蛋白质在大脑发育中的重要作用

蛋白质在大脑发育中的重要作用
蛋白质在大脑发育中的重要作用

蛋白质在大脑发育中的重要作用

广东省人民医院儿科主任医师沈亦

蛋白质是人体一切细胞和组织结构的重要成分,是生命运动的重要物质基础,它在肌肉和神经细胞内的含量最多。

蛋白质进入消化道后经酶类水解为肽类和氨基酸,最后以小分子肽和游离氨基酸的形式被小肠吸收。现已知蛋白质由18种氨基酸组成,食物中蛋白质的营养价值是看它所含氨基酸的种类及比例,是否和人体需要的氨基酸相符合。如符合者,即为高营养蛋白质或称优质蛋白质。

体内的氨基酸分两类:一、为非必需氨基酸,它可以由体内合成或体内物质转化而成,不一定要从食物中取得;二、为体内不能合成,只有从外源(食物中)获取,所以称必需氨基酸。人类有赖氨酸、色氨酸、苯丙氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸等8种必需氨基酸,儿童因生长、发育需要多一种“组氨酸”为9种必需氨基酸。

蛋白质在脑中的重量约占35%(26%~45%),是脑细胞生长、发育和神经纤维修复、再生的主要成分之一,人类脑细胞接受、产生、传导信息功能和智力发展如记忆、语言、思维等方面均以氨基酸为物质基础。新生儿和婴儿如果缺乏氨基酸,常会影响大脑发育,轻者致大脑发育迟缓,严重者智力缺陷;9种必需氨基酸中任何一种氨基酸缺乏,都可使生长发生障碍,个别氨基酸缺乏可产生一些特殊症状,

如异亮氨酸缺乏会惊厥,赖氨酸缺乏可有恶心、眩晕现象。因此为了保证胎儿和各年龄组大脑的发育,并起健脑、益智作用,必须注意对孕妇、儿童补充足够蛋白质,供给这些必须氨基酸。

各种鱼、肉、蛋、动物内脏、动物脑组织和奶制品类食物中含有与人脑细胞内相近比例的氨基酸;米、麦类植物蛋白中缺乏赖氨酸;豆类蛋白质缺少蛋氨酸和胱氨酸,因此在小儿食谱中经常要有动物性的优质蛋白质,配合各种混合性的植物蛋白,养成不偏食的习惯。

免疫学的临床应用

免疫学的临床应用有两个方面:一是应用免疫理论来阐明许多疾病的发病机制和发展规律;二是应用免疫学原理和技术来诊断和防治疾病。本章内容主要是后者。此外,免疫学不仅应用于传统的传染病中,而且在肿瘤、自身免疫病、免疫缺陷病、器官移植、生殖免疫等中均广泛应用。 免疫学防治是指应用免疫制剂或免疫调节药物调整机体的免疫功能,对疾病进行预防和治疗。特异性免疫的获得方式有自然免疫和人工免疫两种。自然免疫主要指机体感染病原体后建立的特异性免疫,也包括胎儿或新生儿经胎盘或乳汁从母体获得抗体而产生的免疫。人工免疫则是人为地使机体获得免疫,是免疫预防的重要手段,包括人工自动免疫、人工被动免疫和过继免疫。 人工自动免疫是给机体接种疫苗或类毒素等抗原物质,刺激机体产生特异性免疫。国内常将用细菌制作的人工主动免疫的生物制品称为菌苗,而将用病毒、立克次体螺旋体等制成的生物制品称为疫苗,而国际上把细菌性制剂,病毒性制剂及类毒素统称为疫苗。经人工自动免疫产生的免疫力出现较慢,但免疫力较持久,故临床上多用于预防。人工自动免疫制剂其主要有灭活疫苗、减毒活疫苗、类毒素、以及各种新型疫苗。 人工被动免疫是给机体输入抗体等制剂,使机体获得特异性免疫力,输入抗体后立即获得免疫力,但维持时间短,约2~3周,临床上用于治疗或紧急预防。人工被动免疫的生物制品主要有抗毒素、抗菌血清与抗病毒血清、胎盘球蛋白和血浆丙种球蛋白。 过继免疫治疗是指给患者转输具有在体内继续扩增效应细胞的一种疗法。如给免疫缺陷病患者转输骨髓细胞;给肿瘤患者输入体外激活扩增的特异肿瘤浸润淋巴细胞或非特异性的LAK细胞等。应用时应考虑供者与受者之间HLA型别是否相同,否则输注的细胞会被迅速清除,或者发生移植物抗宿主反应。再如造血干细胞移植:取患者自身或异体骨髓或脐血输入患者,移植物中的多能干细胞可在体内定居、增殖、分化、使患者恢复造血功能和形成免疫力。造血干细胞移植可用于治疗再生障碍性贫血、白血病以及某些免疫缺陷病和自身免疫病等。 在医学制剂影响免疫功能的制剂主要有两类:免疫增强剂和免疫仰制剂。免疫增强剂是指通过不同方式,达到增强机体免疫力的一类免疫治疗药物。临床上常用于治疗与免疫功能低下有关的疾病及免疫缺陷病。免疫增强剂种类很多,按其作用的先决条件可分为三类:一是免疫替代剂,用来代替某些具有免疫增强作用的生物因子的药物。按其作用机制可分为提高巨噬细胞吞噬功能的药物,提高细胞免疫功能的药物,提高体液免疫功能的药物等;按其作用性质又可分为特异性免疫增强剂和非特异性免疫增强剂;按其来源则可分为细菌性免疫增强剂及非细菌性免疫增强剂。二是免疫恢复剂,能增强被抑制的免疫功能,但对正常免疫功能作用不大。常用的免疫增强剂如:卡介苗、短小棒状杆菌、内毒素、免疫核糖核酸、胸腺素、转移因子、双链聚核苷酸、佐剂等。免疫抑制剂是对机体的免疫反应具有抑制作用的药物。能抑制与免疫反应有关细胞的增殖和功能,能降低抗体免疫反应的制剂。常用的免疫抑制剂主要有五类:(1)糖皮质激素类,如可的松和强的松、泼尼松龙等;(2)微生物代谢产物,如环孢菌素和藤霉素等;(3)抗代谢物,如硫唑嘌呤和6-巯基嘌呤等;(4)多克隆和单克隆抗淋巴细胞抗体,如抗淋巴细胞球蛋白和OKT3等;(5)烷化剂类,如环磷酰胺等。 免疫学诊断是指应用免疫学原理和方法对传染病、免疫性疾病等进行和免疫功能进行测定。由于免疫学检测具有高特异性和敏感性,因此常用临床诊断的一种重要手段。目前常用的免疫诊断方法具有体液免疫试验。细胞免疫试验和皮肤试验三种。 抗原抗体反应在体内表现为溶细胞、杀菌、促进吞噬、中和毒素或引起免疫病理损伤等;在体外可出现凝集、沉淀、细胞溶解和补体结合等可见反应。由于抗体主要存在于血清中,临床上多用血清标本进行试验,故体外的抗原抗体反应曾被称为血清学反应。但随着免疫学

光电技术在生物医学中的应用一现状与发展

论文题目: 光电技术在生物医学中的应用——现状与发展 学院 专业名称 班级学号 学生 2013年12月19日

摘要: 简要介绍光电技术在生物医学应用中的发展概况,从基因表达与蛋白质——蛋白质相互作用研究方面,重点讨论了生物分子光子技术的特点与优势,阐明基于分子光学标记的光学成像技术是重要的实时在体监测手段,最后简要讨论了医学光学成像技术在组织功能成像和脑功能成像中的应用原理。 关键词:光电技术,医学诊断与治疗,分子光子学,医学成像

1.生物医学光子学发展简介 光电技术在生物医学中的应用实质上就是生物医学光子学的研究畴。生物医学光子学是近年来受到国际光学界和生物医学界广泛关注的研究热点。在国际上一般称为生物医学光子学或生物医学光学。 光子学以量子为单位,研究能量的产生、探测、传输与信息处理。光子技术在生物与医学中的应用即定义为生物医学光子学,其相应产业涉及人类疾病的诊断、预防、监护、治疗以及保健、康复等。研究容包括:光子医学与光子生物学,X-射线成像,MRI ,PET等。近年来,生物医学光子学在生物活检、光动力治疗、细胞结构与功能检测、对基因表达规律的在体观测等问题上取得了可喜研究成果,目前正在从宏观到微观多层面上对大脑活动与功能进行研究。美国《科学》杂志在最近儿年已发表相关论文近20篇。随着光子学技术的发展,生物医学光子学将在多层次上对研究生物体特别是人体的结构、功能和其他生命现象产生重要影响。 在国际上已经成立了国际生物医学光学学会(International Biomedical Optics Society),简称IBOS。IBOS每年与国际光学工程学会(SPIE)联合举办学术会议。国外 学术交流方面,作为生物医学工程和光学工程领域重要国际会议的“生物医学光学国际学术研讨会”(International BiomedicalOptics Symposium,简称BIOS)每年在美国和欧洲各举办一次。在国,国家自然科学基金委员会生命科学部与信息科学部联合发起并承办的全国光子生物学与光子医学学术研讨会已经举办了六届。在第六届学术会议上发表学术论文75篇,论文摘要27篇。 从光电技术(或光子技术)在生物医学中的应用现状可以看到,光子医学与光子生物学的研究和应用围是广泛而且深入的,并正在形成有特色的学科和产业。例如,由于生物超微弱发光与生物体的细胞分裂、细胞死亡、光合作用、生物氧化、解毒作用、肿瘤发生、细胞和细胞间的信息传递与功能调节等重要的生命过程有着密切的联系,基于生物超微弱发光的生物光子技术在肿瘤诊断、农业、环境监测、食品监测和药理研究等方面己经得到应用。 下面主要从生物分子光子技术和医学光学成像技术两个方面介绍当前的研究现状 与发展趋势。

蛋白质的重要性

蛋白质的重要性 身体除了水之外,最大的组成成分就是蛋白质,约占身体的17%。头发、指甲、皮肤及肌肉组织几乎完全由蛋白质构成。活的细胞需要蛋白质作为它们的构架,生物体如果缺少了蛋白质就无法生存。 蛋白质的来源 自然界中,蛋白质都是与脂肪或碳水化合物以脂蛋白或糖蛋白的形式出现,蛋清、乳酪及瘦肉中的蛋白质,是我们所能发现最纯的蛋白质。植物能够合成它们本身所需的蛋白质,但是动物就必需由食物中获得。在所有的生物组织中,我们都可发现蛋白质的存在,所以在生长发育的过程中,蛋白质是特别地重要,对于年轻的生命,富含蛋白质的食物来源尤为重要;植物的种子,如坚果、豆类及谷类,情形也是一样的。动物性的蛋白质来源包括所有的肉类、家禽及鱼类等食物。 蛋白质的种类 人体内的蛋白质是由22种氨基酸所组成,这22种氨基酸广泛地分布在大部的动物和植物性食物中,其中有9种是人类生存所必需的氨基酸,而且完全要由食物所供给,其他的氨基酸则可以由身体自行合成。 22种氨基酸名称如下: 异亮氨酸*、亮氨酸*、赖氨酸*、]蛋氨酸*、苯丙氨酸*、苏氨酸*、色氨酸*、缬氨酸*、丙氨酸、天门冬氨酸、胱氨酸、谷氨酸、天冬酰胺酸、半胱氨酸、谷酰胺、甘氨酸、鸟氨酸、脯氨酸、丝氨酸、酪氨酸、精氨酸、组氨酸+ [注] * 为必需氨基酸;+为儿童必需氨基酸,成年人可自行由食物合成。 由名字上我们知道,氨基酸必定含有一个氨基及一个羧基,他们的化学式分别是NH2及COOH。不同的氨基酸,它们所含的碳、氢及氧的组成也不一样,其中蛋氨酸及胱氨酸还含有硫原子。 我们知道,所有的英文单词都是由26个字母以不同的组合方式构成的,蛋白质也是一样,上千种蛋白质是由氨基酸以各种不同的方式组合而成的。牛奶中的蛋白质与小麦中的蛋白质不同,因为它们所含的氨基酸及种类不同。同样地,体内各部位地蛋白质也不尽相同,比如,肝中的蛋白质与肌肉中的蛋白质就不一样。牛奶中所含的蛋白质(酪蛋白)或蛋清中所含的蛋白质(卵蛋白),都是由数百个甚至数千个氨基酸所构成,极为复杂。 负责构建及修补的蛋白质 我们已经知道蛋白质如何通过酶分解成氨基酸,然后由消化壁吸收。当它

营养与人体关系,营养重要性

一、六大营养素与人体的关系 健康是美容的基础,而健康与营养息息相关,因为物质与精神统一的人体,是一个极为复杂的生命现象,成千上万个生物化学反应,每时每刻都在体内进行,维持这一切的过程就是营养,六大营养素在人体内各司其职,有构成人体的物质没有进行代谢的物质,有的作为人体活动的能量,有的参与调节生理活动,健康的人体需要全面的营养。 1、蛋白质: 蛋白质是构成一切生命现象的物质基础,成年人体内约含蛋白质17%,恩格斯说:“生命是蛋白质的存在方式。”蛋白质与核酸是生命活动中最重要的物质基础,人的任何一种细胞,组织、和器官都有蛋白质构成,人体内的蛋白质有10万多种。 蛋白质的生理功能: 1、参与肌肉收缩。 2、催化,人体内的化学反应是通过生物催化酶的参与而完成的,而酶的重要组成部分就是蛋白质。 3、组成结缔组织,软骨,肌腱,毛发皮肤等结缔组织都是以蛋白质做为主要成分。 4、免疫,蛋白质还是人体激素和抗体的组成部分。如甲状腺、性激素、促成长激素,催乳激素。 5、运载血液运输脂肪时由蛋白质与脂肪结合形成脂蛋白质形成输送。 6、遗传任何生物都有自我复制的能力,这中复制称为遗传,蛋白质是遗传因子的主要成分。 功能: 当人体能量摄入不足时,蛋白质可以氧化分解释放能量,每克蛋白质在体内完全氧化分解,可以释放出4。1千卡热能。 蛋白质的质量,蛋白质的需要量取决于蛋白质的质量,与人体蛋白质组成越接近的食物蛋白,质量越好,因为蛋白质是由多种氨基酸组成的,食物中的蛋白质在消化道中被分解成氨基酸后被吸收,蛋白质的组成状况决定蛋白质的质量,因为人体内有些氨基酸可以相互转换,而有八种氨基酸,人体是不能转换的,这在营养学中称为必须氨基酸,而这8种只能由食物中摄取,食物中的蛋白质所含氨基酸的种类和数量决定了蛋白质的生理价值(尤其是必须氨基酸的种类与数量),越接近人体利用率质量越好,可利用价值越大。 动物性蛋白质的主要的来源是瘦猪肉(牛肉)鸡肉黄及水产品等,这类蛋白质所含必须氨基酸种类齐全,数量充足,不但能维持人体的健康。并能促进生长发育,属于完全蛋白质。 植物性蛋白质的只要来源有各种豆类,杂粮及米面等,这类蛋白质所含氨基酸的种类比较全。但是含量不均,可以用于维持生命,但是不能促进生长发育,属于半完全蛋白质,谷物中的黄豆及其豆制品蛋白质的含量较高,其氨基酸的种类和含量都很高。 人体需要量 人体对蛋白质的最低需求量是每日30—45克,但是需求量并不等于供给量,因为有蛋白质质量和人体吸收利用的等问题,中国医学科学院推荐的供给量是:成人美千克体重每日供给1-1。5克,一般男子每日应供给75克。女子每日应供给70克。 蛋白质摄入量与人体的关系: A、蛋白质供给量不足,当蛋白质摄入量长期不足,人体会出项生长缓慢,体重下降,贫血等现象,皮肤也会相对松弛,缺乏弹性,容易产生皱纹。 B、摄入过量蛋白质摄取过多,在体内也会以脂肪的形成贮存起来,使人发胖,加重消化系统,肝脏及肾脏的负担。

免疫学在医学中的应用

早在1000多年前,人们就发现了免疫现象,并由此发展起来对传染病的免疫预防。中国人首先发明了用人痘痂皮接种以预防天花,并且在十五世纪中后期的明朝隆庆年间有较大改进,并得到广泛的应用。后来,这一伟大发明传播到日本、朝鲜、俄国、土耳其和英国等许多国家。后英国医生琴纳据此研究出用牛痘菌预防天花的方法,为免疫学对传染病的预防开辟了广阔的前景。全世界能在20世纪70年代末消灭天花,接种牛痘菌发挥了巨大作用。[1] 19世纪末,法国化学家、微生物学家巴斯德于研究人和动物的传染病时,分析了免疫现象。并在琴纳的启发下,他发明用减毒炭疽杆菌苗株制成疫苗,预防动物的炭疽病;用减毒狂犬病毒株制成疫苗,预防人类的狂犬病。 著名动物学家梅契尼科夫在长期研究昆虫和动物细胞吞噬异物的现象后,于1883年指出体内的白细胞和肝、脾组织中的吞噬细胞具有吞噬和消化细菌的能力。德国细菌学家、免疫学家贝林于1890年发现免疫血清中有抗白喉毒素的抗毒素存在,日本细菌学家北里柴三郎也发现抗破伤风毒素的抗毒素,两人共同研究血清疗法成功,对治疗白喉和破伤风患者取得良好效果。 从此,人们开始探讨免疫机制,把细胞的吞噬作用和抗毒素的中和作用看成是特异性免疫的根据,并逐步开展细胞免疫和体液免疫两大学派的争鸣。 细胞免疫学派的首领是梅契尼科夫,体液免疫学派的首领是德国细菌学家埃尔利希。埃尔利希用生物化学方法研究免疫现象,特别是以蛋白质化学和糖化学作为基础,探讨抗原和抗体的本质及其相互作用,于1896年提出抗体形成的侧链学说,这一学说直到今天还具有实际意义。两大学派的争鸣促进了免疫学的发展。 到20世纪60年代,对体液免疫的研究已经达到分子生物学的水平,已经弄清抗体的分子结构和功能。同时,对细胞免疫的研究也取得了明显的进展,过去认为小淋巴细胞是处于衰老终末期,而现在

高三一轮复习课练2 细胞中的蛋白质和核酸

课练2细胞中的蛋白质和核酸 小题狂练②小题是基础练小题提分快 1.[2018·全国卷Ⅰ]生物体内的DNA常与蛋白质结合,以DNA—蛋白质复合物的形式存在。下列相关叙述错误的是() A.真核细胞染色体和染色质中都存在DNA—蛋白质复合物 B.真核细胞的核中有DNA—蛋白质复合物,而原核细胞的拟核中没有 C.若复合物中的某蛋白参与DNA复制,则该蛋白可能是DNA聚合酶 D.若复合物中正在进行RNA的合成,则该复合物中含有RNA聚合酶 答案:B 解析:真核细胞内的染色体和染色质都主要是由DNA和蛋白质组成,都存在DNA—蛋白质复合物,A正确;原核细胞无成形的细胞核,DNA裸露存在,不含染色体(质),但是其DNA会在相关酶的催化下发生复制,DNA分子复制时会出现DNA—蛋白质复合物,B错误;DNA复制需要DNA聚合酶,若复合物中的某蛋白参与DNA复制,则该蛋白可能为DNA聚合酶,C正确;在DNA转录合成RNA时,需要有RNA聚合酶的参与,故该DNA—蛋白质复合物中含有RNA聚合酶,D正确。 2.[2019·湖南联考]如图所示为某细胞中某多肽的结构简式,R1、R2和R3是3个不同的化学基团。下列有关分析,不正确的是() A.该多肽中的肽键数是2 B.该多肽是由3个氨基酸脱去3分子水缩合形成的 C.该多肽至少含有一个氨基和一个羧基 D.该化合物能与双缩脲试剂发生紫色反应 答案:B 解析:图中所示的化合物为三肽,含有2个肽键,是由3个氨基酸脱去2分子水形成的,A正确,B错误;该多肽为链状,至少含有一个氨基和一个羧基(R基中也可能含有氨基和羧基),C正确;含有两个或两个以上肽键的化合物均能与双缩脲试剂发生紫色反应,D正确。 3.[2019·西安月考]下图表示生物体内某种化合物的形成和在细胞中分布的情况。下列有关分析,错误的是() A.化学元素A包括五种大量元素 B.物质C中的D能被吡罗红染成红色

生物技术在医学领域的应用

微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物

合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

论蛋白质在生命体研究中的作用

论蛋白质在生命体研究中的作用 摘要:蛋白质是生物体中广泛存在的一类生物大分子,具有特定立体结构的和生物活性以及诸多功能,根据这些功能我们可以将其应用于蛋白质的分子设计、蛋白质功能的改造、疾病的基因治疗以及新型耐抗药性药物的开发与设计甚至是发现生物进化的规律等先进科研领域上。因此,蛋白质在生命体研究中具有极其重要的作用。 蛋白质是生物体中广泛存在的一类生物大分子,是由核酸编码的氨基酸之间通过氨基和羧基形成的肽键连接而成的肽链,经翻译后加工而生成的产物。具有特定立体结构的和生物活性。蛋白质在体内是构成多种重要生理活性物质的成分,参与调节生理功能。如核蛋白构成细胞核并影响细胞功能;酶蛋白具有促进物质消化、吸收和利用的作用;免疫蛋白具有维持机体免疫功能的作用。下面具体介绍蛋白质的一些功能: ①催化:蛋白质的一个最重要的生理功能是作为生物体新陈代谢的 催化剂——酶,酶是蛋白质中最大的一类,生物体内的各种化学反应几乎都是在相应的酶的参与下进行的。酶的催化效率远大于合成的催化剂。 ②调节:许多蛋白质能调节其他蛋白质执行其生理功能的能力,这 些蛋白质称为调节蛋白,最著名的例子是胰腺兰氏小岛的β细胞分泌的胰岛素,它是调节动物体内血糖代谢的一种激素。另一类调节蛋白参与基因表达的调控,它们激活或是抑制遗传信息转录为RNA。 ③转运:第三类是转运蛋白,其功能是从一地到另一地转运特定的 物质。一类转运蛋白如血红蛋白,血清清蛋白,是通过血流转运物质的,另一类转运蛋白是膜转运蛋白,它们能通过渗透性屏障(细胞膜)转运代谢物和养分(葡萄糖、氨基酸等),如葡糖转运蛋白。 ④贮存:另一类蛋白质是氨基酸的聚合物,又因氮素通常是生长的 限制性养分,所以生物体必要时就利用蛋白质作为提供充足氮素的一种方式,蛋白质除为生物体发育提供C、H、O、N、S元素外,

细胞中的蛋白质

第3讲细胞中的蛋白质 考纲考情——知考向核心素养——提考能 最新考 纲 1.蛋白质的结构和功能(Ⅱ) 2.生物膜系统的结构和功 能(Ⅱ)——侧重内膜系统 对分泌蛋白的合成和运输 生命观 念 蛋白质的结构多样性 决定功能多样性及生 物膜系统的功能建立 生命部分与整体的观 念 近三年 考情 2018·全国卷Ⅰ(1,2)、 2018·全国卷Ⅱ(1,5,30)、 2018·全国卷Ⅲ(1)、2017·全 国卷Ⅰ(2,3)、 2016·全国卷Ⅰ(1,2)、 2016·全国卷Ⅱ(2) 科学思 维 归纳演绎蛋白质的合 成及有关计算比较 社会责 任 蛋白质与人体健康及 疾病治疗方面的应 用,养成良好的生活 习惯 考点一蛋白质的结构和功能 1.组成蛋白质的氨基酸元素组成、结构与种类

2.蛋白质的合成及其结构、功能的多样性 (1)二肽的形成过程 ①过程a :脱水缩合,物质b :二肽,结构c :肽键。 ②H 2O 中H 来源于氨基和羧基;O 来源于羧基。 (2)蛋白质的形成过程 氨基酸――→脱水缩合 多肽(链)――→一或数条 盘曲、折叠蛋白质 3.蛋白质结构与功能的多样性 ■助学巧记 巧用“一、二、三、四、五”助记蛋白质的结构与功能

教材VS高考 1.真题重组判断正误 (1)真核细胞染色体和染色质中都存在DNA—蛋白质复合物(2018·全国卷Ⅰ,2A)() (2)植物叶肉细胞中液泡膜与类囊体膜上的蛋白质不同(2016·海南卷,3B)() (3)将抗体溶于NaCl溶液中会造成其生物活性的丧失(2017·海南卷,1C)() (4)核糖体上合成的蛋白质不能在细胞核中发挥作用(2015·海南卷,11D)() 提示(1)√(2)√ (3)×盐析过程蛋白质空间结构没有破坏,所以其活性没有丧失。 (4)×所有蛋白质均在核糖体合成。 2.深挖教材 (1)(中图版必修1 P29图示2-1-5拓展)多肽与蛋白质有什么区别?提示多肽和蛋白质的区别:在核糖体上合成的是多肽,没有明显的空间结构,多肽必须经过加工后,才能形成具有一定空间结构和特定

蛋白质对人体的六大作用

蛋白质对人体的六大作用 2008-3-4 13:34:3 在人体中,蛋白质的主要生理作用表现在六个方面: 1)构成和修复身体各种组织细胞的材料 人的神经、肌肉、内脏、血液、骨骼等,甚至包括体外的头皮、指甲都含有蛋白质,这些组织细胞每天都在不断地更新。因此,人体必须每天摄入一定量的蛋白质,作为构成和修复组织的材料。 2)构成酶、激素和抗体 人体的新陈代谢实际上是通过化学反应来实现的,在人体化学反应的过程中,离不开酶的催化作用,如果没有酶,生命活动就无法进行,这些各具特殊功能的酶,均是由蛋白质构成。此外,一些调节生理功能的激素和胰岛素,以及提高肌体抵抗能力儿保护肌体免受致病微生物侵害的抗体,也是以蛋白质为主要原料构成的。 3)维持正常的血浆渗透压,是血浆和组织之间的物质交换保持平衡 如果膳食中长期缺乏蛋白质,血浆蛋白特别是xx的含量就会降低,血液内的水分便会过多地渗入周围组织,造成临床上的营养不良性水肿。 4)供给肌体能量 在正常膳食情况下,肌体可将完成主要功能而剩余的蛋白质,氧化分解转化为能量。不过,从整个肌体而言,蛋白质的这方面功能是微不足道的。 5)维持肌体的酸碱平衡 肌体内组织细胞必须处于合适的酸碱度范围内,才能完成其正常的生理活动。肌体的这种维持酸碱平衡的能力是通过肺、肾脏以及血液缓冲系统来实现的。蛋白质缓冲体系是血液缓冲系统的重要组成部分,因此说蛋白质在维持肌体酸碱平衡方面起着十分重要的作用。 6)运输氧气及营养物质

血红蛋白可以携带氧气到身体的各个部分,供组织细胞代谢使用。体内有许多营养素必须与某种特异的蛋白质结合,将其作为载体才能运转,例如运铁蛋白、钙结合蛋白、视黄醇蛋白等都属于此类。 蛋白质原料前十位(每100xx) > (99.90xx) (84.10xx) (65.30xx) (64.70xx) (60.00xx) (55.60xx) (54.10xx) (50.20xx) (47.80xx) (47.60xx) 蛋白质菜谱前十位(每100xx) > (84.10xx) (74.22xx) (71.21xx) (66.94xx) (66.03xx)

蛋白质对儿童成长的重要性

蛋白质:成长的营养基石 蛋白质是人体的主要构成物质,更是生命存在的重要基础,人体各组织无一不含蛋白质。蛋白质在人类必需的六大类营养物质(即蛋白质、脂类、碳水化合物、维生素、矿物质和水)中,起着特殊而又具有中心性的作用。 让孩子更高 身体的生长发育可视为蛋白质不断积累的过程,蛋白质对生长发育期的儿童尤为重要。儿童正处于成长的时期,他们每一天的成长、每一次的进步,都离不开蛋白质的作用。蛋白质构成了他们成才的营养基础。如果说成长就像盖楼,那么蛋白质就是最基础也最重要的建筑材料——砖头。少年儿童处于快速生长发育期,新陈代谢旺盛,除了保证自身细胞的正常更新外,还需要不断形成新的组织细胞以达成体格的增长变化,其每天生长及结构改变的细胞数以百亿计。如此巨大的“工程”需要征用非常多的营养,尤其是蛋白质。 蛋白质参与制造肌肉、骨骼、血液、皮肤,帮助身体制造新组织,构成体内如酶、激素、抗体等具重要生理作用的物质;尤为重要的是,蛋白质为骨骼的构建提供了甘氨酸、脯氨酸、赖氨酸、羟脯氨酸和羟赖氨酸等营养成分,它们是骨胶原蛋白的主要组成成分。 少年儿童的生理特点决定了其对营养有更高需求,而正是蛋白质为孩子身高的天天向上奠定了基石。所以,想让孩子长高,就需要及时满足孩子对优质蛋白质的需求。 让孩子更聪明 蛋白质是脑细胞的主要成分之一,也是脑细胞兴奋和抑制过程的物质基础。它对人的语言、思考、记忆、神经传导、运动等方面都起着重要的作用。蛋白质缺乏会直接影响脑发育,使神经传递受限,表现为反应迟钝。 儿童及少年期是智力发育的关键期。婴儿出生时脑重量约为成人脑重的1/4,长到6周岁时约有1200克,为成人脑重的90%,余下10%的增长将在学龄期至青春期完成,各阶段均需注意蛋白质摄取的质与量。因此,每天补充足量的蛋白质,是维持少年儿童智力发育的必需条件。 儿童的免疫系统仍不完善,尤其是6岁前的幼儿正处于“生理免疫功能不全期”,相关免疫器官未被完全激活,免疫球蛋白合成不足,极易受病菌攻击,直至发育到12岁后,才能进入免疫功能的相对稳定期。而且,在儿童某些疾病的急性期,常伴有细胞免疫的紊乱,甚至由此继发其他感染。另外,消炎药也会影响儿童免疫功能,不仅使耐药菌株增加,还会破坏菌群平衡,形成内源性感染。因此,儿童更需要从营养上来增强体质、提升免疫力。 为孩子免疫力提供保障 蛋白质是免疫系统包括免疫器官、免疫细胞和免疫活性物质等的物质基础;也是与免疫力有所关联的许多微量营养素(如维生素A、铁等)吸收及运转的载体;此外,蛋白质分解所提供的各种氨基酸也能通过不同作用机理来增强免疫力,在免疫反应中起重要作用。 因此,为了增强儿童免疫力,家长要注意在其膳食中搭配富含优质蛋白的食物。 怎样搭配补充蛋白质更科学 对于生长发育阶段的儿童,其蛋白质需要量比成人高,世界卫生组织建议每日摄入量在2~3克/公 斤体重。例如4岁儿童每日的蛋白质摄入量约为50克,以后将逐岁递增。那么儿童又该如何科学地补充蛋白质呢? 蛋白质根据其来源,可分为动物性蛋白质和植物性蛋白质两大类。动物蛋白质所含的必需氨基酸种类

食品安全的重要性

食品安全 俗话说得好“民以食为天”。食品安全是国家越来越关注的问题。各个国家的气候和地形不同,造成了食品的种类多样化,可一些食品的安全问题则更需重视,往食品内添加化学物质的商品越来越多,这是一种很严重社会问题。 世界卫生组织(WHO)规定,成人每日化学调味品的摄入量每公斤体重不能超过120毫克,还有一些牛奶和饼干中含有三聚氰胺,一些人把氮含量的三聚氰胺掺进牛奶,提高蛋白质的浓度,因为牛奶的蛋白质含量越高,等级也就会越高,三聚氰胺能提高牛奶蛋白质的浓质。但摄取大量三聚氰胺会堆积在肾脏里,导致小便拉不出来。大量的三聚氰胺更会对我们身体的肾脏、膀胱、尿道等产生危害。 食品添加使用用多了也会对身体健康有害。所以使用食品添加剂时,必须遵循以下几点。首先,为了不对人体产生伤害,必须使用不会在人体堆积的少量的食品添加剂;其次,温度或湿度的改变不应引起食品的改变,同时也要保持食品原有的营养价值。相同的食物,做法不同,产生的卡路里也不一样。所以撑握了方法,就可以减少食物的卡路里。例如,最好少

放刺激性的香料,把食物做得清谈些。在烹调肉类时,要先把肉在开水里焯一下去掉油脂后再做菜,做烤肉时,可以利用铁架子沥出油脂。紫菜或海带等海藻类做成拌菜吃比较好。如果一定要做油炸的食物时,食物外面蘸的面酱一定要尽量少一些。 水占我们身体的60%~~~70%,在我们的体内流动,运送其他的营养素、调节体温,并使关节柔软。另外,水还可以将身体不需要的物质排出体外,因此水对于维持我们的身体健康起到了非常重要的作用。所以日常生活中正确的饮水也是非常重要的,尽量饮用干净的水。因为食品的生产和质量的好坏,有很多的人有食物中毒而有生命危险的危害,所以我们要应当增加对安全食品常识,分清食品的好坏,远离伪劣食品;小学生更是应当克制住自己的欲望,不要给那些三无产品以可乘之机。 “以人为本,安全第一”,为了我们的健康,为了更加美好而灿烂的明天。希望有一天,国家能让每一个老百姓都能吃上安全放心的食品。

浅谈免疫学在生物学、医学、药学等领域的应用

浅谈免疫学在生物学、医学、药学等领域的应用 摘要:免疫学技术在国内外的应用已是日趋广泛。近年来,由于任何有关抗原抗体的研究均可使用免疫技术,使免疫学技术早已超越了医学领域,广泛应用于植物学、动物学、药学、生物学等其他科学领域,免疫学技术本身也在迅速发展。免疫学是生命科学及医学领域中的前沿学科,本文仅就免疫学在某些领域的具体应用做简要的评述。 关键词:免疫酶;免疫检测;免疫和中医药 一、免疫学在分子生物学中的应用 免疫学技术已从早年应用于微生物学发展到应用于分子生物医学研究的许多方面。目前,它已成为兴学科生物学研究的重要工具之一。在此次免疫技术涉及的分子生物学应用中,我们所涉及到免疫电泳技术、放射免疫技术、免疫酶技术、免疫荧光定位技术等等,我们就免疫酶技术做一概述。 免疫酶技术是一项定位,定性和定量的综合性技术,已是将一定的酶通过共价桥而标记抗体,在抗原抗体结合时,酶与底物作用,产生有色物质,对后者可进行定位或定量检测。现已有酶免疫测定法,酶联免疫吸附试验和均向酶免疫测定等方法。后一种方法是利用游离抗原与标记抗原竞争结合抗体,如果游离抗原浓度高,就会抢去抗体,使供氢体得以接触酶而使酶的活性增加。用分光光度记可测出反应前后酶活性的变化。免疫酶技术如与新技术进一步结合,可提高其灵敏度和可靠性。

二、免疫学在医学中的应用 免疫学在医学中广泛应用于传染病预防,疾病治疗,免疫诊断。现代免疫学认为,机体的免疫功能是对抗原刺激的应答,而免疫应答又表现为免疫系统识别自己和排除非己的能力。免疫功能根据免疫识别发挥作用。这种功能大致有对外源性异物(主要是传染性因子)的免疫防御;去除衰退或损伤细胞的免疫,以保持自身稳定;消除突变细胞的免疫监视,即免疫防御,免疫自稳,免疫监视。 免疫学细胞免疫测定。 近代免疫学广泛采用了细胞生物学、免疫血清学、免疫标记、免疫组化等多方面技术,不断发展和完善了一系列细胞免疫检测技术,用于检测各类免疫细胞的表面标志(包括抗原及受体)、细胞的活化、增殖、吞噬、杀伤功能、各种细胞因子的活性或含量等方面。这些技术为深入研究和认识机体免疫系统的生理、病理改变,阐明某些疾病的发病机制和临床诊治提供了有用的手段。随着细胞免疫学的迅猛发展,时有新的细胞免疫检测技术出现。近年来,新发展的项目集中在对有关细胞因子以及细胞受体方面的检测。我们以此为例简述淋巴细胞转化试验。 淋巴细胞转化试验:人类淋巴细胞在体外与特异性抗原(如结核菌素)或非特异性有丝分裂原(如植物血凝素,PHA)等一起孵育,T细胞即被激活而向淋巴母细胞转化。T细胞转化过程可伴随有DNA、RNA、蛋白质的合成增加,最后导致细胞分裂。在光学显微镜下可计数转化后

蛋白质的作用(九种作用)

蛋白质 蛋白质的缺乏症 1、体质较弱易生病。 2、儿童和青少年身体发育受阻。 3、抵抗力下降,容易疲劳。 4、消瘦、腹胀水肿、精神呆滞、活动能力不足。 5、孕妇缺乏蛋白质,可影响胎儿的正常发育。 蛋白质的主要食物来源 鱼禽肉蛋提供动物蛋白。 蔬菜、谷物、豆类提供植物蛋白。 蛋白质 蛋白质约占人体重量的20%。 纽崔莱蛋白质粉的特点:一优、二宝、三低、四健康 一优:优质高蛋白蛋白质含量高达百分之九十。 二宝:含卵磷脂(调节大脑功能,调节血脂促进胆固醇的代谢)、异黄酮(植物的雌激素可以调节内分泌、它是双向调节,激素水平应该高的时候它不高,它就能给你调高了。对更年期女性特别有好处。对骨质蔬松、心脑血管疾病有好处,可以调节血脂,有抗氧化作用。 三低:(低脂肪、低胆固醇。低热量)、和它相反就是三高。 四健:对妇女健康、心脏健康、运动健康、抗癌症。 16、什么是优质蛋白质?(1)大豆和动物蛋白。(2)纽崔莱蛋白质粉提供优质高蛋白,一勺可以提供8克人体必须的蛋白质它可以完全被人体吸收。经国家相关部门检验是安全的产品。(3)三低的特点可以让人们以更健康的方式补充蛋白质。动物蛋白质摄入过多会会引起三高,给你带来健康上的隐患。(4)二氧化硅取代磷酸酸钙。它起到抗结块。不含香精、色素、防腐剂。不含乳糖。食物中蛋白质的含量:咱们中国人讲究好吃,什么好吃养 牛肉:100克含20克蛋白质,但长时间的煮蛋白质会大打折扣。 羊肉:100克含13克蛋白质,但胆固醇含量高173毫克,热量也高。 猪肉:100克含蛋白质9.5克,油脂60克。我们吃猪肉多,从来没有关注油的含量,所以心脑血管病的发病率大大提高。 鸡蛋里胆固醇含量特别高。每个鸡蛋含330毫克胆固醇,猪肉里的油专门让鸡蛋里的胆固醇沉积在血管壁上。所以得富裕病的人特别多。主要是营养不均衡造成的。 黄豆里每100克含蛋白质36克,但黄豆里缺蛋氨酸。牛奶里含有蛋氨酸,安利公司把牛奶里的蛋氨酸拿过来,把牛奶里的其它成分去掉。这是最完美的。纽崔莱的蛋白质粉里含有9种必须氨基酸。米面里缺赖氨酸。男人40多岁秃顶,有的人过敏。赖氨酸参与人体胶原蛋白的合成。人体里有100多种蛋白质中有50多种叫胶原蛋白,也就是说人体里能合成的氨基酸加上必须氨基酸组成20几

免疫学在医学发展中的作用

免疫学在医学发展中的作用 摘要:现代免疫学已成为医学中的前沿科学,免疫学发展水平是反映一个国家综合科学实力及发展水平的指标之一。免疫学在20世纪取得的辉煌成就,在消灭传染病及理解人类感染及非感染性疾病方面获得的巨大成效,在揭示生命活动基本规律,发展生物论和方法上的任何一次突破和进展,均会极大地促进医学的发展。 关键词:免疫学,应用 1、 免疫学为人类防治疾病作出了重要贡献,并有更加广阔的需 求和应用 人类生存和发展依赖于与有害环境和疾病的抗争和防御。基于最初对免疫学的基本要素“抗原与抗体”的认识和应用,疫苗的预防接种使人类得以消灭及控制流行已久的严重传染病。从18世纪牛痘苗的发明应用,到1980年世界卫生组织(WHO)宣布“天花已在全世界被消灭”,到鼠疫、霍乱、黄热病等等的有效控制。免疫学在抗感染性疾病方面取得了辉煌的成就。抗体的应用,也从20世纪初最早的马源抗体用作临床治疗,到用抗体进行ABO血型鉴定,使异体间输血成为可能,到如今基因工程技术利用小鼠生产出的完全人化抗体,应用于肿瘤及自身免疫病的治疗。免疫学为医学各领域带来了全新的突破。 多年来,免疫学基础理论的发展,使免疫学进入到现代免疫学时期,免疫学研究主要以基因活化及分子作用为基础,理解免疫细胞的生命活动与功能,理解细胞与细胞间及免疫系统与机体整体间的功能。基于现代免疫学对“免疫应答及免疫效应是免疫学核心”的认识,以及对“抗原特异的适应性免疫应答”的深入理解,建立了以免疫学有效防治相关疾病的基础。从而使免疫学家可以利用新型研发的疫苗去征服严重威胁人类生命的传染病,如艾滋病、肝炎,结核;可以从免疫学角度深入认识并解决肿瘤、心脑血管疾病、自身免疫性疾病、老年疾呆等困扰人类已久的疾病以及新认识的疯牛病;可以发展以干细胞的异体移植为主体的再生医学,免疫学的介入,将提供有力的研究支持,开辟全新的争决途径。目前,新的医学研究发现心脑血管疾病的发病,与外来的病原体与血管壁的某种抗原成分借分子模拟,发生抗原的交叉递呈,引起自身免疫应答有密切关系。由治疗医学模式向预防医学模式的转变是现代医学发展的方向。人们如何保持自己的健康?免疫学可提供提高人体自身免疫力的有效手段,从而能解决日益突出的老年医学问题,精神

电子学在医学上的应用

生物医学电子学是应用电子技术解决生物医学中的问题,从生命体本身的特殊性出发,来研究生物医学信号的检测、处理、显示与记录等电子学在生物医学应用中的理论、方法与手段。 生物医学电子学作为一个独立学科是从二十世纪五十年代确立并逐步发展起来的。但是在生物医学领域中,大量的电子学的科学技术知识和成果已经获得广泛应用,激发了生物医学欧诺工作着与工程师或物理学家之间的密切合作。生物医学电子学发展十分迅速,研究领域不断括宽,地位日益重要,展示了越来越广阔的发展前景。生物医学电子学综合应用电子学和有关工程技术的理论和方法,从工程科学的角度研究生物、人体的结构和功能以及功能与结构之间的相互关系。[1] 电子学由产生的那刻,就注定是为其他学科服务,也与其他学科共同发展。特别是在生物电被发现后,生物医学和电子学更是一拍即合,相互扶持,共同为人类的健康服务和发展着。 1676年,光学显微镜的发明,使人类进入了微观的世界,推动着医学的发展。1895年,X射线的发现,使得医学更上一层楼。上世纪三十年代,电子显微镜的产生推动着微生物学的发展,也因此使医学更进入了更精微的世界。 随着生物医学电子学的发展,电子技术逐步深入医学领域:医学的电子设备、人造器官等等。如果这些技术和设备消失了,那么,很多的医疗技术也会随之消失,甚至很多小毛病也会因此没检查出来结果变大病然后死亡。 说到医疗的电子设备,很多人都了解,例如呼吸机、CT、心电图仪器等。下面,就详细讲解心图仪器: 心电图是一种经胸腔的以时间为单位记录心脏的电生理活动,并通过皮肤上的电极捕捉并记录下来的诊疗技术。这是一种无创性的记录方式

人体心脏工作产生的生物电流在身体表面不同部位产生不同电势,并且随心跳的节律呈现规律性的升降变化,通过电极将变化着的电位差检测并记录下来就是心电图(ECG)。心电信号是一种带宽为至100Hz(有时高达1kHz),幅度在10μV~5mv 的微弱交流信号,并且混杂有人体生物电干扰以及各种外部电磁干扰。如何从环境噪声中提取微弱的心电信号是设计的难点和要点。[2] 低成本低功耗便携式简易心电图仪是设计的最大考量。它顺应了保健电子产品设计的发展趋势。系统采用常见电池供电,能采集标准导联方式I或II心电信号,通过放大、滤波得模拟心电信号(ECG),并能利用液晶实时显示或存储回放ECG波形。 分析可知,简易心电图仪系统主要包括输入回路、前置放大模块、后级放大模块、滤波网络模块以及存储回放等模块。设计重点在于前置放大模块,和滤波网络模块和数字化存储回放部分。 在未来,可植入式的装置可能会应用于相性心电图的记录和诊断。这些装置还有可能通过兴奋某些神经(如,迷走神经)的方式来防止心律失常的发生。此外,这些装置还可能释放药物,如β受体阻断剂,甚至可以直接对心脏进行除颤。 作为交叉科学,生物医学电子学的研究是双向的:一方面将电子学用于生物和医学领域,使这些领域的研究方式从定性提高到定量、从宏观到微观、从静态到动态、从单向信息到多项信息;另一方面生命过程中揭示出的许多规律,特别是经过亿万年进化而形成的生物信息处理的优异特性将会给电子学科以重要的启示,这不仅会推动电子学的发展,还将会使信息科学发生革命性的变革。 参考文献: [1]李刚.生物医学电子学[M].北京:电子工业出版社,2008 [2]易淑华,胡苗苗,曹鹏.简易心电图仪[DB/OL].,2010-08-17/2012-05-24

免疫学在生物学、医学、药学等领域的应用

浅谈免疫学在生物学、医学、药学等领域得应用 摘要:免疫学技术在国内外得应用已就是日趋广泛。近年来,由于任何有关抗原抗体得研究均可使用免疫技术,使免疫学技术早已超越了医学领域,广泛应用于植物学、动物学、药学、生物学等其她科学领域,免疫学技术本身也在迅速发展。免疫学就是生命科学及医学领域中得前沿学科,本文仅就免疫学在某些领域得具体应用做简要得评述。 关键词:免疫酶;免疫检测;免疫与中医药 一、免疫学在分子生物学中得应用 免疫学技术已从早年应用于微生物学发展到应用于分子生物医学研究得许多方面。目前,它已成为兴学科生物学研究得重要工具之一。在此次免疫技术涉及得分子生物学应用中,我们所涉及到免疫电泳技术、放射免疫技术、免疫酶技术、免疫荧光定位技术等等,我们就免疫酶技术做一概述。 免疫酶技术就是一项定位,定性与定量得综合性技术,已就是将一定得酶通过共价桥而标记抗体,在抗原抗体结合时,酶与底物作用,产生有色物质,对后者可进行定位或定量检测。现已有酶免疫测定法,酶联免疫吸附试验与均向酶免疫测定等方法。后一种方法就是利用游离抗原与标记抗原竞争结合抗体,如果游离抗原浓度高,就会抢去抗体,使供氢体得以接触酶而使酶得活性增加。用分光光度记可测出反应前后酶活性得变化。免疫酶技术如与新技术进一步结合,可提高其灵敏度与可靠性。

二、免疫学在医学中得应用 免疫学在医学中广泛应用于传染病预防,疾病治疗,免疫诊断。现代免疫学认为,机体得免疫功能就是对抗原刺激得应答,而免疫应答又表 现为免疫系统识别自己与排除非己得能力。免疫功能根据免疫识别发挥作用。这种功能大致有对外源性异物(主要就是传染性因子)得免疫防御;去除衰退或损伤细胞得免疫,以保持自身稳定;消除突变细胞得免疫监视,即免疫防御,免疫自稳,免疫监视。 免疫学细胞免疫测定。 近代免疫学广泛采用了细胞生物学、免疫血清学、免疫标记、免疫组化等多方面技术,不断发展与完善了一系列细胞免疫检测技术,用于 检测各类免疫细胞得表面标志(包括抗原及受体)、细胞得活化、增殖、吞噬、杀伤功能、各种细胞因子得活性或含量等方面。这些技术为深入研究与认识机体免疫系统得生理、病理改变,阐明某些疾病得发病机制与临床诊治提供了有用得手段。随着细胞免疫学得迅猛发展,时有新得细胞免疫检测技术出现。近年来,新发展得项目集中在对有关细胞因子以及细胞受体方面得检测。我们以此为例简述淋巴细胞转化试验。 淋巴细胞转化试验:人类淋巴细胞在体外与特异性抗原(如结核菌素)或非特异性有丝分裂原(如植物血凝素,PHA)等一起孵育,T细胞即被激活而向淋巴母细胞转化。T细胞转化过程可伴随有DNA、RNA、蛋白质得合成增加,最后导致细胞分裂。在光学显微镜下可计数转化后得

相关文档
最新文档