因素,很多沥青路面的强度与以前相比发生了明显的变化。不仅容易出现疲劳破坏,还导致路面的使用寿命及使用性能都得到了破坏。因此,对于我国相关企业和管理部门而言,研究影响沥青混合料疲劳性能的因素,并解决其疲劳寿命带来的影响是一项迫在眉睫的任务。笔者通过研究资料和实际情况,对多种沥青混合料的疲劳性能进行了相应的研究,通过研究认为ARAC—13在自愈合作用后疲劳寿命是最长的。此外,笔者还针对不同的行车荷载和温度作用下沥青路面的疲劳性能,并也对此进行了分析和整理。本次分析和整理主要的目的是为了提高今后沥青混合料在使用中的疲劳性和使用寿命,研究结果仅供参考。 一、原材料和混合料配合比 1、原材料技术性质 (1)沥青 根据实际情况,选取了一项路面工程进行研究。在研究中,选取70号沥青和SBS改性沥青进行加护性质的相关测定。研究结束后我们发现,70号沥青技术性质,无论是在针入度、延度、软化点还是闪点方面均符合相关的规定和标准值。而SBS改性沥青技术在这些方面也与70号沥青技术并无太大的区别。这也叫从一定程度上证明70号沥青在工程建筑使用阶段是符合相关规定和标准的。 (2)粗集料 所谓的粗集料指的是采用玄武岩的材料,这种材料的公称粒径分为两种,分别是5~10和10~15。经过研究分析粗集料的技术性质发现,5~10的针片状测试值与10~15的针片状测

沥青混合料力学性能指标2

10.2 沥青路面材料的力学特性与温度稳定性——这三个你仔细看一下吧 10.2.1 沥青混合料的强度特性 表征沥青混合料力学强度的参数是:抗压强度、抗剪强度和抗拉(包括抗弯拉)强度。一般沥青混合料均具有较高的抗压强度,而抗剪和抗拉强度则较低。因此,沥青路面的损坏,往往是由拉裂或滑移开始而逐渐扩展。 1、抗剪强度(shearing strength) 沥青混合料的剪切破坏可按摩尔一库仑原理进行分析。材料在外力作用下如不产生剪切破坏,则应具备下列条件: τmax< σ tg φ+c (2-4) 式中:τmax — 在外荷载作用下,某一点所产生最大的剪应力; σ — 在外荷载作用下,在同一剪切面上的正应力; c — 材料的粘结力; φ — 材料的内摩阻角; 在沥青路面的最不利位置取一单元体,设其三个方向的主应力为σ1、σ2和σ3,且σ1>σ2>σ3。由于单元体中最不利的剪切条件取决于σ1和σ3,故仅根据σ1和σ3分析单元体的应力状况。图2-17为单元体应力状况的摩尔圆。 图2-17 应力状况摩尔圆图 图2-18 三轴剪切实验装置 1-压力环;2-活塞;3-出水口;4-保温罩;5-进水口;6-接压力盒;7-试件;8-接水银压力计 从图2-17可得: ()φσστcos 2131-= (2-5) ()φφφσσσ2231sin cos 21tg c -+= (2-6)

将式(2-5)、(2-6)代人式(2-4)得: ()()[]c ≤+--φσσσσφsin cos 213131 (2-7a ) ()c tg ≤--φτσφτmax max cos (2-7b) 式(2-7a)或(2-7b)为沥青路面材料强度的判别式。 式左端称为活动剪应力,当活动剪应力等于粘结力c 时,材料处于极限平衡,若大于粘结力c ,材料出现塑性变形。 根据式(2-7a)或(2-7b)可求得沥青路面材料应具有的c 和Φ值。 c 和Φ值可通过三轴剪切试验取得。三轴剪切试验的装置如图2-18所示。 三轴剪切试验所用试件的直径应大于矿料最大粒径的4倍,试件的高与直径之比应大于 2。矿料最大粒径小于25cm 时,试件直径为10cm ,高为20m 。试验时,将一组试件分别在不同侧压力下以一定加荷速度施加垂直压力,直至试件破坏。此时测得的最大垂直压力,即为沥青混合料的最大主应力σ1 ,侧压力即为最小主应力σ3(σ1=σ3)。根据各试件的侧压力和最大垂直压力给出相应的摩尔圆,这些圆的公切线称为摩尔包线,切线与τ轴相交的截距即为粘结力,切线的斜率即为内摩阻角Φ(见图2-19)。 由于温度对沥青混合料的抗剪强度有很大的影响,故试件应在高温条件(65℃或50℃)下进行测试。 粘结力c 和内摩阻角Φ值,也可根据无侧限抗压和轴向拉伸试验取得的抗压强度和抗拉强度来计算: 抗压强度 ??? ??+=242φπctg R (2-8) 抗拉强度 ??? ??+= 242φπtg c r (2-9) 从式(2-8)或(2-9)可得: ??? ??+-=r R r R -1sin φ (2-10) Rr c 5.0= (2-11)

水驱特征曲线

水驱曲线法,是评价天然水驱和人工注水开发油田水驱油效果的分析方法。利用相关水驱特征曲线形态,不但可以预测水驱油田的有关开发指标,还可以预测当油田开发的含水率或水油比达到经济极限条件时的可采储量和采收率,并能对水驱油田的可采储量和原始地质储量作出有效的预测和判断。目前有十几种水驱特征曲线可以用于评估油田的采收率,但总的看来,采用瞬时量描述的水驱特征曲线不如采用累积量描述的水驱曲线,因此,我们主要选用以下几种累计关系水驱特征曲线来测算可采储量。 丙型水驱特征曲线是累积液油比与累积产液量的关系式,表达式如下: 33p p p L a b L N =+ (14) 式(14)表明,油田开发到一定阶段以后,累积产液量与累积产油量之比与累积产液量在直角坐标中呈直线关系。3a 和3b 分别为直线段的截距和斜率。 将式(14)改写成如下形式 331 p p a b N L =+ (15) 对式(15)两端进行微分后得 322d d p p p p N a L N L --= 将上式两端同时除以d t ,则有 23 2p L p o L q a N q = (16) 由式(15)解出p L 并代入式(16)后得 2233 22 3(1)p L p p o a N q a N b N q =- 由上式解出p N 得 3 p N =(17) 式(17)即为丙型水驱特征曲线的累积产油量与油田含水率之间的关系式,应用该式可以测算油田不同含水率时的累积产油量、 当油田极限含水率为0.98时,得到可采储量

3 11p N b ? = -? (18) 只要知道了丙型曲线的有关常数项3a 和3b ,就可以应用上式测算油田可采储量。 将式(17)和式(18)相除,便得到可采储量采出程度与含水率的关系式 p R N N = (19) 式(14)、(17)和(18)为丙型水驱曲线的主要关系式。当水驱特征曲线出现直线关系以后,则可以利用这些公式对油田水驱动态和可采储量进行预测。 丁型水驱特征曲线的表达式如下: 44p p p L a b W N =+ (20) 它反映了油田开发到一定阶段后,累积产液量与累积产油量之比与累积产水量在直角坐标中呈直线关系,直线段的截距与斜率分别为4a 和4b 。 将式(20)改写成如下的形式 4411 p p a b N W -=+ (21) 对式(21)两端微分并同时除以d t 得 422 (1)o w p p q a q N W -= 由上式得 p p W N =(22) 由式(21)解出p W : 441 1 p p a W b N -= - (23) 将式(23)代入(22)得 4411 ( )p p a b N N -=-

沥青混合料的特性指标1

沥青混合料的特性 虽然沥青混合料中单个材料的性能对混合料的性能起十分重要的作用,但是,由于沥青混合料中沥青和集料组成统一的系统,其组合特性对沥青混合料的性能影响更大。沥青混合料性能指标包括永久变形、疲劳开裂、低温开裂、应力—应变特性、强度特性。 1.永久变形 永久变形是在重复荷载的作用下路面塑性变形的累积,它是一种不可恢复的变形。轮迹线上的变形一般认为主要有两个原因: 一是作用在土基、底基层、基层和沥青表面层的重复应力较大,虽然面层材料对减少这种类型的车辙起着很重要的作用,但一般认为路面车辙是路面的一种结构组合问题,对于路面面层很薄的结构层车辙较为严重,主要是因为面层太薄而导致,作用在路基顶面的应力较大;对于路面结构在水的作用下土基较为软弱的情况,主要是由于土基的累积变形而引起。路面软化产生的车辙见图9-7。 二是路面面层在重复荷载的作用下的累积变形,这种累积变形是由于沥青面层抵抗重复荷载的抗剪强度较小,一般这种车辙是由于沥青面层的强度太弱。路面的永久变形是由于面层和土基两个原因总和引起。沥青软化产生的车辙见图9-8。 沥青路面的车辙主要是因为在荷载的作用下产生的很小但不可恢复的永久变形累积引起的。沥青混合料的剪切应力将导致垂直变形和侧向流动,当荷载作用足够的次数以后,路面的累积永久变形不断增加,车辙就出现。路面出现车辙以后,由于在辙槽内的水将导致水溅或结冰而影响行车安全。 当沥青稠度低、加载时间长或温度较高时,沥青混合料表现为弹—粘一塑性体,应力重复作用下将会出现较大数量的累积变形。 对沥青混合料永久变形特性的研究,可利用静态蠕变(单轴受压)试验或重复三轴压缩试验进行。前一种试验较简单,而后一种试验同实际受力状况相符,但二者所得到的累积应变一时间关系的规律基本一致,因为重复应力下塑性应变的逐步累积实质上也是一种蠕变现象。 密实型沥青碎石混合料经受重复三轴试验的结果表明,塑性应变量承重复作用次数而增加,温度越高,塑性应变累积量越大。许多试验结果表明,在同一

全国公路水运工程试验检测人员继续教育网络平台-泡沫温拌沥青混合料性能评价和施工技术 100分

第1题 ()温拌技术经济性最高 A.化学添加剂 B.有机添加剂 C.机械发泡类 D.沸石类 答案:C 您的答案:C 题目分数:4 此题得分:4.0 批注: 第2题 温拌技术改善了混合料的() A.和易性 B.裹覆性 C.可压实性 D.全选 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 机械发泡类温拌技术的发泡用水量是沥青质量的() A.1%~2% B.2%~3% C.3%~4% D.4%~5% 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 机械发泡温拌技术适合于() A.普通沥青 B.改性沥青 C.橡胶沥青

D.全选 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第5题 沥青发泡的评价指标是() A.膨胀率与半衰期 B.粘度与针入度 C.粘度与延度 D.针入度与延度 答案:A 您的答案:A 题目分数:4 此题得分:4.0 批注: 第6题 沥青加热发泡温度是() A.140~150度 B.150~155度 C.155~160度 D.160~165度 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第7题 沥青发泡的影响因数是() A.发泡温度 B.用水量 C.水温 D.沥青种类 E.来源 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:9

此题得分:9.0 批注: 第8题 机械发泡温拌沥青混合料设计需要考虑() A.和易性 B.裹覆性 C.可压实性 D.长期性能 E.短期性能 答案:A,B,C 您的答案:A,B,C 题目分数:9 此题得分:9.0 批注: 第9题 国外沥青发泡设备包括() A.MEEKER B.Terex foam C.ECOFOAM-II D.Tri-Mix foam E.Ultrafoam GX 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:9 此题得分:9.0 批注: 第10题 国产沥青发泡设备包括() A.徐工集团:XFP系列泡沫温拌沥青设备 B.廊坊德基:DG泡沫温拌沥青设备 C.山东大山:DS-IFA泡沫温拌沥青设备 D.南方路机:NFLG泡沫温拌沥青设备 E.山东路科 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:9 此题得分:9.0 批注:

沥青混合料高温性能评价指标概述

沥青混凝土高温性能指标概述 李清霞姚辉宁 (山东公路建设集团济南 250012) 摘要:通过对沥青混合料高温性能指标研究过程的回顾,先后介绍了从实际出发模拟车辙变形的试验,通过对路面结构应力的分析,获取混合料的抗剪切性能的试验,以及从设计模量本身出发,研究混合料模量与混合料性能的试验。 关键词:高温性能车辙剪切模量 1、背景 自从道路工程师使用沥青混凝土铺筑路面后,就在寻求评价沥青混合料高温性能的简单方法。历史上最广泛使用的马歇尔法,采用成型的圆柱体试件在60℃温度下抵抗荷载的能力评价混合料稳定性,但是其击实的成型方法并不能的模拟路面碾压成型过程,评价指标马歇尔稳定度也有很高的变异性,与路用性能并不存在好的相关性。 从上世纪70年代到80年代,一种新型混合料路用性能高温指标评价方法出现,即车轮在成型的板状沥青混合料上行驶,观察其沥青混合料的变形情况,这一时期,出现了很多该原理下的轮式试验测试设备,如轮辙仪,法国车辙仪(French Laboratory Rutting Tester)、诺丁汉车辙仪(Nottingham tester)、汉堡车辙仪(Hamburg Wheel Rut Tester)、沥青路面分析仪(APA)等。 图1法国车辙仪图2汉堡车辙仪 这些试验设备可以对试件所处环境进行模拟,如温度、湿度等,具有一定的实际意义,但是得到的轮辙变形结果如轮辙深度、相对变形量、动稳定度等只是一种经验指标,并且试验结果受到很多限制,如车轮形状、试件形状、试件与试模的边际效应等。因此必须从力学原理上研究车辙的产生机理,并使用相应的技术手段提高混合料的抗车辙能力。 2、力学分析

泡沫沥青发泡原理及发泡特性研究

泡沫沥青发泡原理及发泡特性研究 摘要:以膨胀率和半衰期作为评价指标,对两种不同的沥青、不同温度、不同含水量进行发泡对比试验,来确定所用沥青的最佳发泡温度和发泡用水量。 关键词:沥青发泡;膨胀率;半衰期 1 沥青发泡原理 当冷水滴(环境温度)与高温沥青(140℃以上)接触时,将发生以下连锁反应:热沥青与小水滴表面发生热量(能量)交换,使水滴加热至100℃,同时沥青冷却;沥青传递的热量超过了蒸汽潜热,导致体积膨胀,产生蒸汽。膨胀腔里的蒸汽泡在一定压力下压入沥青的连续相;随着溶有大量蒸汽泡的沥青从喷嘴喷出,压缩蒸汽膨胀使略微变凉的沥青形成薄膜状,并依靠薄膜的表面张力将气泡完全裹附;在膨胀过程中,沥青膜产生的表面张力抵抗蒸汽压力直到一种平衡,由于沥青与水的低导热性,这种平衡一般能够维持数秒时间;发泡过程中产生的大量气泡以一种亚稳定态的形式存在,泡沫容易破灭。 发泡过程中导致泡沫破灭的因素很多,一种解释为随着沥青胶团在常温下冷却,气泡中的蒸汽冷凝而导致气泡破灭,这时发泡水会留在沥青中形成所谓的水饱和沥青(watet saturated bitumen);另一种解释为泡沫具有近乎稳定的蜂窝状结构的气室,气室两边的膜即为泡沫液膜。在三个或多个气泡聚集的地方,液膜被弯曲,并凹向气室的一方,形成普来特边界。由于在普来特交界处有较大的曲率半径,根据拉普拉斯方程,在气相与液相之间就会产生压力差,它随液体表面张力增加而增大,随气泡曲率半径增大而减小,因此在普来特交界处的液压要比附近曲率小的地方小,就使得液体由小曲率处向普来特交界处流动,这种排液作用会使液膜逐渐变薄,当液膜达到临界厚度时(5~10nm),膜就会破灭。前一种解释更适合发泡温度较低或发泡用水量较小的情况,因此发泡温度低,沥青胶团容易冷凝,泡沫中的水蒸气也易低于液化温度,同时用水量较小沥青薄膜也相对较厚,不会产生明显的普来特交界。而若是情况相反,则依据实际试验观察,发泡时产生的大量体积较大的气泡以及大量蒸汽外溢与第二种解释更为贴近。 2沥青发泡特性的评价指标 为了衡量沥青的发泡效果,目前主要用膨胀率(发泡体积倍数)和半衰期两个指标加以评价。 膨胀率是指在沥青发泡状态下的最大体积与未发泡时沥青体积的比值。由于沥青在喷射过程中先前喷出的泡沫沥青体积已经开始衰减,因此测量的最大发泡体积要小于实际的最大值。为了使泡沫沥青与集料充分接触,形成良好的裹附作用,膨胀率越大,拌制的泡沫沥青冷再生混合料质量越好。 半衰期是泡沫沥青从最大体积衰减到最大体积的50%所用的时间。该指标实际上描述了沥青泡沫的稳定性,半衰期越长,说明泡沫越不容易衰减,可以与集

高速公路沥青混合料检测性能及指标

高速公路沥青混合料应具备的性能评价指标及影 响因素 作者:冯光营 摘要:我国沥青路面的发展历史虽然只有十几年,但是在高速公路的发展过程中公路路面由过去的表面处治、贯人式路面跃为沥青混凝土面层,然而新的经济发展带来的交通量剧增、超载严重,使许多高速公路建成不久就发生了早期破坏。因此提高高速公路沥青混合料的路用性能显得重要,从沥青混凝土的高温稳定性,低温抗裂性,耐久性,抗滑性,以及施工和易性来研究沥青混凝土。 关键词:高速公路沥青混合料高温稳定性低温抗裂性耐久性抗滑性施工和易性 Highway asphalt mixture should have the performance evaluation index and influencing factors fengguangying Abstract:The development history of the asphalt in China although only ten years, but on the highway in the process of the development of highway pavement from the surface treatment, and through one type YueWei pavement of asphalt concrete pavement, however the new economic development will bring traffic volume excursion, overload and serious, make many highways built soon happened early destruction. Therefore improve highway asphalt mixture road performance is important, this article from asphalt concrete of high temperature stability, low temperature crack resistance, durability, skid resistance, as well as construction workability to study the asphalt concrete. Keywords:highway asphalt mixture at high temperature stability low temperature crack resistance durability skid resistance construction workability 引言 据调查,美国于20 世纪80年代,沥青路面的设计使用寿命为20 年, 但实际使用寿命为8~ 12 年; 而我国的高速公路沥青路面的设计使用寿命为15 年,可是大部分高速公路的通车时间不长,仅 2~ 3 年,沥青路面就出现大面积的破坏, 甚至有的不到一年就出现大面积的严重破坏。究其原因就是沥青混合料在实验室配合比试验中,其性能指标不能满足实际要求,下面就沥青混合料路用性能指标及其影响因素进行论述。 1高速公路沥青混合料路面发生的病害 沥青混凝土路面,使用沥青结合料,因而增强了矿料件的粘结力,提高了混合料的强度和稳定性,使路面的使用质量和耐久性都得到了提高。然而随着我国交通量的逐年增加,也使沥青路面出现多种病害,沥青混合料路面的常见病害有裂缝,车辙,松散剥落,表面磨光等。对此急需提高混凝土的性能。其性能包括: 1.1高温抗车辙性能:它是抵抗路面流动变形的能力。 1.2低温抗裂性能:它是抵抗低温收缩裂缝的能力。1.3耐久性:它是使用过程中抵抗不利环境因素的能力及承受车荷载重复作用的能力 1.4抗滑性:它是保障公路交通安全的一个重要因素,特别是行驶速度高的高速公路。 1.5施工和易性:它是沥青混合料在施工工程中施工的难易程度的指标。 2高速公路的性能指标 2.1高温抗车辙性 高温稳定性是指沥青混合料在高温条件下, 能够抵抗荷载的反复作用, 不发生显著永久变形(不可恢复变形如车辙、波浪及推移拥包等) , 保持路面平整的特性。沥青混合料的高温稳定性的形成主要来源于矿料的嵌挤作用和沥青的高温粘度, 有研究认为,沥青混合料的高温抗车辙性能, 集料的因素约占 70%而沥青约占30%。矿料颗粒的嵌挤作用主要与集料级配、颗粒特性有关,多级嵌挤混合料组成结构显然比密实悬浮结构高温稳定性优越,破碎的碎石具有丰富的棱角和发达的纹理构造,经压实后颗粒之间能形成紧密的嵌锁作用, 有利于增强混合料的稳定性。沥青高温粘度大, 与集料的粘附性好, 在高温下仍能保持足够的粘滞性, 使混合料具有一定的强度和劲度,而不致出现过大的变形;因此控制好沥青混合料中的油料比,集料的级配,有利于提高混凝土的高温

相关文档
最新文档