基于R软件的数据挖掘应用

基于R软件的数据挖掘应用
基于R软件的数据挖掘应用

龙源期刊网 https://www.360docs.net/doc/c57267295.html,

基于R软件的数据挖掘应用

作者:李韵

来源:《现代职业教育·职业培训》2017年第06期

[摘要] R软件集成了多种数据分析和可视化方法,具有强大的分析能力和出色的扩展性,因此被广泛应用于数据挖掘之中。通过聚类分析和分类回归树方法给出了R软件在数据挖掘中的应用。从简洁的脚本设计和出众的分析效果展示了 R 软件的基本特点及其在数据挖掘中的

优势。

[关键词] R软件;数据挖掘;聚类分析;分类回归树

[中图分类号] F407.67 [文献标志码] A [文章编号] 2096-0603(2017)18-0045-01

近年来,随着电子商务、社交网站、移动终端应用开发的兴起,企业对用户基本数据、行为数据、网络痕迹数据等信息的掌握逐渐成为其在信息领域的核心竞争力,“用数据说话、用数据决策”已成为企业未来发展的基石。然而,传统数据在全样抽取时存在时效性差、不适合处理实时数据的缺陷,因此,如何从数据中挖掘出有价值的信息就显得十分重要。

一、数据准备

数据文件包括通用型文件如纯文本文件、Excel等,通过加载不同的功能模块,R软件还可以读取多种数据文件。通过安装 RODBC、RJDBC和RMySQL可以获取对 ODBC、JDBC和Oracle 数据源的访问能力。由于实际应用中往往需要对异构数据源进行挖掘,R 软件提供的针对各种数据源的访问接口具有很强的适用性。

二、数据挖掘建模

(一)聚类分析

k-means是经典的基于划分的聚类方法,其基本思想是使聚类性能指标最小化。所用的聚类准则函数是聚类集中每个样本点到该类中心的距离平方之和,应使其最小化。为此,首先根据给定聚类数K,为每个聚类确定一个初始聚类中心;其次将样本集里的各个样本按最小距离原则分配到最邻近的聚类,并使用每个聚类中的样本均值作为新的聚类中心,如此重复直到聚类中心不发生变化;最后可获得K个聚类。

R软件中可以用k-means()函数来进行聚类。聚类可视化采用判别投影绘制函数plotcluster(),把数据对象映射平面空间,展示聚类之间的异构性。以数据集iris为例。所用代码见表1。

(二)分类回归树分析

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘工具应用及前景分析

数据挖掘工具应用及前景

介绍以下数据挖掘工具分别为: 1、 Intelligent Miner 2、 SAS Enterpreise Miner 3、SPSS Clementine 4、马克威分析系统 5、GDM Intelligent Miner 一、综述:IBM的Exterprise Miner简单易用,是理解数据挖掘的好的开始。能处理大数据量的挖掘,功能一般,可能仅满足要求.没有数据探索功能。与其他软件接口差,只能用DB2,连接DB2以外的数据库时,如Oracle, SAS, SPSS需要安装DataJoiner作为中间软件。难以发布。结果美观,但同样不好理解。 二、基本内容:一个挖掘项目可有多个发掘库组成;每个发掘库包含多个对象和函数对象: 数据:由函数使用的输入数据的名称和位置。 离散化:将记录分至明显可识别的组中的分发操作。 名称映射:映射至类别字段名的值的规范。 结果:由函数创建的结果的名称和位置。 分类:在一个项目的不同类别之间的关联层次或点阵。 值映射:映射至其它值的规范。 函数: 发掘:单个发掘函数的参数。 预处理:单个预处理函数的参数。 序列:可以在指定序列中启动的几个函数的规范。 统计:单个统计函数的参数。 统计方法和挖掘算法:单变量曲线,双变量统计,线性回归,因子分析,主变量分析,分类,分群,关联,相似序列,序列模式,预测等。 处理的数据类型:结构化数据(如:数据库表,数据库视图,平面文件) 和半结构化或非结构化数据(如:顾客信件,在线服务,传真,电子邮件,网页等) 。 架构:它采取客户/服务器(C/S)架构,并且它的API提供了C++类和方法 Intelligent Miner通过其独有的世界领先技术,例如自动生成典型数据集、发现关联、发现序列规律、概念性分类和可视化呈现,可以自动实现数据选择、数据转换、数据挖掘和结果呈现这一整套数据挖掘操作。若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。 三、现状:现在,IBM的Intelligent Miner已形成系列,它帮助用户从企业数据资产中 识别和提炼有价值的信息。它包括分析软件工具——Intelligent Miner for Data和IBM Intelligent Miner forText ,帮助企业选取以前未知的、有效的、可行的业务知识——

浅谈数据挖掘技术及其应用

浅谈数据挖掘技术及其应用 數据挖掘就是从海量数据中提取潜在有趣模式的过程。数据挖掘技术现已广泛应用于零售业、金融业、电信、网络安全分析、农业、医疗卫生等领域,研究十分广泛。 标签:海量数据;数据挖掘;应用研究 一、数据挖掘概念 数据挖掘比较公认的定义是由U.M.Fayyad等人提出的:数据挖掘就是从海量数据中提取潜在有趣模式的过程[1]。还有一些术语,具有和数据挖掘类似但稍有不同的含义,如数据库中知识挖掘、知识提取、数据/模式分析、数据考古等。数据挖掘技术最初是面向应用层面的,不光可以实现检索和统计专门数据库的操作,还能够在大量的数据集中实现小型、中型乃至大型系统的分析、归纳、推理等工作。 二、数据挖掘的基本任务 数据挖掘的目的就是发现有用的知识(即概念、规则和模式)。数据挖掘的基本任务主要有以下几个方面: (1)分类与预测。 分类属于有监督的学习,在构建分类模型之前,在数据源中选取训练集数据并作分类标记,然后运用分类模型对训练集数据进行分类,实在是按照样本属性相近的划入一类,最后将完成训练的分类模型应用到在未知类别的数据集中,获得相应的分类。预测是依据历史数据和现有的数据建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。 (2)聚类分析。 聚类分析是在识别数据的内在规则后,将数据分成相似数据对象组,从而获得数据的分布规律,划分的原则是不同组间距离尽可能大,组内距离尽可能小。聚类分析进一步是打算从一组杂乱的数据中发掘隐藏其中的分类规则。聚类分析与分类模式模型不同,分类模式是使用有标记样本构成的训练集的一种有监督学习方法,则聚类模型是使用在无标记的数据上的一种无监督学习方法。近年来,聚类分析在图像处理、商业分析、模式识别等有广泛应用。 (3)关联规则。 关联分析是通过对数据集中数据之间隐藏的相互关系的分析,揭露了具有相同类别的数据之间未知的关系。关联分析就是将给定一组项集和一个记录集合,

《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘及其应用

《数据挖掘论文》 数据挖掘分类方法及其应用 课程名称:数据挖掘概念与技术姓名 学号: 指导教师:

数据挖掘分类方法及其应用 作者:来煜 摘要:社会的发展进入了网络信息时代,各种形式的数据海量产生,在这些数据的背后隐藏这许多重要的信息,如何从这些数据中找出某种规律,发现有用信息,越来越受到关注。为了适应信息处理新需求和社会发展各方面的迫切需要而发展起来一种新的信息分析技术,这种局势称为数据挖掘。分类技术是数据挖掘中应用领域极其广泛的重要技术之一。各种分类算法有其自身的优劣,适合于不同的领域。目前随着新技术和新领域的不断出现,对分类方法提出了新的要求。 。 关键字:数据挖掘;分类方法;数据分析 引言 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥

有知识的有局限性,所以对于获得知识的可信度就应该打个折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 分类技术是数据挖掘中应用领域极其广泛的重要技术之一。至今已提出了多种分类算法,主要有决策树、关联规则、神经网络、支持向量机和贝叶斯、k-临近法、遗传算法、粗糙集以及模糊逻辑技术等。大部分技术都是使用学习算法确定分类模型,拟合输入数据中样本类别和属性集之间的联系,预测未知样本的类别。训练算法的主要目标是建立具有好的泛化能力的模型,该模型能够准确地预测未知样本的类别。 1.数据挖掘概述 数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据

5种数据挖掘工具分析比较

数据挖掘工具调查与研究 姓名:马蕾 学号:18082703

5种数据挖掘工具分别为: 1、 Intelligent Miner 2、 SAS Enterpreise Miner 3、SPSS Clementine 4、马克威分析系统 5、GDM Intelligent Miner 一、综述:IBM的Exterprise Miner简单易用,是理解数据挖掘的好的开始。能处理大数据量的挖掘,功能一般,可能仅满足要求.没有数据探索功能。与其他软件接口差,只能用DB2,连接DB2以外的数据库时,如Oracle, SAS, SPSS需要安装DataJoiner作为中间软件。难以发布。结果美观,但同样不好理解。 二、基本内容:一个挖掘项目可有多个发掘库组成;每个发掘库包含多个对象和函数对象: 数据:由函数使用的输入数据的名称和位置。 离散化:将记录分至明显可识别的组中的分发操作。 名称映射:映射至类别字段名的值的规范。 结果:由函数创建的结果的名称和位置。 分类:在一个项目的不同类别之间的关联层次或点阵。 值映射:映射至其它值的规范。 函数: 发掘:单个发掘函数的参数。 预处理:单个预处理函数的参数。 序列:可以在指定序列中启动的几个函数的规范。 统计:单个统计函数的参数。 统计方法和挖掘算法:单变量曲线,双变量统计,线性回归,因子分析,主变量分析,分类,分群,关联,相似序列,序列模式,预测等。 处理的数据类型:结构化数据(如:数据库表,数据库视图,平面文件) 和半结构化或非结构化数据(如:顾客信件,在线服务,传真,电子邮件,网页等) 。 架构:它采取客户/服务器(C/S)架构,并且它的API提供了C++类和方法 Intelligent Miner通过其独有的世界领先技术,例如自动生成典型数据集、发现关联、发现序列规律、概念性分类和可视化呈现,可以自动实现数据选择、数据转换、数据挖掘和结果呈现这一整套数据挖掘操作。若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。 三、现状:现在,IBM的Intelligent Miner已形成系列,它帮助用户从企业数据资产中 识别和提炼有价值的信息。它包括分析软件工具——Intelligent Miner for Data和IBM Intelligent Miner forText ,帮助企业选取以前未知的、有效的、可行的业务知识——

数据挖掘技术及其应用

数据挖掘毕业论文 ---------数据挖掘技术及其应用 摘要:随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。本文介绍了数据库技术的现状、效据挖掘的方法以及它在Bayesian网建网技术中的应用:通过散据挖掘解决Bayesian网络建模过程中所遇到的具体问题,即如何从太规模效据库中寻找各变量之间的关系以及如何确定条件概率问题。 关键字:数据挖掘、知识获取、数据库、函数依赖、条件概率 一、引言: 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个 折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象[1]。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多

数据挖掘及其应用

数据挖掘及其应用 Revised by Jack on December 14,2020

《数据挖掘论文》 数据挖掘分类方法及其应用 课程名称:数据挖掘概念与技术 姓名 学号: 指导教师: 数据挖掘分类方法及其应用 作者:来煜 摘要:社会的发展进入了网络信息时代,各种形式的数据海量产生,在这些数据的背后隐藏这许多重要的信息,如何从这些数据中找出某种规律,发现有用信息,越来越受到关注。为了适应信息处理新需求和社会发展各方面的迫切需要而发展起来一种新的信息分析技术,这种局势称为数据挖掘。分类技术是数据挖掘中应用领域极其广泛的重要技术之一。各种分类算法有其自身的优劣,适合于不同的领域。目前随着新技术和新领域的不断出现,对分类方法提出了新的要求。 。 关键字:数据挖掘;分类方法;数据分析 引言 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我

们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 分类技术是数据挖掘中应用领域极其广泛的重要技术之一。至今已提出了多种分类算法,主要有决策树、关联规则、神经网络、支持向量机和贝叶斯、k-临近法、遗传算法、粗糙集以及模糊逻辑技术等。大部分技术都是使用学习算法确定分类模型,拟合输入数据中样本类别和属性集之间的联系,预测未知样本的类别。训练算法的主要目标是建立具有好的泛化能力的模型,该模型能够准确地预测未知样本的类别。 1.数据挖掘概述 数据挖掘又称库中的知识发现,是目前人工智能和领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平

数据挖掘在大数据时代下的应用

数据挖掘在大数据时代下的应用 【摘要】数据挖掘一直是各个行业的关注的重点。 近几年,数据挖掘伴随着大数据的火热开始迎来更大的机遇。本文介绍了数据挖掘相关的概念,一些常用的数据挖掘的分析方法,最后介绍了数据挖掘技术几个常见的应用领域。 【关键词】数据挖掘分析方法应用 一、基本概念介绍 1、大数据。2011 年5 月,麦肯锡全球研究院在《大数据:创新、竞争和生产力的下一个新领域》中指出,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产要素;而人们对于大数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。据估计,在未来,数据将至少保持每年50%的增长速度。 2、数据挖掘。数据挖掘是一门新兴的学科,它诞生于20 世纪80 年代,主要面向商业应用的人工智能研究领域. 从技术角度看,数据挖掘就是从大量的、复杂的、不规则的、随机的、模糊的数据中获取隐含的、人们事先没有发觉的、

有潜在价值的信息和知识的过程.从商业角度来说,数据挖掘就是从庞大的数据库中抽取、转换、分析一些潜在规律和价值,从中获取辅助商业决策的关键信息和有用知识。 二、数据挖掘的基本分析方法 分析方法是数据挖掘的核心工作,通过科学可靠的算法才能实现数据的挖掘,找出数据中潜在的规律。通过不同的分析方法,将解决不同类型的问题,在现实中针对不同的分析目标,找出相对应的方法。目前常用的分析方法主要有聚类分析、分类和预测、关联分析等。 1、聚类分析。聚类分析就是将物理或抽象对象的集合进行分组,然后组成为由类似或相似的对象组成的多个分类的分析过程,其目的就是通过相似的方法来收集数据分类。它是一种无先前知识,无监督的学习过程,从数据对象中找出有意义的数据,然后将其划分在一个未知的类。这不同于分类,因为它无法获知对象的属性。“物以类聚,人以群分”,通过聚类来分析事物之间类聚的潜在规律。聚类分析广泛运用于心理学、统计学、医学、生物学、市场销售、数据识别、机器智能学习等领域。聚类分析根据隶属度的取值范??可分为硬聚类和模糊聚类两种方法。硬聚类就是将对象划分到距离最近聚类的类,非此即彼,也就是说属于一类,就必然不属于另一类。模糊聚类就是根据隶属度的取值范围的大小差异来划分类。一个样本可能属于多个类。常见的聚类算法主

浅谈数据挖掘技术及其应用

1 数据挖掘的起源 2数据挖掘的定义 3数据挖掘的过程 3.1目标定义阶段 3.2数据准备阶段 3.3数据挖掘阶段 3.4结果解释和评估阶段 面对信息社会中数据和数据库的爆炸式增长,人们分析数据和从中提取有用信息的能力,远远不能满足实际需要。但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,但它却无法发现这些数据中存在的关系和规则,更不能根据现有的数据预测未来的发展趋势。这种现象产生的主要原因就是缺乏挖掘数据背后隐藏的知识的有力手段,从而导致“数据爆炸但知识贫乏”的现象。数据挖掘就是为迎合这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。数据挖掘(DataMining),又称数据库中的知识发现(KnowledgeDiscoveryinDatabase,简称KDD),比较公认的定义是由U.M.Fayyad等人提出的:数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据集中,提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程,提取的知识表示为概念(Concepts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式。数据挖掘是一种决策支持过程,分析各组织原有的数据,做出归纳的推理,从中挖掘出潜在的模式,为管理人员决策提供支持。KDD的整个过程包括在指定的数据库中用数据挖掘算法提取模型,以及围绕数据挖掘所进行的预处理和结果表达等一系列的步骤,是一个需要经过反复的多次处理的过程。整个知识发现过程是由若干挖掘步骤组成的,而数据 挖掘仅是其中的一个主要步骤。整个知识发现的主要步骤有以下几点。要求定义出明确的数据挖掘目标。目标定义是否适度将影响到数据挖掘的成败,因此往往需要具有数据挖掘经验的技术人员和具有应用领域知识的专家以及最终用户紧密协作,一方面明确实际工作中对数据挖掘的要求,另一方面通过对各种学习算法的对比进而确定可用的算法。数据准备在整个数据挖掘过程中占的比例最大,通常达到60%左右。这个阶段又可以进一步划分成三个子步骤:数据选择(DataSelection),数据预处理(DataProcessing)和数据变换(DataTransformation)。数据选择主要指从已存在的数据库或数据仓库中提取相关数据,形成目标数据(TargetData)。数据预处理对提取的数据进行处理,使之符合数据挖掘的要求。数据变换的主要目的是精减数据维数,即从初始特征中找出真正有用的特征以减少数据挖掘时要考虑的特征或变量个数。这一阶段进行实际的挖掘工作。首先是算法规划,即决定采用何种类型的数据挖掘方法。然后,针对该挖掘方法选择一种算法。完成了上述的准备工作后,就可以运行数据挖掘算法模块了。这个阶段是数据挖掘分析者和相关领域专家最关心的阶段,也可以称之为真正意义上的数据挖掘。 浅谈数据挖掘技术及其应用 舒正渝1、2 (1.西北师范大学数信学院计算机系,甘肃兰州730070;2.兰州理工中等专业学校,甘肃兰州730050)摘要:科技的进步,特别是信息产业的发展,把我们带入了一个崭新的信息时代。数据库管理系统的应用领域涉及到了各行各业,但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,通过这些数据获得的信息量仅占整个数据库信息量的一小部分,如何才能从中提取有价值的知识,进一步提高信息量利用率,因此需要新的技术来自动、智能和快速地分析海量的原始数据,以使数据得以充分利用,由此引发了一个新的研究方向:数据挖掘与知识发现的理论与技术研究。数据挖掘技术在分析大量数据中具有明显优势,基于数据挖掘的分析技术在金融、保险、电信等有大量数据的行业已有着广泛的应用。关键词:数据挖掘;知识发现 Abstract:Key words:The progress of science and technology,especially the development of the information industry,brings us into a brand-new information age.The application of the data base management system has involved all trades and professions,but only the store,inquire and statistic function can be applied,account a little part of the whole database.How to improve the utilization ratio of the information has initiated a new research direction,the data mining and knowledge found theory and technique.The data mining has the advantage in analyzing a large number of data.The data mining analytical technology has been largely used finance,insurance,telecommunication industry,etc..Data mining;Knowledge discovery 收稿日期:2010-01-15修回日期:2010-02-11 作者简介:舒正渝(1974-),女,重庆籍,硕士研究生,研究方向为数据库、多媒体。 中国西部科技2010年02月(中旬)第09卷第05期第202期 总38

基于大数据的数据挖掘技术与应用

基于大数据的数据挖掘技术与应用 发表时间:2019-07-17T12:49:19.997Z 来源:《基层建设》2019年第12期作者:汪洋 [导读] 摘要:科技前进的步伐越来越快,数据挖掘与传统行业相结合,在各行各业展现出了十分强大的生命力。 中国联合网络通信有限公司黄石市分公司湖北黄石 435000 摘要:科技前进的步伐越来越快,数据挖掘与传统行业相结合,在各行各业展现出了十分强大的生命力。本文从数据挖掘的基本概念和功能谈起,进一步再分析其在金融和人力资源两个方面的具体运用。 关键词:数据挖掘;大数据;金融;人力资源 一、数据挖掘的概念和功能 (一)数据挖掘概念。数据挖掘是指从庞大繁杂的数据中通过算法搜索隐藏于表面数据背后信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习和模式识别等多种方法来实现上述目标。 (二)数据挖掘的方法和过程。数据挖掘的理论技术一般可分为传统技术和改良技术两支。就传统技术而言,以统计分析为主要代表;就改良技术而言,以决策树理论、类神经网络和规则归纳法等为主要代表。 (三)数据挖掘的主要功能。数据挖掘的功能十分强大,在与各行各业结合之后,都能为各行业带来新的发展契机。一般来说,数据挖掘的功能分为两类:一类是描述性功能,是指对目标数据的属性进行特征描述;另一类是预测性功能,是指对当前数据进行归纳,以进行发展趋势的预测。 二、数据挖掘技术的应用实践 (一)在金融方面的应用。大数据金融以庞大繁杂的数据作为基础,利用如互联网等信息化技术,分析处理对客户的消费数据,将客户及时全面的信息及时地反馈给金融企业,如此一来,使得金融企业给零散化的客户群体提供定制化的服务成为可能。数据挖掘技术在金融领域的表现十分优异,在第三方支付、p2p网络借贷、供应链金融、互联网消费金融等方面均有广泛的运用。 就第三方支付而言,因为其运用场景多样化,使用方便快捷,因而,第三方支付与上下游的交易者联系紧密。当相关数据累积到一定程度时,便可推出更多的增值服务,进一步增加利润来源。在众多增值服务中,近年来,值得一提的是由蚂蚁金服推出的蚂蚁花呗。蚂蚊花呗本质上而言是一款消费信贷产品。蚂蚁花呗利用大数据,以自身的风控模型为基础,结合对消费者在互联网上的各种网购情况、支付习惯、信用风险等的分析结果,对不同的用户根据其近期的消费情况给予不同数额的消费额度。 第三方互联网支付交易规模由于互联网理财等大额交易场景的推动保持高速增长。在2013年,第三方互联网支付交易额仅为6万亿元,但据可靠预测,在2020年,此交易额可到39万亿元。再看第三方移动支付交易额。由于移动支付场景的多样化、用户渗透率越来越高、各种第三方支付企业进军市场等原因,移动交易量不断上升。在2013年,第三方移动支付交易额仅为1万亿元。但据估计,在2020年,第三方移动支付交易额可达144万亿元。 (二)在人力资源管理方面的运用。 (1)数据挖掘与人力资源规划:通过数据挖掘技术,组织管理者可以利用搜集到的每一个员工的组织内外部的信息资料,联系企业的整体战略目标,以事实为依据,制定未来人力资源规划。 (2)数据挖掘与人才的招聘与配置:招聘时,招聘者对于求职者的了解一般都比较肤浅,对于求职者的专业技能掌握情況、工作效率等无法有效进行认知。而新兴的社交网络呈现了—个人各方面的信息,如工作经历、社会关系、工作效率等,从而能助招聘者一臂之力,达到精准的人岗匹配。 (3)数据挖掘与员工的开发:利用数据挖掘,管理者将职业生涯规划建立在员工全方位数据的基础上,如员工的应聘岗位、晋升意愿和期望薪酬等结构化与非结构化的数据信息,从而精准地为员工提供职业培训。 三、注意区分数据挖掘与个人信息侵犯 当今时代,科学技术的不断提高,使得各种数码产品更新换代速度加快,手机、电脑、照相机等电脑产品基本是一年更新换代一次甚至两三次。其中由于手机应用功能随着经济发展而逐渐增加,从原来的按键机发展到如今的触屏手机乃至折叠手机,其功能也从原来的拨打电话、发送短信、彩信功能而增加到如今的视频通话、语音通话以及上网功能。网络的普遍化丰富了人们的生活,使得人们可以便捷广泛的了解、认知自身以外的整个中国乃至整个世界,可以通过网络媒介了解到其他国家的风土民俗、地形地貌,了解自己所喜欢的明星网红的日常喜好,或是通过网络媒介得到想获得的知识、达到一个学习的作用。但网络媒介是一把双刃剑,通过网络世界了解到诸多信息时,也可能因为自己在网络上所说的一句话、所发的一个定位从而导致自身隐私泄露,个人信息被公布在大众眼中。要运用好大数据时代中网络媒体这一把双刃剑,就必须要求到人们提高自我隐私保护意识,规范网络世界中的一言一语。 (一)大数据时代信息量过大导致信息泄露 当今时代是科技不断发展的时代,是大数据时代。在大数据时代里,各种数码产品纷呈展现其自身的广泛性、普遍性,充斥在人类日常生活中。尤其是手机的发展从原始的只能打电话接电话的大哥大,渐渐变成能够发短信、收短信的按键机,为满足人们日常生活中的娱乐要求,在信息传播的同时又增加了照相机、听音乐、玩游戏等等娱乐功能。在科技发展的基础上,为满足人们日常生活中的各种精神需求,仅仅五六年时间内,按键手机逐渐演变成如今的触屏手机、智能手机。如今的手机已不仅是一个只能打电话、接电话的功能机,在满足了人们的基本通讯要求后,增加了上网的功能。如今微博app、微信app、qqapp各种社交app的崛起,使得人们日常生活充满了娱乐性、便捷性、广泛性,所接收的信息不仅来自自身以外的中国各地,而且也可以接触到中国以外其它国家,甚至来自地球以外的各大恒星的知识。如今你将会看到,越来越多的人在超市里、商场中、地铁上、公园里拿起手机刷微博、拍抖音、视频通话、拍照片等等,在大数据时代,由于网络的普遍,人们上一秒在抖音app上传了一段视频、微博上发布了一篇文章、朋友圈发表了几张照片,以网络传播速度快的特点,下一秒这个视频、这篇文章、这些照片就极有可能出现在大众视线中。网络带来便捷性的同时也带来过大的信息量以及一定性的安全隐患,人们通过信息库了解某一样东西的同时,也可能导致自身定位被人知道、自身隐私被泄露出去。 (二)大数据时代侵犯个人信息方法更多 由于科学技术进步速度快,数码产品更新换代的速度也日益加快。当手机硬件设施提高了,相应的各类软件应用层出不穷,给予了人们日常生活中的精神满足,同时也给予了不法分子有机可图的条件。人们隐私安全问题日益堪忧,由于手机等各种数码产品的普遍性,大

数据挖掘技术在软件工程中的应用分析

数据挖掘技术在软件工程中的应用分析 黎庆剑 中国软件与技术服务股份有限公司,北京 102200 摘要:信息大爆炸的新时期,人们所需要处理的信息越来越多,如何利用信息技术帮助人们处理这些复杂的数据,挖掘出对人们有帮助的信息是非常有意义的。本文对数据挖掘技术在软件工程中的应用进行了分析。 关键词:数据挖掘;软件工程;应用 现如今随着经济的迅猛发展,社会各方面物质文化水平都在一定程度上得以提升,从而使得人们的生活状态也较以前发生了翻天覆地的变化。近年来,信息技术的发生更是进一步推动了社会的进步,复杂而又充实的信息环境使得人们所接触的事物也更加清晰,但是在这些信息里面需要认真加以辨别,只有从中获取有益的信息才能给自己带来更大的益处。 因此有必要对现有的数据进行整合处理直接为人们所使用。在这个信息爆炸的时代里,人们获取的信息量是非常惊人的。对信息数据的挖掘在软件工程中的地位也逐步提升。 1 软件工程数据挖掘技术概述 1.1数据挖掘技术在软件工程中的应用发展 所谓的数据挖掘技术还有一个比较常用的称呼,就是数据库中的信息资源提取,该技术与数据库相互依存,不可割舍。从刚开始的提出,到最后的实践应用,该技术渐渐地走向更为多向化和多功能化,并且在该项技术中融入了相当多的重要领域技术。而对于软件工程来说,其最原始的意义起源于一九六七年,该项工程自提出以后就一直受到重点研究和关注,就其功能将其进行定义为采用工程化的途径或者是方法对具有实用意义的并且高质量的和存在一定功能效用的软件内容进行构造和创建,这样的软件构建预期的目标是在一定的背景条件下以及成本基础上,所研究开发出的软件产品能够满足使用者的大部分需求。在二十世纪后期的时候,这一领域的研究人员就意识到了单纯的数据挖掘技术其实意义不大,需要结合实际的数据特性将工程类软件与之结合在一起,从而相互攫取双方的优点,从而在极大程度上提升数据挖掘技术的作用。这一理念同时也得到了相关学者的一致认同,从而使得这一想法进一步融入了实际生产运作过程中,使得如今的数据挖掘技术变得越发完善。

大数据时代下数据挖掘技术的应用

应用 Technology Application D I G I T C W 技术 194DIGITCW 2019.01 1 大数据时代的发展历程及现状表现 通过对大数据的发展历程进行分析,大数据在出现到现在,短短的几年的时间内,大数据的信息容量个数据交流在呈直线上升。目前大数据时代的流量总和能够满足全球人员每天消耗500G 以上。就目前我国大数据发展的过程来说,已经逐渐的应用到我国各行各业中,能够从中获取信息资源。企业可以利用大数据对产品进行综合性分析,还能根据用户的反馈对产品进行更新改造,大数据时代下,采用信息化管理,能够有效的提升企业的管理效率,进而提升企业的生产效益,所以要加强数据挖掘技术在大数据时代下的应用。 2 数据挖掘技术分析 2.1 数据挖掘 数据挖掘技术是在20世纪90年代初提出来的新兴技术,这种技术主要面对的是商业应用中的人工智能化研究方面。大数据时代下数据挖掘技术的应用具有较高的使用价值,在实际应用中,能够及时的掌握产品的具体使用情况,能够在众多的数据信息中进行优化数据信息,进而为企业的发展提供参考方向。在数据挖掘技术发展过程中,由原来的简单、清晰的数据中进行寻找信息到能够从复杂、模糊的数据中去寻找有利用价值的信息,实现了质的突破,说明技术要求较高,需要更好的利用互联网技术。[1]2.2 聚类分析 在进行数据挖掘时,可以采用聚类分析技术来对数据进行处理。聚类分析的主要作用是能够将难以理解的事物进行形象化分组,然后在根据不同性质将其划分为不同组的分析过程。聚类分析的本质能够对庞大的数据进行划分处理,在从中发现可利用的信息资源。但是在实际的使用中,聚类分析是区别于传统的分类方式,它的优势是能够在模糊对象下进行对信息数据进行分组。在目前的聚类分析方式主要有两种分类方式,一种是硬聚类,这种分类方式更加的贴合数据信息。另一种是模糊聚类,这种分类方式能够通过划分模糊数据在对其进行分类。总的来说,这两种的分类方式不一样,但是所能达到的目的是一样的,都能将数据进行划分。 2.3 特征性数据分析法 特征性数据分析方法也是数据挖掘技术的主要方式之一,特征性数据分析方法能够对整体的数据信息,进行特征性的分析,对其进行发掘有利用价值的信息。由于这种技术的方便快捷性,可以应对大多数的数据资源的分析,所以是相关研究者的主要研究方向。在应用中,相关的设计者提出了多种的特征数据分析方法,比如可以利用人工神经网络进行收集数据,在数据终端进行建立神经网络,搜集可利用的信息;采用遗传基因算法对数据进行分析,对庞大的数据进行选择、重组;利用可视化技术对数据进行搜集,挖掘,可以有效的提升数据挖掘技术的实用性。[2] 3 大数据时代中数据挖掘的应用及延展方向 3.1 市场营销领域 根据对大数据时代中数据挖掘技术应用的数据分析,市场营 销领域是应用数据挖掘技术最广的领域。在市场营销中,可以通过数据挖掘技术对市场数据进行相关的提取和总结,能够在大数据下进行分析用户的信息资源,可以根据大数据反馈回的数据信息,进行改变市场营销模式。比如,通过数据挖掘技术能够分析用户点击商品的次数,然后在后台系统中,可以继续为用户推送与此商品相关的衍生品,能够让用户有更多的选择性,提高用户的实际使用感。3.2 制造业领域 随着现代生活水平的不断提高,人们对于生活产品的质量要求也在日益增长着,在制造业领域中应用数据挖掘技术能够更好的提升生活产品的质量。大数据时代中数据挖掘技术应用在制造业中的应用,可以对生活产品生产时进行跟踪性的监管、及时得到产品问题的数据、了解产品的生产效率等。可以为以后产品的生产提供相应的数据分析,针对性的解决产品遇到的问题、提升生产效率,进而提升制造业的经济效益。数据挖掘技术在制造业领域应用,能够促进制造业的发展,是非常有必要的。[1]3.3 电信业领域 现代是信息化的时代,电信行业在蓬勃的发展中,但是电信用户基数大,所需要处理的问题也是最多的,所以需要更好的服务来解决用户的问题,才能给用户带来更好的体验感。电信技术的服务是需要非常庞大的数据进行支持才能更好的处理遇到的问题,但是这种技术服务会被数据流冲击,导致服务质量下降。数据挖掘技术在电信业领域的应用能够有效的改变这种局面,采用数据挖掘技术可以对复杂的电信数据进行分析与研究,能够在其中发现规律,针对用户反馈回的信息,进行改进,提高电信业的服务质量。3.4 教育领域 数据挖掘技术在教育领域中的应用能够有效的提升教育行业的发展,在实际的应用中,能够对全体学生的心理特点进行分析,然后得出相应的教学方案,让教师能够及时的掌握学生的学习情况,从而更好地进行教学活动。采用数据挖掘技术可以对全体学生的考试成绩进行分析,及时发现学生学习的薄弱之处,方便教师对其进行加强化教学。还可以利用数据挖掘技术对教学进行分析,能够更好的利用教学资源,最大化发挥教学资源的作用,从而提升教育领域的教学质量。 4 结束语 综上所述,随着信息化时代的不断发展,我国正在向着大数据时代迈进,要加强大数据时代下数据挖掘技术的应用,才能更好的满足各行业的实际需求。尤其是在市场营销领域、制造业领域、电信业领域、教育领域等,能够利用数据挖掘技术来进行对众多的数据分析与研究,得出可利用的数据,进而促进该行业的发展。参考文献 [1] 刘铭,吕丹,安永灿.大数据时代下数据挖掘技术的应用[J].科技导报,2018,36(09):73-83. 大数据时代下数据挖掘技术的应用 梁?瀚 (青岛科技大学?中车青岛四方车辆研究所有限公司,青岛 266000) 摘要:随着现代社会信息化技术的不断发展,我国社会正在向信息化时代迈进。在信息化时代中,大数据时代是主要的发展环节。本文主要讲述了大数据时代下数据挖掘技术的应用方式,介绍数据挖掘技术的重要性。 关键词:大数据时代;数据挖掘技术;主要应用及延伸方向doi :10.3969/J.ISSN.1672-7274.2019.01.152中图分类号:TP311.13 文献标示码:A 文章编码:1672-7274(2019)01-0194-01

数据挖掘概念与技术原书第版范明孟小峰绎课后习题修订稿

数据挖掘概念与技术原书第版范明孟小峰绎课 后习题 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

(a)它是又一种广告宣传吗? (b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗? (c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。你认为数据挖掘也是机器学习研究进化的结果吗你能基于该学科的发展历史提出这一观点吗针对统计学和模式识别领域,做相同的事。 (d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。 答:简单地说,数据挖掘其实就是从大量的数据中发现有用的信息,它是从大量数据中挖掘有趣模式和知识的过程。数据挖掘不是一种广告宣传,而是身处在信息时代数据如此庞大的今天,我们对由海量的数据转化为有用信息的迫切需要,所以它是信息技术自然进化的结果,而不是一种广告宣传。 数据挖掘也不是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它涉及到了很多领域的技术,比如统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、神经网络、高性能计算、算法以及许多应用领域的大量技术。 数据挖掘起始于20世纪下半叶,是在当时多个学科发展的基础上发展起来的。随着数据库技术的发展应用,数据的积累不断膨胀,导致简单的查询和统计已经无法满足企业的商业需求,所以急需一种新型的技术去获取有用的信息,当时计算机

领域的人工智能也取得了巨大进展,进入了机器学习的阶段,人们就将两者结合起来,用数据库管理系统存储数据,用计算机分析数据,这两者的结合就促就以这一门新兴的学科,所以数据挖掘不是机器学习研究进化的结果,而是结合了机器学。 数据挖掘的步骤包括:(1)数据收集;(2)数据清洗、脱敏;(3)数据存储;(4)数据分析;(5)数据可视化。 1.2数据仓库与数据库有何不同他们有哪相似之处 答:数据库是按照数据结构来组织、和管理数据的仓库,它是以一定方式储存在一起、能为多个用户共享、具有尽可能小的的特点、是与应用程序彼此独立的数据集合。 数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据,出于分析性报告和决策支持目的而创建。 不同处:(1)数据库是面向事务的设计,数据仓库是面向主题设计的。 (2)数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。 (3)数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。 (4)数据库是为捕获数据而设计,数据仓库是为分析数据而设计。 相似处:两者都是数据的集合。

相关文档
最新文档