质粒的提取与鉴定实验报告

质粒的提取与鉴定实验报告
质粒的提取与鉴定实验报告

竭诚为您提供优质文档/双击可除质粒的提取与鉴定实验报告

篇一:质粒DnA测定生化实验报告

生物化学实验报告

姓名:杨晓霞

学号:3120XX0025

专业年级:20XX级口腔

组别:第一实验室

生物化学与分子生物学实验教学中心

篇二:质粒DnA的提取、纯化与鉴定

姓名宿智新学院生命科学学院班级11级生工2班科目分子生物学实验学号20XX00140155第8组

质粒DnA的提取、纯化与鉴定

摘要:本实验利用碱变法从大肠杆菌Dh5?(e.coliDh5?)中提取puc19质粒,旨在学习并掌握质粒DnA提取的原理、纯化和检测方法及琼脂糖凝胶电泳技术。同时通过对质粒DnA的提取、纯化过程及电泳图谱的分析,探讨碱变法提取高质量质粒DnA的关键步骤及影响所提质粒纯度和量的相关

因子。

关键词:碱变法质粒电泳

实验目的:

1.学习并掌握凝胶电泳进行DnA的分离纯化的实验原理。

2.学习并掌握凝胶的制备及电泳方法。

3.学习并掌握凝胶中DnA的分离纯化方法。

4.掌握碱变性提取发的原理及各种试剂的作用。

5.掌握碱变性法提取质粒DnA的方法。

实验原理:

1.质粒DnA的提取——碱变性提取法:

提取和纯化质粒DnA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、eb-氯化铯密度

梯度离心法和wizard法等。其中,碱变性提取法最为经典

和常用,适于不同量质粒DnA的提取。该方法操作简单,易于操作,一般实验室均可进行。提取质粒DnA纯度高,可直接用于酶切、序列测定及分析。eb-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DnA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DnA多为超螺旋构型等优点,但提取成本高,需要超速离心设备。少量提取质粒DnA还可用沸水浴法、wizard法等,沸水浴法提取的质粒DnA中常含有RnA,但不影响限制性核酸内切酶的消化、亚

克隆及连接反应等。

碱变性法提取质粒DnA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DnA。

在细菌细胞中,染色体DnA以双螺旋结构存在,质粒DnA 以共价闭合环状形式存在。细胞破碎后,染色体DnA和质粒DnA均被释放出来,但两者变性与复性所依赖的溶液ph值不同。在ph值高达12.0的碱性溶液中,染色体DnA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DnA的大部分氢键断裂,但两条互补链不完全分离。当用ph值4.6的KAc(或naAc)高盐溶液调节碱性溶液至中性时,变性的质粒DnA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DnA不能复性,而是与不稳定的大分子RnA、蛋白质-sDs 复合物等一起形成缠连的、可见的白色絮状沉淀。这种沉淀通过离心,与复性的溶于溶液的质粒DnA分离。溶于上清的质粒DnA,可用无水乙醇和盐溶液,减少DnA分子之间的同性电荷相斥力,使之凝聚而形成沉淀。由于DnA与RnA性质类似,乙醇沉淀DnA的同时,也伴随着RnA沉淀,可利用RnaseA将RnA降解。质粒DnA溶液中的RnaseA以及一些可溶性蛋白,可通过酚/氯仿抽提除去,最后获得纯度较高的质粒DnA。

姓名宿智新学院生命科学学院班级11级生工2班科目分子生物学实验学号20XX00140155第8组

2.凝胶电泳进行DnA分离纯化:

电泳(electrophoresis)是带电物质在电场中向着与其电荷相反的电极方向移动的现象。各种生物大分子在一定ph 条件下,可以解离成带电荷的离子,在电场中会向相反的电极移动。凝胶是支持电泳介质,它具有分子筛效应。含有电解液的凝胶在电场中,其中的电离子会发生移动,移动的速度可因电离子的大小形态及电荷量的不同而有差异。利用移动速度差异,就可以区别各种大小不同的分子。因而,凝胶电泳可用于分离、鉴定和纯化DnA片段,是分子生物学的核心技术之一。

凝胶电泳技术操作简单而迅速,分辨率高,分辨范围广。此外,凝胶中DnA的位置可以用低浓度荧光插入染料如溴化乙锭(ethidiumbromide,eb)或sYbRgold染色直接观察到,甚至含量少至20pg的双链DnA在紫外激发下也能直接检测到。需要的话,这些分离的DnA条带可以从凝胶中回收,用于各种各样目的的实验。

分子生物学中,常用的两种凝胶为琼脂糖(agarose)和聚丙烯酰胺凝胶。这两种凝胶能灌制成各种形状、大小和孔径,也能以许多不同的构型和方位进行电泳。聚丙烯酰胺凝胶分辨率高,使用于较小分子核酸(5—50(:质粒的提取与鉴定实验报告)0bp)的分离和蛋白质电泳。它的分辨率非常高,长度上相差1bp或质量上相差0.1%的DnA都可以彼此分离,这也是采用聚丙烯酰胺凝胶电泳进行DnA序列分析的分子基

质粒DNA的提取和纯化实验报告

质粒DNA的提取和纯化实验报告

实验一、质粒DNA的提取和纯化 一、实验目的: 1、学习并掌握碱裂解法小量制备质粒DNA的方法。 2、初步了解DNA纯化的原理。 二、实验原理 1、细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 2、质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 3、碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 4、纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 三、实验步骤 1、挑取单菌落接种到含Amp的LB液体培养基试管内(3.5ml/管) 2、将试管放入恒温震荡培养箱中,37℃,200r/min培养12-16h。 3、将菌落转入1.5ml离心管中(尽量倒满)1200r/min,离心30s(沉淀菌体) 4、重复一次第三步的过程 5、弃掉上清液并扣干,加入预冷的Solution1 100微升,剧烈震荡打散菌体

叶绿体色素的提取分离实验报告

叶绿体色素的提取分离、理化性质实验报告 第一部分提取与分离 一实验目的 学习应用薄层色谱法分离叶绿体色素的实验方法 二实验原理 叶绿体是进行光合作用的细胞器。叶绿体中的叶绿体a(C55H72O5N4Mg)、叶绿素b(C55H72O6N4Mg)、胡萝卜素(C40H56)和叶黄素(C40H56O2)与类囊体膜结合成为色素蛋白复合体。这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。提取液可用薄层色谱法加以分离与鉴别。 薄层色谱分析法是将吸附剂均匀的涂在玻璃板上成一薄层,将此吸附剂薄层做固定相,把待分离的样品溶液点在薄层板的下端,然后用一定量的溶剂做流动相,将薄层板的下端浸入到展开剂中。流动相通过毛细管作用由下而上的逐渐浸润薄层板,并带动样品在板上也向上移动,样品中各组分在吸附剂和展开剂之间发生连续不断的吸附、脱附、再吸附、再脱附……的过程。由于吸附剂的吸附能力大小不同,吸附力强的物质相对移动慢一些,而吸附力弱的则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。 三实验材料与试剂 1 新鲜的菠菜叶片 2 体积分数为95%的乙醇,碳酸钙粉末,展开剂(石油醚:丙酮:苯=7:5:1,体积比) 3 天平,研钵,漏斗,三角瓶,剪刀,点样毛细管,层析缸,硅胶预制板,滤纸 四实验步骤 (一)色素提取液的制备 1 取新鲜叶片4至5片(2g左右),洗净,擦干叶表面,去中脉剪碎,放入研钵中。 2 研钵中加入少量碳酸钙粉末,加2至3ml体积分数为95%的乙醇,研磨至糊状,再加10至15ml体积分数为95%的乙醇,上清液用漏斗过滤,残渣再用10ml体积分数为95%的乙醇冲洗一次,一同过滤于三角瓶中,即制成叶绿体色素提取液。提取液应避光保存。 (二)叶绿体色素的分离 1 取硅胶预制板一个,用点样毛细管吸取上述提取液,平行于硅胶板的短边,距下边缘约1cm处用毛细管划线,风干后再划第二次,重复操作3至4次。 2 在干洁的层析缸中加入适量的展开剂,高度约0.5cm,将硅胶预制板带有色素的一端放下,使其浸入展开剂中(但不要使待测样品浸入展开剂中)。迅速盖好层析缸盖。此时,展开剂借毛细管作用沿硅胶预制板向上扩散,并把叶绿体色素向上推动,不久即可以看到各种色素的色带。 3 当各种色素的得到较好分离,展开剂前沿接近硅胶预制板上端近边缘处时,取出硅胶预制板,并迅速用铅笔标出展开剂前沿和各色素带的位置。

实验二 阳性重组质粒的抽提及双酶切鉴定

实验二阳性重组质粒的抽提及双酶切鉴定 实验目的:练习质粒的抽提及双酶切的实验过程,熟悉相关操作。 实验材料及设备 pMD-T重组质粒;内切酶Xba I 及Pst I;10×M Buffe r;琼脂糖;电泳仪及电泳所需试剂。 实验步骤 A 大肠杆菌的扩繁及质粒DNA碱裂解法抽提 挑取筛选平板上的白色菌落, 接种到5ml LB液体培养基(含100μg/ml Amp)中, 37℃振荡培养约12小时至对数生长后期 ↓ 取培养液倒入2 ml eppendorf管中,4℃下12000 rpm离心2分钟,去上清 ↓ 沉淀中加入150 μl溶液I(50 mmol/L 葡萄糖,25 mmol/L Tris.Cl (pH8.0),10mmol/L EDTA (pH8.0)), 剧烈振荡使菌体悬浮,室温下放置5分钟 ↓ 加入250 μl新配制的溶液II (0.2 mol/L NaOH, 1%SDS, 临用前配制) 盖紧管口,快速温和颠倒eppendorf管数次, 以混匀内容物(千万不要振荡),室温下放置5分钟 ↓ 加入180 μl预冷的溶液III (5 mol/L KAc 60ml, 冰醋酸11.5ml, H2O 28.5ml, 定容至100ml , 并高压灭菌) 盖紧管口,并倒置离心管,温和振荡10秒,使沉淀混匀 ↓ 冰浴10分钟,4℃下12000rpm离心10分钟 ↓ 上清液移入干净eppendorf管中,计算体积 ↓ 加入各1/2体积的Tris-饱和酚以及氯仿/异戊醇(24:1),混匀 20℃下12000 rpm离心10分钟,取上清, 计算体积 ↓ 加等体积的氯仿/异戊醇(24:1),12000 rpm离心10分钟 ↓ 将上清移入干净eppendorf管中,计算体积 ↓ 加入2倍体积的无水乙醇 ↓ 混匀后置于-20℃冰箱中30分钟

《分子生物学》质粒DNA的提取与鉴定实验报告

质粒DNA的提取与鉴定 实验日期2020年5月14日室温25°C 成绩 一、实验报告摘要 【实验题目】 质粒DNA的提取与琼脂凝胶电泳鉴定 【实验目的】 1、掌握质粒提取原理和各种试剂的作用。 2、掌握琼脂糖凝胶电泳原理和操作。 二、实验原理 1、质粒: 质粒是独立存在于染色体外,能自主复制并能稳定遗传的一种环装双链DNA,分布于细菌、放线菌、真菌以及一些动植物细胞中。细菌质粒是应用最多的质粒类群,在细菌细胞内利用宿主细胞的复制机构复制质粒自身的DNA 2、琼脂糖凝胶电泳: 琼脂糖凝胶电泳是分离、鉴定和纯化DNA片段的标准方法之一,该技术操作简便,快速。用各种浓度的琼脂糖凝胶可以分离长度为200bp至近50kb的DNA。此外,直接用低浓度的核酸染料进行染色,可确定DNA在凝胶中的位置。琼脂糖凝胶通常采用水平装置在强度和方向恒定的电场下电泳。 三、操作要点:

(1)质粒DNA的提取 1、收取细菌:将4mL细菌培养液分为2次加入2mL的塑料离心管(子弹头)内,每次以12000r/min离心1min(注意平衡)弃去上清液。 2、加入100uL用冰预冷的溶液I,用移液枪将细菌沉淀打散成为悬浮液。(溶液I放置冰中) 3、加入200uL溶液II,盖紧盖口,翻转离心管5次,充分混合内容物,避免振荡,将离心管置于冰上。 4、加入150uL用冰预冷的溶液III,盖紧盖口,翻转离心管,温和摇匀直至粘稠状的细菌裂解物出现,置于冰上5分钟。(溶液放置冰中) 5、用微量离心机12000r/min离心5分钟。取上清液移到另一离心管。 6、加入等量的酚:氯仿(1:1)混合液,轻轻混匀,12000r/min离心7分钟,将上清液收集到新的离心管中。 7、加入2倍体积100%乙醇沉淀DNA,轻轻混匀,1200 0r/min离心5分钟,弃去上清液,倒置在滤纸上干燥,漓尽液体。 8、用1m170%乙醇洗涤DNA沉淀,按照步骤7去除上清液,空气干燥10min。 9、用50uL的无菌水溶解质粒DNA 。 (2)琼脂凝胶电泳分离鉴定 1,制胶。将电泳缓冲液和琼脂糖在微波炉中熔化,混匀,冷却至55°C,加入EB染料,倒入已封好的凝胶灌制平台上,插上样品梳。 2.加入10u1的6x加样缓冲液到DNA样品,混匀,然后用移液器取50u1样品加入样品孔中。(不要漫出加样孔) 3.接通电极,在120V电压下进行电泳20min-30min 。 4.当加样缓冲液中的溴酚兰迁移至足够分离DNA片段 的距离时,关闭电源。 5.已染色的凝胶可以直接在紫外透射仪上观察或照相 四、实验结果: 成功分离DNA片段,能看到超螺旋质粒和单缺口质粒的条带。

实验报告设计-叶绿体中色素的提取和分离

叶绿体中色素的提取和分离 一、实验目标 1、知识方面 (1)探究叶绿体中含有几种种色素:理解它们的特点及与光合作用的关系 (2)了解纸层析法的原理。 2、能力方面 掌握提取和分离叶绿体中色素的方法。 3、情感态度与价值观方面 认识生物科学的价值,乐于学习生物科学,养成质疑、求实、创新及勇于实践的科学精神和科学态度 二、实验原理 1、色素提取的原理:叶绿体中的色素能溶于有机溶剂中,故可用丙酮和无水乙醇提取色素。 2、色素分离的原理:叶绿体中的各种色素在层析液中的溶解度不同。溶解度大的色素,在滤纸上随层析液的扩散速度快;溶解度小的色素,在滤纸上随层析液的扩散速度慢。三、实验准备 实验材料:新鲜的绿叶(如新鲜菠菜叶片)。 实验仪器及用具:定性滤纸,研钵,玻璃滤斗,脱脂棉,尼龙布,毛细吸管,剪刀,药勺,量筒(10mL),天平,试管,试管架,滴管,培养皿,三角瓶,烧杯 试验试剂:无水乙醇(或丙酮),层析液(CCl4),石英砂(SiO2)和碳酸钙(CaCO3) 四、实验步骤 1、叶绿体色素的提取 (1)取菠菜新鲜叶片5g,洗净,擦干,去掉中脉,剪碎,放入研钵中。 (2)向研钵中加入少许碳酸钙和二氧化硅,再加10mL无水乙醇,进行迅速、充分研磨(二氧化硅有助于研磨得充分,碳酸钙可防止研磨中色素被破坏)。 (3)将研磨液迅速倒入漏斗(漏斗基部放一块单层尼龙布)中进行过滤。将滤液收集到试管中,及时用棉塞将试管口塞严。 2、制备滤纸条 用预先干燥处理过的定性滤纸,将滤纸剪成长10 cm、宽1cm的滤纸条,在滤纸条的一端剪去两角(防止层析液在滤纸条的边缘扩散过快),并在距离这一端1cm处用铅笔画一条细的横线。 3、画滤液细线 用毛细吸管吸取少量滤液,沿铅笔线均匀地画出一条细而直的滤液细线。待滤液干后,再画二三次。 4、分离叶绿体中的色素

叶绿素的提取和分离实验报告

陕西师范大学远程教育学院生物学实验报告 报告题目叶绿素的提取和分离 姓名刘伟 学号 专业生物科学 批次/层次 指导教师 学习中心

叶绿素的提取和分离 一、实验目的 1. 学习叶绿体色素的提取、分离方法。 2. 通过叶绿体色素提取、分离方法的学习了解叶绿体色素的相关理化性质。 3. 为进一步研究各叶绿体色素性质、功能等奠定基础。 二、原理 叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。它们与类囊体膜蛋白相结合成为色素蛋白复合体。它们的化学结构不同,所以它们的物化性质(如极性、吸收光谱)和在光合作用中的地位和作用也不一样。这两类色素是酯类化合物,都不溶于水,而溶于有机溶剂,故可用乙醇、丙醇等有机溶剂提取。提取液可用色谱分析的原理加以分离。因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。 三、材料、仪器设备和试剂 1. 绿色植物如菠菜等的叶片。 2. 研钵、漏斗、三角瓶、剪刀、滴管、康维皿、圆形滤纸(直径11cm)。 3. 试剂:95%乙醇,石英砂,碳酸钙粉,推动剂:按石油醚:丙酮:苯=10:2:1比例配制(v/v) 四、试验步骤 1. 叶绿体色素的提取 (1)取菠菜或其他植物新鲜叶片4-5片(4g左右),洗净,擦干,去掉中脉剪碎,放入研钵中。 (2)研钵中加入少量石英砂及碳酸钙粉,加2-3ml 95%乙醇,研磨至糊状,再加10ml 95%乙醇,然后以漏斗过滤之,残渣用10ml 95%乙醇冲洗,一同过滤于三角瓶中。 2. 叶绿体色素的分离 (1)将11cm的滤纸的一端剪去二侧,中间留一长约1.5cm、宽约0.5cm窄条。 (2)用毛细管取叶绿体色素浓溶液点于窄条上端,用电吹风吹干,如一次点样量不足可反复在色点处点样数次,使色点上有较多的叶绿体色素。 (3)在大试管中加入四氯化碳3-5ml及少许无水硫酸钠。然后将滤纸条固定于软木塞上,插入试管内,使窄端浸入溶剂中,而色点略高于液面,滤纸条边缘不可碰到试管壁,软木塞盖紧,直立于阴暗处层析。 0.5-1小时后,观察色素带分布:最上端橙黄色(胡萝卜素),其次黄色(叶黄素),再崐次 蓝绿素(叶绿素a),最后是黄绿色(叶绿素b)。(4)当展层剂前沿接近滤纸边缘时便可结束实 验,此时可看到不同色素的同心圆环,各色素由内往外的顺序为:叶绿素b(黄绿色)、叶 绿素a(蓝绿色)、叶黄素(鲜黄色)、胡萝卜素(橙黄色),再用铅笔标出各种色素的位置 和名称。

(完整版)质粒DNA的提取、纯化与鉴定

分子生物学实验报告 题目:质粒DNA的提取、纯化与鉴定 姓名:学号:班级:时间: 一、实验目的: 1.学习并掌握凝胶电泳进行DNA的分离纯化的实验原理。 2.学习并掌握凝胶的制备及电泳方法。 3.学习并掌握凝胶中DNA的分离纯化方法。 4.掌握碱变性提取发的原理及各种试剂的作用。 5.掌握碱变性法提取质粒DNA的方法。 二、实验原理: 1.质粒DNA的提取——碱变性提取法: 提取和纯化质粒DNA的方法很多,目前常用的有:碱变性提取法、煮沸法、羟基磷灰石柱层析法、EB-氯化铯密度梯度离心法和Wizard法等。其中,碱变性提取法最为经典和常用,适于不同量质粒DNA的提取。该方法操作简单,易于操作,一般实验室均可进行。提取质粒DNA纯度高,可直接用于酶切、序列测定及分析。EB-氯化铯密度梯度离心法,主要适合于相对分子质量与染色体DNA相近的质粒,具有纯度高、步骤少、方法稳定,且得到的质粒DNA多为超螺旋构型等优点,但提取成本高,需要超速离心设备。少量提取质粒DNA还可用沸水浴法、Wizard法等,沸水浴法提取的质粒DNA中常含有RNA,但不影响限制性核酸内切酶的消化、亚克隆及连接反应等。 碱变性法提取质粒DNA一般包括三个基本步骤:培养细菌细胞以扩增质粒;收集和裂解细胞;分离和纯化质粒DNA。 在细菌细胞中,染色体DNA以双螺旋结构存在,质粒DNA以共价闭合环状形式存在。细胞破碎后,染色体DNA和质粒DNA均被释放出来,但两者变性与复性所依赖的溶液pH值不同。在pH值高达12.0的碱性溶液中,染色体DNA氢键断裂,双螺旋结构解开而变性;共价闭合环状质粒DNA的大部分氢键断裂,但两条互补链不完全分离。当用pH值4.6的KAc(或NaAc)高盐溶液调节碱性溶液至中性时,变性的质粒DNA可恢复原来的共价闭合环状超螺旋结构而溶解于溶液中;但染色体DNA不能复性,而是与不稳定的大分子RNA、蛋白质-SDS复合物等一起形成缠连的、可见的白色絮状沉淀。这种沉淀通过离心,与复性的溶于溶液的质粒DNA分离。溶于上清的质粒DNA,可用无水乙醇和盐溶液,减少DNA分子之间的同性电荷相斥力,使之凝聚而形成沉淀。由于DNA与RNA性质类似,乙醇沉淀DNA的同时,也伴随着RNA沉淀,可利用RNase A将RNA降解。质粒DNA溶液中的RNase A以及一些可溶性蛋白,可通过酚/氯仿抽提除去,最后获得纯度较高的质粒DNA。 2.凝胶电泳进行DNA分离纯化: 电泳(electrophoresis)是带电物质在电场中向着与其电荷相反的电极方向移动的现象。各种生物大分子在一定pH条件下,可以解离成带电荷的离子,在电场中会向相反的电极移动。凝胶是支持电泳介质,它具有分子筛效应。含有电解液的凝胶在电场中,其中的电离子会发生移动,移动的速度可因电离子的大小形态及电荷量的不同而有差异。利用移动速度差异,就可

质粒DNA的提取、定量与酶切鉴定

一、实验目的 1、掌握PCR基因扩增的原理和操作方法; 2、掌握碱裂解法提取质粒的方法; 3、了解紫外吸收法检测DNA浓度和纯度的原理、方法; 4、学习水平式琼脂糖凝胶电泳操作。 二、实验原理 1.PCR: PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以DNA为模板,特定引物为延伸起点,通过变性、退火、延伸等步骤,在体外复制DNA 的过程。 ①延伸:溶液反应温度升至中温72℃,在 Taq酶作用下,以dNTP为原料,引物为复制起点,模板DNA的一条单链在解链和退火之后延伸为一条双链; ②变性:加热使模板DNA在高温下90℃-95变性,双链解链; ③退火:降低溶液温度,使合成引物在低温(35-70℃,一般低于模板Tm值的5℃左右),与模板DNA互补退火形成部分双链。 2. 质粒DNA的提取与定量——碱裂解法: A、基于染色体DNA与质粒DNA的变性与复性的差异; B、高碱性条件下,染色体DNA和质粒DNA变性;

C、当以高盐缓冲液调节其pH值至中性时,变性的质粒DNA复性并保存在溶液中,染色体DNA不能复性而形成缠连的网状结构,通过离心形成沉沉淀去除。 D、定量检测原理:物质在光的照射下会产生对光的吸收效应; 而且物质对光的吸收是具有选择性的; 各种不同的物质都具有其各自的吸收光谱。 3.酶切鉴定:利用限制性内切酶。 4、琼脂糖凝胶电泳: A、琼脂糖是一种天然聚合长链状分子,可以形成具有刚性的滤孔,凝胶孔径的大小决定于琼脂糖的浓度; B、DNA分子在碱性环境中带负电荷,在外加电场作用下向正极泳动; C、DNA分子在琼脂糖凝胶中泳动时,有电荷效应与分子筛效应。不同的DNA,分子量大小及构型不同,电泳时的泳动率就不同,从而分出不同的区带(迁移速度与分子量的对数值成反比关系)。 三、材料与方法: (一)、材料 1、样品: 菌液(大肠杆菌DH5a菌株)、引物、2*Premix Taq、灭菌离子水、含pMD19-T质粒的大肠杆菌DH5α 2、试剂: LB培养基、AXYGEN试剂盒(溶液S1、S2、S3、去蛋白液W1、漂洗液W2、洗脱液EB)、电泳指示剂、Gelview、TBE、琼脂糖、DNA Marker 500、无菌水、10*M酶切缓冲液Buf R、HindⅢ(15U/ul)、EcoR I (12U/ul) 3、仪器与器材: PCR仪、台式离心机、微量加样枪、灭菌的薄壁离心管、凝胶电泳系统、凝胶成像系统、

【免费下载】丁香酚的提取与分离实验报告

OH OCH CH2-CH=CH ONa OCH CH2-CH=CH 简易水蒸汽蒸馏装置 、 管 路 敷 设 技 术 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 高 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避

叶绿素的提取和分离实验报告

叶绿素的提取和分离实 验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西师范大学远程教育学院 生物学实验报告 报告题目叶绿素的提取和分离 姓名刘伟 学号 专业生物科学 批次/层次 指导教师 学习中心 叶绿素的提取和分离 一、实验目的 1. 学习叶绿体色素的提取、分离方法。 2. 通过叶绿体色素提取、分离方法的学习了解叶绿体色素的相关理化性质。 3. 为进一步研究各叶绿体色素性质、功能等奠定基础。 二、原理 叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。它们与类囊体膜蛋白相结合成为色素蛋白复合体。它们的化学结构不同,所以它们的物化性质(如极性、吸收光谱)和在光合作用中的地位和作用也不一样。这两类色素是酯类化合物,都不溶于水,而溶于有机溶剂,故可用乙醇、丙醇等有机溶剂提取。提取液可用色谱分析的原理加以分离。因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。 三、材料、仪器设备和试剂 1. 绿色植物如菠菜等的叶片。 2. 研钵、漏斗、三角瓶、剪刀、滴管、康维皿、圆形滤纸(直径11cm)。 3. 试剂:95%乙醇,石英砂,碳酸钙粉,推动剂:按石油醚:丙酮:苯=10:2:1比例配制(v/v) 四、试验步骤 1. 叶绿体色素的提取 (1)取菠菜或其他植物新鲜叶片4-5片(4g左右),洗净,擦干,去掉中脉剪碎,放入研钵中。 (2)研钵中加入少量石英砂及碳酸钙粉,加2-3ml 95%乙醇,研磨至糊状,再加10ml 95%乙醇,然后以漏斗过滤之,残渣用10ml 95%乙醇冲洗,一同过滤于三角瓶中。

质粒DNA提取方法与原理

质粒提取的原理、操作步骤、各溶液的作用 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA 发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA 的断裂会带来麻烦。 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被

《叶绿体色素的提取和分离》 实验报告

《叶绿体色素的提取和分离》实验报告 实验目的 1. 学习叶绿体色素的提取、分离方法。 2. 通过叶绿体色素提取、分离方法的学习了解叶绿体色素的相关理化性质。 3. 为进一步研究各叶绿体色素性质、功能等奠定基础。 实验原理 叶绿体色素包括绿色的叶绿素(包括叶绿素a和叶绿素b)和黄色的类胡萝卜素(包括胡萝卜素和叶黄素)两大类,它们均以色素蛋白复合体形式存在于类囊体膜上。两类色素均不溶于水而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。由于提取液中不同色素在固定相和流动相中的分配系数不同,所以可借助分配层析方法将其分离。 实验仪器与药品 1. 绿色植物如菠菜等的叶片。 2. 研钵、漏斗、三角瓶、剪刀、滴管、康维皿、圆形滤纸(直径11cm)。 3. 95%乙醇、石英砂、碳酸钙、展层剂。展层剂按石油醚:丙酮:苯10:2:1的比例配制(V/V)。 实验步骤 1. 叶绿体色素的提取

(1)取菠菜或其它新鲜植物叶片4~5片(4g左右),将其洗净、擦干并去掉中脉,剪碎后置入研钵中。 (2)研钵中加入95%乙醇2~3 ml及少许石英砂、碳酸钙研磨至匀浆,再加95% 乙醇5ml,然后以漏斗过滤之,即为色素提取液。 2. 叶绿体色素的分离 (1)取圆形定性滤纸一张(直径应小于康维皿直径)于其中心扎一圆形小孔(直 径约3mm),另取长方形滤纸条一张(5cm×1.5cm),用滴管吸取乙醇叶绿体色素提取 液沿滤纸条的长度方向涂抹,注意涂抹色素扩散宽度应限制在0.5cm以内,风干后再重复操作数次。然后沿长度方向将滤纸条卷成纸捻,使涂抹过叶绿体色素溶液的一侧恰在纸捻的一端。 (2)将纸捻带有色素的一端插入圆形滤纸的小孔中,使与滤纸刚刚平齐(勿突出)。 (3)在康维皿中央小室中加入适量的展层剂,把带有纸捻的圆形滤纸平放在康 维皿中央小室上,使纸捻下端浸入展层剂中,迅速盖好培养皿。展层剂将借助毛细管作用顺纸捻扩散至圆形滤纸上,使叶绿体色素在固定相(滤纸中吸附有水分的纤维素)和流动相(展层剂)间反复分配,从而使不同色素得到分离,分离结果为滤纸上可见到各种色素的同心圆环。无康维皿时亦可用底、盖直径相同的培养皿进行实验,实验时可在培养皿底中放入一平底短玻管或塑料药瓶盖以替代康维皿中央小室盛装展层剂,其余相同。 (4)当展层剂前沿接近滤纸边缘时便可结束实验,此时可看到不同色素的同心 圆环,各色素由内往外的顺序为:叶绿素b(黄绿色)、叶绿素a(蓝绿色)、叶黄素(鲜黄色)、胡萝卜素(橙黄色),再用铅 笔标出各种色素的位置和名称。

质粒DNA的提取及其琼脂糖凝胶电泳实验报告

一、实验名称:质粒DNA的提取与纯化,DNA琼脂糖凝胶电泳 二、实验原理: 1.质粒DNA的提取: 质粒是一类存在于几乎所有细菌等微生物中染色体之外(细胞质中)呈游离状态的双链、闭环的DNA分子,能够自主复制和稳定遗传,以超螺旋形式存在,是最常用的基因克隆载体。除质粒外,大肠杆菌中还含有基因组DNA、各种RNA、蛋白质和脂质等物质,因此需要裂解细胞并除去蛋白质和染色体DNA等物质才能分离纯化出质粒DNA。分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。本实验使用碱裂解法,即利用SolutionⅠ、Ⅱ、Ⅲ三种溶液分离提取质粒DNA.其原理如下。 (1)碱裂解法提取大肠杆菌质粒DNA的原理: 碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA之间变性与复性的差异来分离质粒DNA,达到分离提纯质粒DNA的目的。在pH值高达12.6的碱性条件下,线性的DNA因氢键断裂,双螺旋结构解开而变性,尽管在这样的条件下,共价闭环质粒DNA的大部分氢键会被断裂,但超螺旋共价闭合环状的两条互补链相互缠绕,不会完全分离。当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA复性,恢复其天然构象,以可溶状态存在于液相中;而线性的染色体DNA由于两条互补链彼此已完全分开、分子量大、结构复杂而相互缠绕形成不溶性网状结构。与不稳定的大分子RNA、变形的蛋白质以及细菌碎片等一起沉淀而被除去。进一步用酚、氯仿使蛋白质变性去除蛋白质杂质,然后用无水乙醇沉淀,即可获得纯化的质粒DNA。SolutionⅠ、Ⅱ、Ⅲ三种溶液以及无水乙醇沉淀DNA的具体作用和原理如下。 (2)四种溶液作用及原理: ①Solution I的作用:悬浮大肠杆菌菌体,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉,从而起到抑制DNA酶对DNA的降解和抑制微生物生长的作用。另外也可保证溶菌酶活性。 ②Solution II的作用:提供碱性条件,pH高达12.6,使大肠杆菌瞬间裂解,促使染色体DNA和质粒DNA变性。所含离子型表面活性剂十二烷基酸钠(SDS)可使细胞膜、核膜发生破裂,充分溶解膜蛋白。同时,磺酸基与蛋白质形成复合物而变形沉淀。 ③Solution III的作用:为KAc-HAc缓冲液。该溶液所含有的高浓度钾离子与溶液体系中的十二烷基磺酸钠发生反应形成十二烷基磺酸钾,从而将与之结合的绝大部分大肠杆菌蛋白质以及很长的基因组DNA一起沉淀,与质粒分离开来;另外溶液III所含有的醋酸中和溶液Ⅱ的强碱性,使pH降至中性,因为长时间的碱性条件会打断DNA;基因组DNA一旦发生断裂,只要是50-100kb大小的片段,就没有办法再被PDS共沉淀,这样就跟质粒DNA共存了。而且在整个质粒DNA 的提取过程中,沉淀DNA时用无水乙醇及在高盐、低温条件下进行都是为了用化学或物理手段将基因组DNA分子和蛋白质发生变性、在体系中的溶解度降低,较充分的分离提纯出实验所需的质粒DNA

溶菌酶的提取分离和纯化实验报告

生物工程综合实验溶菌酶的提取、分离纯化及其活性测定 实验报告集 班级生工1411 学号 组别7 姓名

实验室学生守则 一、严格遵守实验室各项规章制度和管理措施,服从教师及实验技术人员 的指导。 二、严格按照实验要求,做好实验预习,实验之前5分钟进入实验室,及时、 准确地完成实验任务,实事求是地完成实验报告,杜绝弄虚作假。 三、严格执行操作规定,爱护仪器设备及工具。凡不按教师的指导擅自操 作引起仪器、设备损坏者,应予赔偿。 四、爱护实验室公共财物,节约水电、材料和试剂。未经允许不得随便挪 动非实验需用的其他仪器,不得随便拆装仪器或将仪器、工具带至室 外。 五、持实验室的严肃安静,不得大声喧哗、嘻闹,严禁在实验室内抽烟和 吃东西。 六、严防事故,确保实验室安全,发现异常情况,应及时向有关教师和管 理人员报告。 七、每次实验结束后,主动整理好仪器设备,归还所借器材,关闭电源、 水源,按指导老师的要求做好实验结束工作及室内外的清洁卫生工作,经指导老师许可后,方可离开。

预习报告(手写,可自行续页)

实验报告 溶菌酶的提取、分离纯化及其活性测定 一、目的 对从鸡蛋清中提取并分离纯化出溶菌酶进行活性测定 二、原理 鸡蛋是溶菌酶的主要来源,等电点约为10.5~11,最适温度50℃,最适pH为6~7左右。 1、溶菌酶分离纯化原理: (1)等电点法利用溶菌酶等电点较高,在酸性条件下除去一些杂蛋白 (2)阳离子树脂柱层析法进一步除去杂蛋白 2、溶菌酶鉴定分析 (1)考马斯亮蓝法测蛋白含量 (2)分光光度法测定酶活性 (3)使用SDS-PAGE 鉴定溶菌酶纯度 三、实验材料与方法 1、实验材料与试剂 鸡蛋清,PBS缓冲液,40%甘油、冰醋酸、氢氧化钠,D152大孔弱酸性阳离子交换树脂、透析袋,考马斯亮蓝G250、牛血清蛋白、乙醇、磷酸,溶菌酶标准品、底物微球菌粉,蛋白质分子量Marker 、SDS、聚乙二醇-20000等 2、实验仪器 低速离心机、高速冷冻离心机、离心管、分光光度计,玻璃层析柱,Bio-Rad垂直电泳系统,移液枪、移液管,培养皿、玻璃棒、普通漏斗、滤纸、量筒、刻度试管及试管架、冰箱、摇床、烧杯、止水夹等。 3、实验方法 1.新鲜鸡蛋清的制备与粗分离 2. 树脂柱层析分离纯化 (1)D152树脂处理(2)湿装法装柱(3) 上柱离子交换吸附(4) 冲平(5) 洗脱 3.透析与浓缩 (1) 透析除盐(2) 聚乙二醇浓缩 4.蛋白质含量的测定 5.溶菌酶纯度的测定(SDS凝胶电泳)

重组质粒DNA的提取及酶切鉴定

实验七重组质粒DNA的提取及酶切鉴定 【实验原理】 分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。 本实验采用SDS碱裂解法提取重组质粒DNA,十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性。 限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。限制性内切酶识别序列长度一般为4~8个呈回文序列的特异核苷酸对。由于限制性内切酶的切割特性不同,分子生物学中主要用到Ⅱ型限制性内切酶(切割位置在识别序列内部)。 对质粒进行酶切,通过跑胶观察片段大小,从而鉴定质粒。 【实验步骤】 本次实验所用的质粒提取试剂盒为天根的质粒小提试剂盒,操作步骤按说明书进行。 1. 吸附柱中加500ul 平衡液(BL),12000rpm离心1min ,弃收集管中的液体。 2.取1.5ml菌液至2ml离心管中,12,000rpm离心1min,弃上清。 3. 加250ul solution Ⅰ(P1),vortex。 4. 加250 solution Ⅱ(P2),上下颠倒混匀。操作时间不能超过5min 注:此步骤不宜超过5 min。 5. 加350 solution Ⅲ(P3),立即颠倒混匀几次。12000rpm离心10min。 6. 吸取上清加入吸附柱中,尽量不要吸出沉淀12000rpm离心1min ,弃收集管中的液体。注:此时4℃离心不利于沉淀沉降。 7. 加入600μL漂洗液(PW)于离心吸附柱中,12000rpm离心1min ,倒掉废液。 8. 重复上一步, 9. 空管离2min。将吸附柱放入1.5ml离心管中,在超净台中晾5min。10. 将700 μl的Rinse B加入Spin Column中,12,000 rpm离心30 sec,弃滤液。 10. 滴加50ul elution buffer(EB)至膜中央,室温放置2min后,12000rpm离心1min。离心管中即为纯化后的质粒。 11.构建重组质粒酶切体系,限制性内切酶反应一般在灭菌的15 ml PCR离心管中进行。 在冰浴上建立酶切反应体系(20 μl)

(完整版)咖啡因提取及鉴定实验报告

咖啡因提取及鉴定实验报告 题目:茶叶中咖啡因的提取分离及结构鉴定 实验目的: 1. 了解天然产物及其提取的概念和一般分离方法 2. 了解并学会使用回流提取的原理和操作 3. 了解如何用升华法提纯有机固体 4. 对从茶叶中提取咖啡因的整个过程必须了解 咖啡因的理化性质:咖啡因(含结晶水时)是无色针状结晶,味苦,能溶于水(2%)、乙醇(2%)、(氯仿12%)、苯(1%)等,在100℃时即失 去结晶水,并开始升华,120℃升华显著,178 ℃时升华很快, 融点为234.5 ℃,呈弱碱性。在植物中,咖啡因常与有机酸、 丹宁等结合呈盐的形式存在。咖啡因属于甲基黄嘌呤的生物 碱。纯的咖啡因是白色的,强烈苦味的粉状物。它的化学式是 C8H10N4O2。分子量,194.19 。 咖啡因的结构式: 实验原理:本实验从茶叶中提取咖啡因是用适当的溶剂(95%乙醇),在回流装置中连续提取并用蒸馏装置除去乙醇,得到粗制咖啡因,最后通 过升华提纯得到。 实验仪器及试剂:(1)仪器: 两个圆底烧瓶、两个三口烧瓶、一个直行冷凝管、两个1000ml烧杯、 两个500ml烧杯,两个50ml烧杯蒸发皿、玻璃漏斗、蒸馏头、水浴 锅、砂浴锅、温度计(250℃)、滤纸、刮刀、酒精灯、石棉网、电热 套 (2)试剂: 100g茶叶、乙醇(95%)、生石灰 实验步骤: 1.粗提8:00 称量茶叶100g并研碎 9:00 安装回流装置,将称量好的茶叶装入三口烧瓶中,并加入800ml 95%的乙醇。 9:30 开始回流

(1)连续萃取:称取100g绿茶叶,研细,放入回流提取装置中。在三 口烧瓶中加入95%乙醇,用电热套加热,连续提取。当提取液的 颜色变的很淡,立即停止加热。将仪器改成蒸馏装置,回收提取 液中的大部分乙醇。 (3)中和酸除水:残液倒入蒸发皿中,拌入生石灰40 g,在蒸气 浴上加热,不断搅拌,蒸干为止。随着温度升高,从浓绿色溶液变为糊状液。最后变为绿色粉末 (4)焙炒:把蒸发皿放在石棉网上,焙炒片刻,除尽水分。 2、升华 (1)仪器安装:在蒸发皿上放一张用大号针刺有许多小孔的圆 形滤纸,再把一只直径和蒸发皿相当的玻璃漏斗盖在上面,漏斗 颈部疏松地塞一小团棉花

质粒DNA的提取、酶切与鉴定

实验二十一质粒DNA的提取、酶切与鉴定 一、质粒DNA的提取 [原理]分离质粒DNA的方法包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。 本实验采用碱变性法抽提质粒DNA,是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH高达12.6的碱性条件下,染色体DNA 的氢键断裂,双螺旋结构解开而变性。质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。当以pH4.8的醋酸钾高盐缓冲液去调节其pH至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。 [试剂] 1.溶液I: 50mmol/L葡萄糖、10mmol/L EDTA、25mmol/L Tris-HCl pH8.0;用前加溶菌酶4mg/ml。 2.溶液II: 200mmol/L NaOH 、1% SDS。 3.溶液III: pH4.8醋酸钾缓冲液(60 ml 5mol/L 醋酸钾、11.5ml冰醋酸、28.5ml 蒸馏水) 4.TE缓冲液pH8.0 5.含RNaseA的TE缓冲液:TE缓冲液含20μg/ml RNaseA。 6.苯酚:氯仿(1:1,v/v):酚需在160℃重蒸,加入抗氧化剂8-羟基喹啉,使体积分数为0.1%,并用Tris-HCl缓冲液平衡两次。氯仿中加入异戊醇,氯仿/异戊醇为24:1(v/v)。 7.1×LB溶液 8.100μg/ml氨苄青霉素 [器材] 1.TGL-16型台式高速离心机

2.1.5ml塑料离心管 3.离心管架 4.微量移液器 5.常用玻璃器皿 [操作步骤] 1.培养细菌将带有质粒pUC19的大肠杆菌接种于5ml含100μg/ml氨苄青霉素的1×LB中,37℃培养过夜。 2.取液体培养菌液1.5ml置塑料离心管中,10 000r/min离心lmin,去掉上清液。加入150μl溶液I,充分混匀,在室温下放置10min。 3.加入200μl新配制的溶液II,加盖后温和颠倒5~10次,使之混匀,冰上放置2min。 4.加入150μl冰冷的溶液III,加盖后温和颠倒5~10次,使之混匀,冰上放置10min。 5.用台式高速离心机,10 000r/min离心5min,将上清液移入干净的离心管中。 6.向上清液中加入等体积酚/氯仿(1:1,v/v),振荡混匀,转速10 000r/min,离心2min,将上清液转移至新的离心管中。 7.向上清液加5mol/LNaCl至终浓度为0.3mol/L,混匀,再加入2倍体积无水乙醇,混匀,室温放置2min,离心5min,倒去上清乙醇溶液,把离心管倒扣在吸水纸上,吸干液体。 8.加0.5ml 70%乙醇,振荡并离心,倒去上清液,真空抽干或室温自然干燥。 9.加入50μl含RNase A 20μg/ml的TE缓冲液溶解提取物,室温放置30min以上,使DNA充分溶解待用或置-20℃备用。 二、质粒DNA 的限制性内切酶酶切及琼脂糖凝胶电泳分离、鉴定 [原理]限制性内切核酸酶(也可称限制性内切酶)是在细菌对噬菌体的限制和修饰现象中发现的。细菌内同时存在一对酶,分别为限制性内切酶(限制作用)和DNA甲基化酶(修饰作用)。它们对DNA底物有相同的识别顺序,但生物功能却相反。 Ⅱ型限制性内切酶,具有能够识别双链DNA分子上的特异核苷酸顺序的

相关文档
最新文档