家庭光伏电站建设成本和收益计算

家庭光伏电站建设成本和收益计算
家庭光伏电站建设成本和收益计算

家庭光伏电站建设成本和装机容量(功率)成正比,要根据当前实际的用电量情况来判断需要安装多少千瓦的光伏电站,这样比较经济。也可以建设稍大功率的电站,这样用不完的电可以并网卖给电网公司。一般家庭电站2--5千瓦足够了。

成本主要取决于三个因素:

1. 配件成本:即光伏逆变器、太阳能电池板等。其次就是不同的光伏安装公司有自己的定

价标准。

2. 装机容量(也就是功率)。

3. 光伏政策,也就是补贴政策。

2013年8月26日,国家发改委确定,分布式光伏发电国家级补贴为0.42元/度(税前),原则期限20年。此外,还有地方补贴,不同省份地区补贴力度都不一样,有些省份也没有补贴。家庭光伏发电的收益包括三部分:

1. 补贴赚钱:国家补贴0.42元/度+ 省级补贴+市县补贴(各地不同),不论是自己用了还是

卖了,只要发的电都有补贴。

2. 节省电费:发电自己用,不用交电费,等于赚钱了。

3. 卖电赚钱:用不完的电卖给国家,卖电价格按照当地政府公布的燃煤脱硫机组标杆电价

(各地略有不同)而不是你用电的价格。

家庭光伏发电接入电网的模式有三种可选择:

1、全部自发自用(所发电量全部自己用)

2、自发自用,余电上网(优先自己用,多余卖给电网)

3、全部上网(所发电量全部卖给电网)

家庭光伏发电一般选择第二种,即自发自用,余电上网。这样是不需要蓄电池的,晚上不能发电的时候可以直接用电网的电。

根据上面的三种不同接入电网模式,收益计算的方法如下:

全部自发自用总收益:(当地电价+补贴)×全部发电量

自发自用余电上网总收益:自发自用的电量×当地电价+上网电量×卖电价+补贴×全部

发电量

全部上网总收益:参照光伏标杆上网电价×全部发电量

下面以一个5千瓦的家庭光伏发电站为例,投资收益估算如下:(这里只是举例,不代表准确数据)

装机容量:5千瓦(KW),占地面积:约40-50平方米,投资金额:4~5万元左右,发电量:年均发电6000度,并网模式:自发自用,余电上网,假设年发电量的一半自用,一半上网。

补贴收入:0.42元/度(这里只算国家补贴没算地方补贴)×6000度=2520元

节省电费:3000度×0.63元/度=1890元

卖电收入:3000度×0.4505元/度=1351.5元

年总收益:2520元+1890元+1351.5元=5761.5元。

回本:4万元÷0.57615万元/年=6.94年。

算账:考虑各地的光照资源、地方补贴、产品性价等多种因素,一般在6-10年回本。电站使用年限一般为25年左右,回本后可以免费用电、赚钱。

注意:

1、这里没有计算资金成本,因为即使银行存款也有利息。

2、当地日照时数的65%乘以装机功率计算发电量最接近真实情况。

分布式光伏电站收益率分析

投资收益|分布式光伏电站收益率分析前言 在2016年12月26日,《国家发展改革委关于调整光伏发电陆上风电报告上网电价的通知》中,光伏一、二、三类资源地区的光伏电站标杆电价确定分别0.65、0.75、0.85元/度。这个补贴的下降直接导致了2017年6月30日前的超过20GW 以上的光伏电站疯狂建设、并网。现在又到了年底的大关了,按照“惯例”,新的标杆电价即将出台。虽然不知道到底会降多少,还是来跟大家分析一下在不同电价的情况下,分布式光伏电站的成本需要降低多少才能符合我们的投资要求,并附上的速查表以供各位参考。 因业内大部分电站投资商以融资前税后内部收益率达到8-8.5%作为决策依据,少部分融资成本高的投资商,甚至要求10%以上的收益率作为投资依据。 01 一类光伏资源区 测算条件: 1、项目成本含EPC及路条费用 2、运维成本0.07元/瓦/年,含保险 3、装机容量5MW 4、I类地区有效发电小时数1500小时 5、平均脱硫煤电价0.300元/度 6、电站运营年限25年 7、折旧25年,残值无 8、租金15万/年 9、电站PR值80%

表一:一类地区标杆电价VS建设成本VS全投资项目收益率 由上表可以发现,虽然电价已经降至0.65元/度,投资商成本控制在6元/瓦以下的时候,全额上网项目仍具有相当可观的项目收益率,但是,由于一类地区的限电及欠补严重,项目实际收益率打折现象严重。 02 二类光伏资源区: 4、II类地区有效发电小时数1250小时 5、平均脱硫煤电价0.35元/度 7、折旧25年,残值0 8、租金25万/年 表二:二类地区标杆电价VS建设成本VS全投资项目收益率 由上表可以发现,虽然电价已经降至0.75元/度,投资商成本控制在6元/瓦以下的时候,全额上网项目仍具有相当可观的项目收益率,二类地区的限电情况较少,虽然也面临欠补问题,项目实际收益率较一类区域要好。 03 三类光伏资源区: 4、III类地区有效发电小时数1100小时 5、平均脱硫煤电价0.38元/度 8、屋顶租金25万/年 表三:三类地区标杆电价VS建设成本VS全投资项目收益率 由上表可以发现,虽然电价已经降至0.85元/度,投资商成本控制在5.75元/瓦以下的时候,全额上网项目仍具有相当可观的项目收益率,三类地区的基本没有限电,虽然也面临欠补问题,项目实际收益率较其他二类区域要好。

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

光伏发电成本及投资效益分析(含数字图标)

一、影响光伏发电的成本电价的因素 光伏发电的成本可以用下式表示: Tcost=Cp(1/Per+Rop+Rloan*Rintr-isub)/Hfp (1) 式(1)即为光伏发电的成本电价的计算公式(史博士定律)。它表示出了光伏电站的成本电价Tcost与光伏电站的单位装机成本Cp、投资回收期Per、运营费用比率Rop、贷款状况(包括贷款占投资额的比例Rloan和贷款利息Rintr两个参数)、年等效满负荷发电小时数Hfp、该电站所享受到的其它补贴收入系数等六大因素的具体关系。 有了式(1)的光伏发电成本分析模型,可以对现阶段光伏发电成本做一个简要分析。本分析不考虑电站的其它补贴收入,即令式(1)中的isub=0。 1.1单位装机成本对电价的影响 按照回收期20年,贷款比例为70%,贷款利率7%,运营费用2%计算。假设当地的年满负荷发电时间Hfp=1500小时,则不同的单位装机成本所对应的成本电价见表1-1。 表1-1装机成本Cp对于成本电价的影响 1.2日照时间对于成本电价的影响 按照回收期20年,贷款比例为70%,贷款利率7%,运营费用2%计算。假设单位装机成本为12000元/KW,则不同的满负荷发电时间所对应的成本电价见表1-2。 表1-2年满负荷发电时间对于成本电价的影响 可见,年满负荷发电时间对于成本电价的影响非常大。通常年满负荷发电时间与日照时间是直接相关的。但是,电站系统的设计方式、系统参数、系统追日与否,对年满负荷发电时间的影响都很大。下表给出几个地方的年日照时间与年满负荷发电时间的对照表。 表1-3影响年满负荷发电时间的因素

由上表可见,年日照时间对于年满负发电时间的影响是最大的,但在同样的年日照时间下,采用不同的系统安装方式,以及是否进行功率优化差异也是很大的。 例如,在年日照时间2800小时的地区(我国西北绝大多数是这类地区),固定支架的年满负荷发电时间为1456小时,但如果全部采用追日系统,并增添功率优化模块,则年满负荷发电时间可以达到1808小时。当然,年满负荷发电时间的增加需要投入的增大。但在组件不变的情况下,追加投入还是经济的。 对于追日支架等,除了考虑一次投入外,同时还要考虑当地的气候条件和安装条件,例如,屋顶通常不适宜安装追日系统。对于常有大风的地面电站,那么对于跟踪支架的维修费用可能影响较大。 1.3贷款状况对于成本电价的影响 目前,对于大型地面光伏电站的建设,多多少少都要采用部分银行贷款。银行贷款占总投资的比例以及贷款利息对于光伏电站的成本电价影响十分巨大。 这里,假定装机成本为12000元/KW,按照投资回收期20年,年满负荷发电时间1500小时,运营费用2%的计算条件,对于不同的贷款条件所对应的成本电价进行计算,结果见表1-4。 表1-4贷款条件对于成本电价的影响(电价单位:人民币元/度)

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

光伏成本计算公式

光伏发电成本电价分析的数学模型 史珺 上海普罗新能源有限公司光伏技术研究所 摘要:光伏发电从2005年进入产业化以来,成本不断降低。目前,我国国家发改委制定了1元/度的光伏发电的上网标杆电价。但许多投资者对于光伏发电的成本却感到难以分析,而不敢贸然投资。本文给出了光伏发电成本的数学分析模型,讨论了影响光伏成本电价的因素,如装机成本、日照时间、贷款状况、预期的投资回收期、以及运营费用等。并根据该模型对现阶段光伏发电的投资效益进行了一个投资分析。计算结果表明,在我国西北地区,按照1元/度的上网电价,目前投资光伏电站的投资回收期为10年。 关键词:光伏发电;成本;投资效益;数学模型 中图分类号:TK51 文献标识码:A ...... (前略) 光伏发电的成本,也就是每度电多少钱,不能简单地根据装机成本分析,它与如下五大因素有关: 1)装机成本、2)日照条件(年满负荷发电时间)、3)贷款状况(贷款利息和贷款在总投资的比例)、4)投资回收期(折旧年限)、5)运营维护费用。由于这五大因素每个因素都有其独立的变化性,相互的影响也十分明显。例如,同样的装机成本放在不同的地域、或者同样地域、同样的装机成本、但投资采用了不同的贷款比例,或者采用不同的折旧年限,等等,都会带来截然不同的光伏发电成本价格。 为了进行准确的光伏发电成本的测算,需要对于光伏发电的成本进行详细而科学的分析,这里,给出了一个光伏发电的成本电价的数学分析模型。

1发电成本构成 1.1 装机成本C ivs 装机成本就是一个光伏电站的总投入,它也是光伏电站公司的财务报表上的固定资产。由如下式构成: C ivs= C pan+C str+C asb+C cab+ C bas+ C trc+ C pom+ C inv+ C dis+ C trf+C acc+C con+C mon+C eng+C man+C land(1) 其中,C pan为光伏组件成本;C str为组件支架成本,C asb为安装费,C cab为电缆成本,C bas 为支架基础成本,C trc为追踪系统成本,C pom为功率优化系统成本,C inv为逆变器成本,C dis为高低压配电系统成本,C trf为变压器成本,C acc为外线接入费用,C con为土建(基础、配电房、中控室、宿舍、道路)成本,C mon为电站监控系统成本, C eng为施工与安装费用,C man为施工管理费,C land为土地购置费用。式(1)所计算出的C ivs为装机成本,它实际上就是电站的总投入,也是电站的固定资产。 1.2 运营管理成本(C op) 主要是电站维护和管理费用,光伏电站可以按照总体固定投资提取某一比例进行估算。由于光伏发电在营运过程中,不需要原材料,也没有运动磨损不部件,因此,维护费用很低,也完全可以预见。光伏电站的运营管理成本可用下式表达: C op = C ivs * R op( 2) 其中,R op为运营费率,指运营费用占总投资的比例。通常,维护费用除了人员工资外,主要是备件费用。根据目前为止的光伏电站经验,运营费率通常在1~3%之间。装机容量越大的电站,比例越低。 1.3 财务费用(C fn): 主要是贷款利息。这是光伏电站运营中变数最大的一项。它取决于贷款占总投资的比例R loan和贷款利率R intr:

mw光伏电站投资成本

1mw光伏电站投资成本 分布式发电通常是指利用分散式资源,装机规模较小的、布置在用户附近的发电系统,它一般接入低于35千伏或更低电压等级的电网。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。 目前应用最为广泛的分布式光伏发电系统,是建在城市建筑物屋顶的光伏发电项目。该类项目必须接入公共电网,与公共电网一起为附近的用户供电。如果没有公共电网支撑,分布式系统就无法保证用户的用电可靠性和用电质量。 那么如果是建一个1MW光伏电站需要的投资成本是多少呢? 对于这个问题不好直接给具体的答案。因为一个光伏电站的投资成本的多少涉及到很多部分:1.电站建造需要的场地2.光伏太阳能组件 3.光伏线缆 4.支架 5.逆变器这些是建造光伏电站的必须部分。投资额可以根据你的具体安装光伏组件的总功率来计算,目前这个规模的电站的建造成本大概是8元/w左右,因此1MW的电站话费应该自800万人民币左右。 具体的可以参考下表:

那么有朋友就会问了,我投资这么多收益怎么样呢? 项目的投资效益有主要关注以下几个要素:场址的资源水平、电价、上网电量、投资水平等。为了方便读者查询。本文提供收益查询表格见下表。使用表格前,只需要确定当地资源的峰值小时数,确认投资水平,即可估算查询出项目融资前税前的内部收益率的大致范围。 为了更加清楚的计算出光伏电站的收益,爱普特光能科技给您举例说明: 如某地拟建一个光伏电站,通过查询市场价及获得类似项目经验,可知,现在组件的市场价格为4元/W,逆变站的投资为0.5元/W,电气设备及安装为2.5元/W。接入系统投资为0.35

元/W,建筑工程投资为0.65元/W、估算其他费用为0.8元/W(包括土地、设计、生产准备、建设管理费)。最后估算项目静态总投资为为8.8元/W。 通过分析项目的资源情况,项目电价为0.95元,项目峰值小时数为1800小时,假设项目所发电量可以全部上网,通过查表可知,峰值小时数为1800小时,投资9元/W的项目的融资前税前的内部收益率为9.94%,所以,利用内插法估算在已知投资水平下项目的投资内部收益率在11.51%。

我国光伏发电成本变化分析

我国光伏发电成本变化分析 近年来,特别是“十二五”期间,我国光伏发电发展取得了可喜的成绩,光伏装机规模和发电量均快速增长,至2015 年底,我国光伏发电累计装机容量达到4318 万千瓦(其中地面光伏电站为3712 万千瓦,分布式光伏为606 万千瓦),并网容量4158 万千瓦,年发电量383 亿千瓦时,约占全球光伏装机的1/5 ,并超过德国(光伏装机容量为3960 万千瓦)成为世界光伏装机第一大国。预计2020 年我国光伏装机容量将达到1.2 ~1.5 亿千瓦,2030 年光伏装机将达4~5 亿千瓦,以满足我国2020 年非化石能源占一次能源消费比重达到15% 、2030 年比重达到20% 的能源发展目标。我国光伏发电的快速发展、装机规模的不断扩大,带动了光伏行业的技术进步和材料价格下降,也带来了光伏装机和发电成本的下降,将使我国光伏发电由最初的主要依赖政策补贴转变为逐渐走向电力市场实现平价上网。 光伏电池组件效率持续提升、成本不断下降太阳能光伏发电系统的核心是太阳能电池,又称光伏电池。近年来,中国太阳能电池与组件规模迅速扩大的同时,产业化太阳能电池与组件效率也大幅提升,太阳能电池每年绝对效率平均提升 0.3% 左右。2014 年,高效多晶太阳能电池产业化平均效率达17.5% 以上,2014 年底最高测试值已达20.76%; 单晶

太阳能电池产业效率达19% 以上,效率已达到或超过国际平均水平。2015 年底,我国多晶及单晶太阳能电池产业化平均效率分别达到18.3% 和19.5% 。 伴随着太阳能电池效率持续提升,太阳能电池组件成本 也在大幅下降。2007 年我国太阳能电池组件价格为每瓦约4.8 美元(36 元),2010 年底我国太阳能电池的平均成本为每瓦1.2 ~1.4 美元,2014 年底每瓦降至0.62 美元(3.8 元)以下,7 年时间成本下降到了原来的1/10(见下图),光伏组件成本已在2010 ~2013 年间大幅下降。2015 年,我国晶硅组件平均价格为0.568 美元/瓦,光伏制造商单晶硅太阳能电池组件的直接制造成本约0.5 美元/瓦,多晶硅太阳能电池组件成本已降至0.48 美元/瓦以下。 同样条件下,美国平均每瓦组件的制造成本为0.68 ~0.70 美元,受制造成本影响,目前全球光伏产业也逐渐向少数国家和地区集中,中国大陆、台湾地区、马来西亚、美国是当今全球排在前四位的主要光伏制造产业集中地。预计未来3~5 年,中国晶体硅太阳能电池成本将下降至每瓦0.4 美元左右(2.5 元)。 光伏发电系统单位建设成本持续下降已建地面光伏电站初始投资的大小占光伏电站总成本的大部分,土地费用等占整

屋顶光伏电站成本计算与效益分析

屋顶光伏电站成本计算与效益分析 一、补贴说明: 光伏发电每度电国家补贴元每度补贴20 年,各个地方还有地方补贴,北京为元每度补贴 5 年。 二、方式说明 (一)全自发自用 指的是屋顶光伏所发电量全额消纳。 此方式投资回报率最高,例如商业用电元每度,光伏发电国家每度电补贴元(按照实际用量算)补贴20 年,在此基础上北京市政府再给补贴每度电元(各地政策不一样),那么一度电实际产生的价值为元(省了元电费再加上元补贴)在此基础上的投资回报率非常高,年收益率在30%左右。 (二)自发自用余额上网指的是屋顶光伏所发电量不能全额消纳,剩余电量上网卖给供电局。 此方式自用部分同上,上网部分按照当地上网电价加国家补贴计算。例如北京上网电价元每度,那么一度电的实际价值为元加元。此方式投资回报率取决于用电量,用电量越大回报率就越高。 (三)全额上网 指的是屋顶光伏所发电量全部卖给供电局,根据各地上网电价不同,一般 元每度电。此方式投资回报率较低,年收益率在15%左右。 根据前段时间炒得很热的“绿屋顶行动”计划,我们也总结了一下,测算方法如下

成本核算: 光伏发电成本目前大约7元/瓦,10平米屋顶大概能安装1kw的光伏,也就是说10 平米的屋顶成本7000 元。 发电量计算: 1kw 的光伏组件光照一小时能发电1 度(理论值),年发电量是 按照年日均光照时间计算的,以北京为例,北京的日均光照时间大约为小时,那么1kw的光伏组件每天能发电度(理论值) 案例分析: 以1w平米屋顶做例子,1w平米可安装1000kw的光伏组件,那么投资成本为700w1w平米屋顶每天可发电1000*=4200度(理论),年发电1533000度。 如果是自发自用,每度电能产生元的价值,那么一年能产生1533000*=3096660 元,也就是说2 年多就能回本,屋顶光伏发电设备的理论使用寿命是25年(实际还要长)也就是说后面20多年都是纯利润。(实际发电量因设备损耗等原因会低一些,但也不会太多,投资回报率在 3 年多一点。) 三、合作方式 租赁屋顶: 由我公司出资按照平米数计算每年支付屋顶租金。(具体费用根据用电量和并网方式计算) 电费打折:屋顶光伏所发电量给予企业价格折扣。(一般为9折左右,根据具体项目不同进行确定) 自行出资建设:由我方承担工程施工,企业出资建设,之后电站 由企业持有,免费用电加补贴。 合资建设:由企业和我方共同出资建设,根据出资比例逐年进行

光伏并网项目的效率及损耗

将各种损耗都算进来后光伏并网电站系统效率通常为多少呢? 光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。另外,系统效率对发电量的影响更为重要。 1组件的衰减 1,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象; 2,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下; 3,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。 2系统效率 个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。 影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。 1)灰尘、雨水遮挡引起的效率降低 大型光伏电站一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理方阵组件频繁度一般的情况下,采用衰减数值:8%; 2)温度引起的效率降低 太阳能电池组件会因温度变化而输出电压降低、电流增大,组件实际效率降低,发电量减少,因此,温度引起的效率降低是必须要考虑的一个重要因素,在设计时考虑温度变化引起的电压变化,并根据该变化选择组件串联数量,保证组件能在绝大部分时间内工作在最大跟踪功率范围内,考虑0.45%/K的功率变化、考虑各月辐照量计算加权平均值,可以计算得到加权平均值,因不同地域环境温度存在一定差异,对系统效率影响存在一定差异,因此考虑温度引起系统效率降低取值为3%。 3)组件串联不匹配产生的效率降低 由于生产工艺问题,导致不同组件之间功率及电流存在一定偏差,单块电池组件对系统影响不大,但光伏并网电站是由很多电池组件串并联以后组成,因组件之间功率及电流的偏差,对光伏电站的发电效率就会存在一定的影响。组件串联因为电流不一致产生的效率降低,选择该效率为2%的降低。 4)直流部分线缆功率损耗 根据设计经验,常规20MWP光伏并网发电项目使用光伏专用电缆用量约为350km,汇流箱至直流配电柜的电力电缆(一般使用规格型号为ZR-YJV22-1kV-2*70mm2)用量约为35km,经计算得直流部分的线缆损耗3%。 5)逆变器的功率损耗 目前国内生产的大功率逆变器(500kW)效率基本均达到97.5%的系统效率,并网逆变器采用无变压器型,通过双分裂变压器隔离2个并联的逆变器,逆变器内部不考虑变压器效率,即逆变器功率损耗可为97.5%,取97.5%。 6)交流线缆的功率损耗 由于光伏并网电站一般采用就地升压方式进行并网,交流线缆通常为高压电缆,该部分

光伏成本计算公式

光伏成本计算公式 Revised by Hanlin on 10 January 2021

光伏发电成本电价分析的数学模型 史珺 上海普罗新能源有限公司光伏技术研究所 摘要:光伏发电从2005年进入产业化以来,成本不断降低。目前,我国国家发改委制定了1元/度的光伏发电的上网标杆电价。但许多投资者对于光伏发电的成本却感到难以分析,而不敢贸然投资。本文给出了光伏发电成本的数学分析模型,讨论了影响光伏成本电价的因素,如装机成本、日照时间、贷款状况、预期的投资回收期、以及运营费用等。并根据该模型对现阶段光伏发电的投资效益进行了一个投资分析。计算结果表明,在我国西北地区,按照1元/度的上网电价,目前投资光伏电站的投资回收期为10年。 关键词:光伏发电;成本;投资效益;数学模型 中图分类号:TK51 文献标识码:A ...... (前略) 光伏发电的成本,也就是每度电多少钱,不能简单地根据装机成本分析,它与如下五大因素有关: 1)装机成本、2)日照条件(年满负荷发电时间)、3)贷款状况(贷款利息和贷款在总投资的比例)、4)投资回收期(折旧年限)、5)运营维护费用。由于这五大因素每个因素都有其独立的变化性,相互的影响也十分明显。例如,同样的

装机成本放在不同的地域、或者同样地域、同样的装机成本、但投资采用了不同的贷款比例,或者采用不同的折旧年限,等等,都会带来截然不同的光伏发电成本价格。 为了进行准确的光伏发电成本的测算,需要对于光伏发电的成本进行详细而科学的分析,这里,给出了一个光伏发电的成本电价的数学分析模型。 1发电成本构成 装机成本C ivs 装机成本就是一个光伏电站的总投入,它也是光伏电站公司的财务报表上的固定资产。由如下式构成: C ivs = C pan +C str +C asb +C cab + C bas + C trc + C pom + C inv + C dis + C trf +C acc +C con +C mon +C eng +C man +C land (1) 其中,C pan 为光伏组件成本;C str 为组件支架成本,C asb 为安装费,C cab 为电缆成 本,C bas 为支架基础成本,C trc 为追踪系统成本,C pom 为功率优化系统成本,C inv 为逆 变器成本,C dis 为高低压配电系统成本,C trf 为变压器成本,C acc 为外线接入费用, C con 为土建(基础、配电房、中控室、宿舍、道路)成本,C mon 为电站监控系统成 本, C eng 为施工与安装费用,C man 为施工管理费,C land 为土地购置费用。式(1)所 计算出的C ivs 为装机成本,它实际上就是电站的总投入,也是电站的固定资产。 运营管理成本(C op )

分布式光伏发电项目系统效率测试方法

附件十一 光伏电站系统效率保证协议 (发包方)与(承包方)经友好协商,一致同意将以下内容作为光伏发电项目总承包合同技术协议的补充协议。 一、光伏电站系统效率要求 发包方要求光伏电站的系统效率(Performance Ratio,即PR值)≥80%。 二、光伏电站系统效率测试方法 1. 目的 光伏电站系统效率测试(PR性能测试)用于证明光伏电站的整体转换效率能够满足电站设计转换效率的要求。 本测试方法是参照《Functional test,Seven day performance test criteria and procedure》,如有不明确的地方,以《Functional test,Seven day performance test criteria and procedure》为准。 2. 最小辐照度要求 测试期间的最小辐照度要求:每15分钟记录一个数据,至少获得40个光伏阵列倾斜面的太阳辐照度采样值数据,并且所测数据不小于600瓦每平方米。如果在测试初期最小辐照度要求不能达到上述要求,应该延长测试周期直至满足最小辐照度要求,或者由合同双方来确定测试周期。 简言之,在测试周期内,至少获得40个数据,每个数据持续15分钟,并且每个数据均满足辐照度大于600瓦每平方米的要求。 3. 性能测试方 合同双方应指定一个经双方认可的性能测试方(独立第三方)来负责测试事宜。性能测试方应起草一份详细的测试方案,并至少在测试开始前30天将方案提交给业主,经业主审核同意后才能实施。性能测试方应保证测试的权威性、公正性。 4. 一般测试条件 测试应该从测试周期第一天的零点开始,到测试周期最后一天的零点结束,

大型光伏电站系统效率计算方法优化分析

大型光伏电站系统效率计算方法优化分析 曹晓宁康巍连乾钧 光伏产业近年来继风力发电后发展最快的行业,据不完全统计,目前全世界范围内光伏发电系统的装机容量已超过40GWp,而且在持续高速增长。近几年我国光伏产业发展速度迅猛,2010年国内光伏发电新增装机容量达到520MWp,大大的超过了2009年的228MWp,而2011年国内光伏发电新增装机容量预计达到2GWp。对于大批进入运营阶段的光伏电站,电站运行状况的检测和运行维护工作将成为研究重点。 系统效率是表征光伏电站运行性能的最终指标,对于一个投入运行的光伏电站,在电站容量和光辐照量一致的情况下,系统效率越高就代表发电量越大。因此系统效率的准确性重要,本文就系统效率的计算方法的优化进行讨论。 一、系统效率的定义 一个发电系统的年发电量衡量这个系统优劣的最直接的标准,在进行一个发电系统的设计时,都要对发电系统的年发电量进行估算,作为后期运行维护的参考标准。进行发电量的估算首先要算出并网光伏发电系统的总效率,并网光伏发电系统的总效率由太阳电池阵列的效率、逆变器的效率、交流并网效率三部分组成。 太阳电池阵列效率η1,太阳电池阵列在太阳辐射强度下,实际的直流输出功率与理论功率之比。太阳电池阵列在能量转换与传输过程中的损失包括:组件匹配损失、表面尘埃遮挡损失、光谱失配损失、温度的影响以及直流线路损失等。 逆变器转换效率η2,逆变器输出的交流电功率与直流输入功率之比。包括逆变器转换的损失、最大功率点跟踪(MPPT)精度损失等。 并网效率η3,即从逆变器输出汇流并入南区10kV变电站400V低压母线段的传输效率,其中最主要的是升压变压器的效率和交流电气连接的线路损耗。 综上,光伏电站系统的总效率为η=η1*η2*η3,在进行光伏电站的设计和设备选型时,可针对性的进行优化设计,提高光伏电站的系统效率。 二、系统效率的算法 对于一个光伏电站,进行系统效率的测算时,通常是用实际计量的发电量与理论发电量相比得到,具体如下所示。

我国光伏发电成本变化分析

我国光伏发电成本变化分析 2015年来,特别是“十二五”期间,我国光伏发电发展取得了可喜的成绩,光伏装机规模和发电量均快速增长,至2015年底,我国光伏发电累计装机容量达到4318万千瓦(其中地面光伏电站为3712万千瓦,分布式光伏为606万千瓦),并网容量4158万千瓦,年发电量383亿千瓦时,约占全球光伏装机的1/5,并超过德国(光伏装机容量为3960万千瓦)成为世界光伏装机第一大国。预计2020年我国光伏装机容量将达到1.2~1.5亿千瓦,2030年光伏装机将达4~5亿千瓦,以满足我国2020年非化石能源占一次能源消费比重达到15%、2030年比重达到20%的能源发展目标。我国光伏发电的快速发展、装机规模的不断扩大,带动了光伏行业的技术进步和材料价格下降,也带来了光伏装机和发电成本的下降,将使我国光伏发电由最初的主要依赖政策补贴转变为逐渐走向电力市场实现平价上网。 光伏电池组件效率持续提升、成本不断下降 太阳能光伏发电系统的核心是太阳能电池,又称光伏电池。近年来,中国太阳能电池与组件规模迅速扩大的同时,产业化太阳能电池与组件效率也大幅提升,太阳能电池每年绝对效率平均提升0.3%左右。2014年,高效多晶太阳能电池产业化平均效率达17.5%以上,2014年底最高测试值已达20.76%;单晶太阳能电池产业效率达19%以上,效率已达到或超过国际平均水平。2015年底,我国多晶及单晶太阳能电池产业化平均效率分别达到18.3%和19.5%。 伴随着太阳能电池效率持续提升,太阳能电池组件成本也在大幅下降。2007年我国太阳能电池组件价格为每瓦约4.8美元(36元),2010年底我国太阳能电池的平均成本为每瓦1.2~1.4美元,2014年底每瓦降至0.62美元(3.8元)以下,7年时间成本下降到了原来的1/10(见下图),光伏组件成本已在2010~2013年间大幅下降。2015年,我国晶硅组件平均价格为0.568美元/瓦,光伏制造商单晶硅太阳能电池组件的直接制造成本约0.5美元/瓦,多晶硅太阳能电池组件成本已降至0.48美元/瓦以下。

光伏电站生产成本标准

企业标准 Q/CPI XX—2015 光伏电站生产成本标准(试行) 2015—04— 发布 2015—04— 实施 中国电力投资集团公司发布

目 录 前 言..........................................................III 1 范围 (1) 2 规范性引用文件 (1) 3 定义与术语 (1) 4 购入电力费 (2) 4.1说明 (2) 4.2制定依据 (2) 4.3制定方法 (2) 4.4弹性征收 (2) 5 职工薪酬 (2) 5.1构成要素 (2) 5.2制定方法 (2) 6 折旧费 (3) 6.1制定依据 (3) 6.2制定方法 (3) 7 材料费 (3) 7.1构成要素 (3) 7.2分类 (3) 7.3制定方法 (3) 7.4调整系数 (4) 8 修理费 (4) 8.1内容 (4) 8.2分类 (4) 8.3制定方法 (4) 8.4调整系数 (5) 9 委托运行费 (5) 9.1分类 (5)

9.2内容 (5) 9.3制定依据 (5) 9.4制定方法 (5) 10 其他费用 (5) 10.1分类 (5) 10.2制定依据 (6) 10.3制定方法 (6) 附录 A (7) 表A.1光伏电站材料费定额标准 (7) 表A.2光伏电站检修费定额标准(一) (8) 表A.3光伏电站检修费定额标准(二) (9) 表A.4光伏电站其他费用定额标准 (10)

前 言 为了规范和统一集团公司光伏电站生产成本指标,完善集团公司生产标准成本体系,强化集团公司系统各光伏电站的综合计划和预算编制、审查、控制和考评,特制订本标准。 本标准由集团公司财务部提出、组织起草并归口管理。 本标准主要起草单位(部门):集团公司财务部、水电与新能源部、科研院、黄河公司。 本标准主要起草人:方格飞、袁蕊、陈卓卓、葛明波 本标准系首次发布。

光伏组件效率及系统效率

一、组件的衰减: 光致衰减也称S-W效应。a-Si∶H薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而使薄膜的性能下降,称为Staebler-Wronski效应(D.L.Staebler和C.R.Wronski最早发现。个人认为光伏组件的衰减实际就是硅片性能的衰减,首先硅片在长期有氧坏境中会发生缓慢化学反应被氧化,从而降低性能,这是组件长期衰减的主要原因;在真空成型过程中会以一定比例掺杂硼(空穴)和磷(给体),提高硅片的载流子迁移率,从而提高组件性能,但是硼作为缺电子原子会与氧原子(给体)发生复合反应,降低载流子迁移率,从而降低组件的性能,这是组件第一年衰减2%左右的主要原因。 组件的衰减分为: 1,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象; 2,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下; 3,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。 二、系统效率: (个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。 影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。 1)灰尘、雨水遮挡引起的效率降低 大型光伏电站一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理方阵组件频繁度一般的情况下,采用衰减数值:8%; 2)温度引起的效率降低 太阳能电池组件会因温度变化而输出电压降低、电流增大,组件实际效率降低,发电量减少,因此,温度引起的效率降低是必须要考虑的一个重要因素,在设计时考虑温度变化引起的电压变化,并根据该变化选择组件串联数量,保证组件能在绝大部分时间内工作在最大跟踪功率范围内,考虑0.45%/K的功率变化、考虑各月辐照量计算加权平均值,可以计算得到加权平均值,因不同地域环境温度

分布式光伏电站投资成本分析

分布式光伏电站投资成本分析 有人留言问兔子君,说为什么现在市场上分布式光伏电站的造价报价范围从5元/瓦-10元/瓦不等,到底什么价格才是正常的呢今天兔子君与大家一同解剖光伏电站的构成及成本,让大家在购买光伏电站设备及选择安装服务商的时候做到心中有数。 兔子君简要的介绍一个分布式光伏电站都会涉及到什么内容及相应的价格 1、光伏组件 光伏组件是光伏电站的核心构成部分,组件的发电效率和寿命关系着电站建成后的收益,价格也占电站总价的50%以上,因此选购光伏组件的选购是电站建设中的重点。然而,光伏组件在生产过程中,为了确保客户的发电性能,一般都会在出厂时做严格检测,凡是一致化程度较差或有一些瑕疵的组件都会做等外品处理,也就是说每个厂家在生产过程中都会产生一定数量的等外品(B类组件)。这种B类组件,首先从质量角度就有问题,自然发电量无法与A类组件相比;其次,因为存在瑕疵,后续的功率和衰减率也无法保证能符合国家规定,最关键的,这类组件根本无法保证能有25年的使用寿命。某些不良安装服务商采用劣质的降级组件,可以将电站的造价极大的降低,代价则是业主收益完全无法保证。 目前市场上一线厂商组件价格:265W以上多晶光伏组件价格在元/瓦不等;而单晶270W以上组件价格则在元/瓦之间不等;CIGS组件价格在4-6元/瓦不等。当然,具体的购买价格会随组件的品牌、组件功率以及项目规模而定。当然,目前行业预期在630后,组件会有较大幅度的降价潮,兔子君预期降价在元/瓦。 2、逆变器 根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。目前光伏系统一般采用并网方式,逆变器将光伏产生的直流电变成交流电,将电力送入电网。逆变器是电力转化的上网的关键设备,因此逆变器的选择与购买对系统的稳定运营有极大的影响。 目前500KW-1MW的集中式逆变器价格约在元/瓦,组串式逆变器在元/瓦,微

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率n的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 厂巴一AX—〃仏匕 A几A几A几 其中,At为太阳电池总而积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的而积,同时计算得到的转换效率要高一些。Pin为单位而积的入射光功率。实际测量时是在标准条件下得到的:Pin取标准光强:AM 条件,即在25°C下,Pin 二1000W / nA 2.光伏系统综合效率(PR) n 总=HIX n 2X n 3 光伏阵列效率Hl:是光伏阵列在1000 W/m2太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率112:是逆变器输岀的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率A3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV高压端,主要是升压变压器和交流线缆损失,按96%计算。

3. 理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m:的光照条件下,lOOOWp太阳电池1小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量二系统峰值功率(kw) x等效日照小时数(h) x系统效率 等效峰值日照小时数h/d二(日太阳辐照量m7d) /lkW/m: (H照时数:辐射强度^120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的 地点和规模确定以后,前两个因素基木己经定了,要想提高发电量,只能提高 此图:来源于王斯成老师的ppi 灿观

中国光伏电站投资成本分析

中国光伏电站投资成本分析 xx 年中国光伏电站投资成本分析 中国产业* 的《xx-2020 年太阳能发电站行业市场监测及投资前景预测报告》显示: xx 年8 月30 日,国家发改委发出《关于发挥价格杠杆作用促进光伏产业健康发展* 》(发改价格[xx]1638 号),根据各地太阳能资源条件和建设成本,将全国(不含西藏地区)分为3 类太阳能资源区,制定相应地面光伏电站标杆上网电价(含税)。 地面光伏电站标杆上网电价 本次出台政策的资源分区基本按照国内太阳能资源从西北向东南逐步降低的大趋势分布划分。3类资源区有以下特点(由于政策中未 含西藏自治区,以下分析均不包含西藏): (1)I 类资源区主要集中在我国西北地区,包含少量华北北部地区。该类区域的纬度约在北纬35 度-49 度之间,大部分地区分布在我国纬度较高的地区,分布较为集中,总辐射较高,约在5400-7200 MJ/m2。

(2)II 类资源区主要集中在我国华北、东北地区,包含少量西北、西南南部地区。该类区域的纬度在北纬21 度-53 度之间,分布范围很广,总辐射值的变化范围也很大,约在3600-7200MJ/m2之间,但除新疆南部、青海西南部、四川东部和云南东部外,其他大部分区域总辐射值在4500- 6300MJ/m2之间,在国内属中等水平。新疆南部、青海西南部部分地区总辐射值较高,可达到7200 MJ/mz2;而四川东部、云南东部部分地区总辐射值较低,仅3600 MJ/m2。 (3)III 类资源区主要集中在华东、中南地区,包含少量西南和西北的南部地区。该类区域纬度在北纬18 度-39 度之间,大部分区域位于我国纬度较低区域,该区域总辐射值约在3600-5700MJ/m2。但在该区域中辐射较高的区域基本为沿海的少量区域,其他区域总辐射值约在3600-5200 MJ/m2 之间。 根据已有项目,从III 类资源区中各挑选一个规模为20 M W。的代表性项目,进行资源及发电量分析。 根据政策,执行标杆上网电价期限原则上为20 年,因此本文发电年限按20 年计算。 3 个项目20 年平均发电量及等效满发小时数

相关文档
最新文档