摩擦焊接原理简介

摩擦焊接原理简介
摩擦焊接原理简介

摩擦焊接原理简介

(2009-06-26 22:37:13)

转载

低温摩擦焊

低温摩擦焊的焊接原理是在压力作用下,通过待焊工件的摩擦界面及其附近温度升高,材料的变形抗力降低、塑性提高、界面氧化膜破碎,伴随着材料产生塑性流变,工件通过界面的分子扩散和再结晶而实现焊接的固态焊接方法。

摩擦焊通常由如下四个步骤构成:

1、机械能转化为热能;

2、材料塑性变形;

3、热塑性下的锻压力;

4、分子间扩散再结晶。

摩擦焊接件

摩擦焊相较传统熔焊最大的不同点在于整个焊接过程中,待焊金属工件获得能量升高达到的温度并没有达到其熔点,即金属是在热塑性状态下实现的类锻态固相连接。

相对传统熔焊,摩擦焊具有焊接接头质量高——能达到焊缝强度与基体材料等强度,焊接效率高、质量稳定、一致性好,工件可实现异种材料焊接等。

关于传统摩擦焊的定义:利用焊件表面相互摩擦所产生的热,使工件端面达到热塑性状态,然后迅速顶锻,完成焊接的一种压焊方法。

当前市场热门的摩擦焊工艺,是铜铝过渡板。它通过棒型材料焊接,经过锻造成型的过程中,经过了“千锤百炼”的检验,如稍有焊接质量上的问题,焊口当即就会断开,故许多用户在生产制造大型设备中采用这一传统定义工艺的焊接产品。

摩擦焊技术的主要优点归结为如下几个方面:

(1)接头质量好且稳定。焊接过程由机器控制,参数设定后容易监控,重复性好,不依赖于操作人员的技术水平和工作态度。焊接过程不发生熔化,属固相热压焊,接头为缎造组织,因此焊缝不会出现气孔、偏析和夹杂,裂纹等铸造组织的结晶缺陷,焊接接头强度远大于熔焊、钎焊的强度,达到甚至超过母材的强度;

(2)效率高。对焊件准备通常要求不高,焊接设备容易自动化,可在流水线上生产,每件焊接时间以秒计,一般只需零点几秒至几十秒,是其它焊接方法如熔焊、钎焊不能相比的;

(3)节能、节材、低耗。所需功率仅及传统焊接工艺的1/5~1/15,不需焊条、焊剂、钎料、保护气体,不需填加金属,也不需消耗电极;

(4)焊接性好。特别适合异种材料的焊接,与其它焊接方法相比,摩擦焊有得天独厚的优势,如钢和紫铜、钢和铝、钢和黄铜等等;

(5)环保,无污染。焊接过程不产生烟尘或有害气体,不产生飞溅,没有孤光和火花,没有放射线。

螺柱焊接技术

目前,我国汽车制造业主要应用的螺柱焊接技术是短周期拉弧式螺柱焊,辅以相关的自动控制设备,大幅提高了汽车的焊接质量,提升了汽车品质。 螺柱焊接技术由于具有快速、可靠、操作简单和成本低等优点,可替代铆接、钻孔、手工电弧焊和钎焊等连接工艺,可焊接碳钢、不锈钢、铝以及铜及其合金等金属,现在已广泛应用在汽车、船舶制造等领域。我国应用螺柱焊接技术的历史不长,但是随着我国经济的快速发展和制造业水平的不断提高,螺柱焊接技术正被越来越多的国内企业所采用。 螺柱焊接技术及原理 将螺柱或类似的金属柱状物及其他紧固件焊接在工件上的方法称为螺柱焊。实现螺柱焊的方法有多种:电阻焊、摩擦焊、爆炸焊及电弧焊等。目前应用最广泛的方法是电弧法螺柱焊,根据焊接电源的不同,可细分为储能式(电容放电)螺柱焊和拉弧式螺柱焊。 1.储能式螺柱焊 储能式螺柱焊由充电电容放电提供焊接所需的能量,当电容放电时,螺柱和工件之间出现很短时间的电弧,电弧会熔化工件表面和螺柱顶端的少量金属,随后螺柱浸入熔池,熔化金属迅速冷却,形成焊接接头。储能式螺柱焊的焊接时间极短,通常情况下在5ms 之内,无需保护气体;熔池浅,约0.1mm,工件背面无变形、压痕,适于薄板焊接; 可用于焊接碳钢、不锈钢、铝、铜及其合金等金属;板厚与螺柱直径比可达1∶10。 储能式螺柱焊设备根据焊枪的配置不同,可分为接触式和间隙式两种。 接触式螺柱焊依靠焊枪内置弹簧压紧螺柱,工件和螺柱之间的距离由螺柱顶部小凸台来保证,当电容放电时,小凸台迅速气化,螺柱和工件之间出现电弧,电弧产生的热量使螺柱顶部形成熔化层,工件表面形成很浅的熔池。在焊枪内置弹簧压力下,螺柱快速下

连续驱动摩擦焊基本原理

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过 程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显着增大的b 点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表 面温度将升到200~300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3 左右的地方首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显着增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显着下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的

振动摩擦焊接工艺及汽车塑料件设计及应用

振动摩擦焊接工艺及汽车塑料件设计及应用 发表时间:2019-04-24T17:07:33.157Z 来源:《基层建设》2019年第3期作者:赵永伟[导读] 摘要:振动摩擦焊接:指在上下热塑性塑料件之间施加压力的状态下,通过上治具的左右振动所产生的摩擦执充分熔化树脂后,停止振动继续加压固化,使上下塑料件分子间重新结合,从而实现焊接的一种新型焊接方法。长城汽车股份有限公司徐水分公司河北保定 071000 摘要:振动摩擦焊接:指在上下热塑性塑料件之间施加压力的状态下,通过上治具的左右振动所产生的摩擦执充分熔化树脂后,停止振动继续加压固化,使上下塑料件分子间重新结合,从而实现焊接的一种新型焊接方法。本文主要介绍了基于振动摩擦焊接工艺的汽车塑料件设计及应用。 关键词:振动摩擦焊接;车灯塑料件;结构设计;模具设计 前言:与传统的塑料连接方式相比,振动摩擦焊接具有焊接速度快、强度高、密封性好、控制精确等特点,特别适合焊接尺寸较大、形状复杂的汽车塑料件产品。采用振动摩擦焊接不需要使用附加材料,如紧固件、嵌件、电磁感应预成型件、胶黏剂或溶剂等,这样可以提高产品质量、降低生产成本、减少环境污染。在汽车行业竞争日趋激烈的今天,被越来越多的汽车零部件生产企业所采用。 1、振动摩擦焊接工艺影响因素及优缺点 1.1振动摩擦焊接性能影响因素 1)Plastic结构;2)材质的熔融温度;3)硬度弹性;4)不同材质的特性;5)湿度;6)熔融速度;7)树脂添加剂。 1.2振动摩擦焊接的优点 1)焊接不规则,形状复杂的零件;2)可熔接大型的零件;3)熔接力强,接口可靠;4)能一次焊接多个零件;5)无需借助其它结合物质;6)无臭味,不会造成环保问题;7)对于受潮与含高量添加物之塑料有良好的熔接效果;8)耗电量低;9)快速,容易设定;10)模具替换性高。 1.3振动摩擦焊接的缺点 1)焊接面为10度以内的平面;2)产品要坚固,耐得住振动摩擦;3)若焊接结构的设计不合理,有时外观会有溢料产生。 2、基于振动摩擦焊接工艺的汽车塑料件结构设计 基于振动摩擦焊接工艺的汽车塑料件结构设计主要分为焊接接头设计和定位设计两部分,焊接接头是在振动摩擦焊接中塑料件熔融结合在一起的部位,定位机构主要是为了保证塑料件的精准焊接。 下面主要介绍了应用于汽车塑料件振动摩擦焊接的典型结构,如下: 设计结构1:常用于密封罐焊接。 设计结构2:典型应用位置狭窄,容器较大。 设计结构3:常用于阀盖的焊接两侧无溢料。

超声波焊接原理和应用

超声波焊接原理: 超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。 其优点是增加多倍生产率,降低成本,提高产品质量及安全生产。 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。 超声波焊接工艺: 一、超声波焊接: 以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。 二、铆焊法: 将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植: 借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性: 热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接。 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.

螺柱焊

螺柱焊(stud welding ) 将螺柱一端与板件(或管件)表面接触并通电引弧,待接触面熔化后,给螺柱一定压 力完成焊接的方法。 螺柱焊钉 螺柱焊(stud welding)是将螺柱一端与板件(或管件)表面接触,通电引弧,待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。 简介主要由螺柱焊电源和焊枪组成. 电弧螺柱焊的基本原理是在待焊螺柱与工件间引燃电弧,当螺柱与工件被加热到合适温度时,在外力作用下,螺柱送入工件上的焊接熔池形成焊接接头。根据焊接过程中所用焊接电源的不同,传统电弧螺柱焊可以分为普通电弧螺柱焊和电容储能电弧螺柱焊两种基本方法 螺柱焊原理分析螺柱焊是将金属螺柱或其他紧固件焊接在工件上的方法。实现螺柱焊接的方法有多种,如:拉弧式螺柱焊、储能式螺柱焊、电阻焊、凸焊等。与之相对应的焊机也有所不同,分别为拉弧式螺柱焊机、储能式螺柱焊机、电阻焊机、凸焊机等。 [1]螺柱焊机在国内有多种非正规称法,如种焊机,植焊机,种钉机,植钉机,植焊机,螺钉焊机,螺丝焊机等等,均是指螺柱焊机。 储能式螺柱焊机 储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续约1-3ms。 储能式螺柱焊机的工作原理简图如下:

螺柱焊原理图 储能式螺柱焊机采用220V交流电,通过变压器1降压,再通过整流桥2将交流电变为直流电,经过双向整流管3和充电电阻向电容6充电。由智能芯片精确控制可控硅5,使储能电容6瞬间释放全部电量完成整个焊接过程。 储能式螺柱焊机广泛运用于钣金工程、电子业开关柜、试验和医疗设备、食品工业、家电工业、通讯工程、工业全套炊具、办公室和银行设备、投币式督货机、玻璃幕墙结构和绝缘技术等。 螺柱焊的特点 1.非常节省时间和成本所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。 2.不断扩展结构设计的应用潜力在螺柱焊时起焊接过程是短时间,大电流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧螺柱焊和短周期拉弧螺柱焊的板厚可以到1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。 螺柱焊的工件必须是从一侧焊接。 能在全位置焊接,借助于扩展器可以焊接到受限制的垂直隔板上。 由于是短时间焊接且焊后很少变形,故不需要修整。 因为焊接的结构不需要钻孔,故不会造成泄漏。 螺柱焊的接头可以达到很高的强度,即螺柱焊的接头强度大于螺柱本身强度。 在镀层或高合金板材焊接后,背面没有印痕。 3.良好的经济性 螺柱焊相对于其他焊接方法的优点,在于焊接功率上。对于批量生产的工件,在很短的焊接时间(3-980ms)内可打到8-40个/min(根据不同直径螺柱和不同焊接功率)。而自动送料螺柱焊机可以达到60个/min的超高效率。 标准的螺柱是低成本的。 螺柱焊设备和焊枪具有多种类型,设备的购置费用相对较低。 根据产品,可以制成多工位自动焊机,或高精度龙门式数控自动焊机。 螺柱焊具有较高的质量再现率和较小的废品率。

螺柱焊机的工作及原理

螺柱焊(stud welding)是将螺柱一端与板件(或管件)表面接触,通电引弧,待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。 主要由螺柱焊电源和焊枪组成. 电弧螺柱焊的基本原理是在待焊螺柱与 工件间引燃电弧,当螺柱与工件被加热到合适温度时,在外力作用下,螺柱送入工件上的焊接熔池形成焊接接头。根据焊接过程中所用焊接电源的不同,传统电弧螺柱焊可以分为普通电弧螺柱焊和电容储能电弧螺柱焊两种基本方法 编辑本段螺柱焊原理分析 螺柱焊是将金属螺柱或其他紧固件焊接在工件上的方法。实现螺柱焊接的方法有多种,如:拉弧式螺柱焊、储能式螺柱焊、电阻焊、凸焊等。与之相对应的焊机也有所不同,分别为拉弧式螺柱焊机、储能式螺柱焊机、电阻焊机、凸焊机等。[1]螺柱焊机在国内有多种非正规称法,如种焊机,植焊机,种钉机,植钉机,植焊机,螺钉焊机,螺丝焊机等等,均是指螺柱焊机。储能式螺柱焊机储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续约1-3ms。储能式螺柱焊机的工作原理简图如下:螺柱焊原理图 储能式螺柱焊机采用220V交流电,通过变压器1降压,再通过整流桥2将交流电变为直流电,经过双向整流管3和充电电阻向电容6充电。由智能芯片精确控制可控硅5,使储能电容6瞬间释放全部电量完成整个焊接过程。储能式螺柱焊机广泛运用于钣金工程、电子业开关柜、试验和医疗设备、食品工业、家电工业、通讯工程、工业全套炊具、办公室和银行设备、投币式督货机、玻璃幕墙结构和绝缘技术等。 编辑本段螺柱焊的特点 1.非常节省时间和成本 所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。 2.不断扩展结构设计的应用潜力 在螺柱焊时起焊接过程是短时间,大电流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧螺柱焊和短周期拉弧螺柱焊的板厚可以到 1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。螺柱焊的工件必须是从一侧焊接。能在全位置焊接,借助于扩展器可以焊接到受限制的垂直隔板上。由于是短时间焊接且焊后很少变形,故不需要修整。因为焊接的结构不需要钻孔,故不会造成泄漏。螺柱焊的接头可以达到很高的强度,即螺柱焊的接头强度大于螺柱本身强度。在镀层或高合金板材焊接后,背面没有印痕。 3.良好的经济性 螺柱焊相对于其他焊接方法的优点,在于焊接功率上。对于批量生产的工件,在很短的焊接时间(3-980ms)内可打到8-40个/min(根据不同直径螺柱和不同焊接功率)。而自动送料螺柱焊机可以达到60个/min的超高效率。标准的螺柱是低成本的。螺柱焊设备和焊枪具有多种类型,设备的购置费用相对较低。根据产品,可以制成多工位自动焊机,或高精度龙门式数控自动焊机。螺柱焊具有较高的质量再现率和较小的废品率。

螺柱焊机及其焊接工艺

螺柱焊机及其焊接工艺 单位:二十二冶市政工程分公司姓名:徐升乾 时间:2010年4月 前言

所谓螺柱焊是指在金属或类似金属件的端面与另一金属工件表面之间产生电弧,待接合面熔化时迅速施加压力,完成焊接的一种方法。螺柱焊接方法起源于1918年,由于这种焊接新技术具有快速、可靠、简化工序、降低成本等一系列优点,因而引起了世界各国的普遍重视,经过不断地改进和完善,特别是二次世界大战后得到了迅速发展,现已广泛应用到桥梁、高速公路、房屋建筑、造船、汽车、电站、电控柜等行业。可焊接低碳钢、不锈钢、低合金钢,铜、铝及其合金材质的螺柱、焊钉、销钉、栓钉等。据报道1),日本园柱头焊钉(栓钉)的年焊接量为6000万个,异型棒状焊钉年焊接量为300万个。可见螺柱焊接在日本钢结构建筑中的应用规模。近年来我国经济建设发展迅速,使用螺柱焊接的领域也越来越广泛,因此有必要对螺柱焊接技术和焊接工艺进行深入研究,以便提高焊接质量,推广普及这种焊接技术。 螺柱焊接技术发展到今天,已经成为西方发达国家的一种基本的热加工方法,螺柱(焊钉)的焊接大约有80%以上是通过螺柱焊机完成的。而我国1986年才在成都试制成功第一台螺柱焊机。至于螺柱焊接技术的应用,还是从上世纪的九十年代才逐步展开的,到现在也只有20来年的历史,因此螺柱焊在我国还是一种刚刚兴起的行业,不论焊接设备,还是焊接工艺都与国外有不少差距。分析这种差距,并逐步缩短这种差距,直至赶超世界水平则是我国螺柱焊接行业的神圣使命。 1.螺柱焊机的分类 螺柱焊机分为电弧螺柱焊机和电容放电螺柱焊机两大类,前者以弧焊整流器作为电源进行焊接,后者则以电容器贮存的能量瞬间放电而进行焊接。两种焊接方式的特点及应用情况见表1。 表1 电弧螺柱焊和电容放电螺柱焊的特点

摩擦焊

摩擦焊 1摩擦焊接概述: 摩擦焊接是在轴向压力与扭矩作用下,利用焊接接触端面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热使接触面及其近区达到粘塑性状态并产生适当的宏观塑性变形,然后迅速顶锻而完成焊接的一种压焊方法。 摩擦焊的分类 2摩擦焊原理简介: 摩擦焊是利用金属焊接表面摩擦生热的一种热压焊接法。摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。

摩擦焊接是一种优质、高效、节能的固态连接技术,被广泛应用于航空、航天、石油、汽车等领域中。在摩擦焊接过程中,主轴转速、焊接压力、焊接时间以及焊接变形量是影响焊接质量的重要工艺参数。对这些参数实现精确的检测和控制,是获得优质焊接接头的保障。因此,研制一套控制精度高、响应速度快、具有丰富的数据处理能力且易于升一级和扩充的开放式控制系统具有重要意义。 摩擦焊流程示意图 摩擦焊具有下列优点: (1)焊接质量好而稳定。由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。(2)摩擦焊不仅能焊接黑色金属、有色金属、同种异种金属, 而且还能焊接非金属材料, 如塑料、陶瓷等。 (3)对具有紧凑的回转断面的工件的焊接,都可用摩擦焊代替闪光焊、电阻焊及电弧焊。并可简化和减少锻件和铸件, 充分利用轧制的棒材和管材。 (4)焊件尺寸精度高。采用摩擦焊工艺生产的柴油发动机预燃烧室, 全长最大误差为士0.1毫米。专用的摩擦焊机可以保证焊件的长度公差为士0.2 毫米, 偏心度小于0.2毫米 (5)焊接生产率高, 易实现机械化、自动化, 操作技术简单。 (7)焊接费用低。由于摩擦焊节省电能、金属变形量小(焊接缩短量少)、接头焊前不需要清理、焊接时不需要填料和保护气体、接头上的飞边有时可以不必去除, 所以焊接费用显著降低。 (8)工作场地卫生, 无火花、弧光及有害气休。适于和其它先进的金属加工方法一起列入自动生产线。

螺柱焊的过程及工艺参数

第2章螺柱焊的过程及工艺参数 2.1螺柱焊的过程 螺柱焊的基本过程是引弧→焊接电弧→顶锻→冷却凝固;在这一过程中,焊接电流、焊接时间以及焊接过程中电弧的形态,对焊接结果有很大影响。 螺柱焊的引弧受程序控制,先是螺钉接触到工件,当按住启动按钮后,焊机首先提供一个微小电流,之后螺钉被提升,在螺钉尖端的铝极与工件之间建立电弧。(说明:铝极是襄嵌在螺柱尖端的一部份铝材料,其作用是便于引弧及还原被氧化的铁。) 当建立了电弧之后,焊机自动进入大电流焊接:螺柱端部开始熔化,工件上形成溶池。此时的燃弧过程称焊接电弧阶段。 当到达设定的焊接时间之后,电弧熄灭,螺柱在外力(一般为弹簧力)的作用下,浸入溶池。进入顶锻阶段。 然后,溶池自然冷却凝固,完成焊接过程。 2.2螺柱焊的工艺参数 螺柱焊的工艺参数主要包括极性选取、电流和焊接时间的选择、提升高度、浸入尺寸及速度的调节。首先说明的是,螺柱直径增加时,焊接所需要的能量也增加。 1.极性 极性是指工件到焊接电源的连接方式,以工件为准:工件接正极即为正极性,工件接负即为负极性。一般的钢质螺钉采用正极性接法。而对于铝及其合金,黄铜材料的螺钉,常采用负极性连接方式。 2.焊接电流与焊接时间 一般情况下,焊接电流正比与螺柱的公称直径。当直径小于16mm时,焊接电流一般是公称直径的80倍,即10mm的螺钉,使用的焊接电流为800A。当直径超过16mm时,焊接电流一般取值为公称直径的90倍。当螺钉材料为合金钢时,电流取值减少10%。焊接时间的取值也与直径成比例关系:对于公称直径小于12mm的螺柱,一般取0.02d(d为螺柱的公称直径),对于公称直径大于12mm的螺柱,一般取0.04d。 如果焊接位置不是平焊,而是横焊或仰焊,一般采用增大电流和减少焊接时间进行焊接。当工件为薄板时,为了不致工件烧穿,也采用增大电流和减少焊接时间的方法。 3.提升高度 对于不同直径形状的螺柱,要求的提升高度是不一样的,提升高度是否合适,要看是否在焊接过程中出现磁偏吹或短路。当提升高度过大时,电弧燃烧不稳定,容易产生电弧漂移和电弧偏吹。提升高度过小时,电弧容易产生短路而断弧。提升高度对于同一端部形状的螺柱来说,正比于其公称直径,一般在

摩擦焊

摩擦焊原理简介

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在 氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力 的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~ 300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性 变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材 也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心 圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升 高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金 属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化 膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速 度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分 布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。 在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方 首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段, 该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值 的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表 面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所 降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。 这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面 的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功 率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点 呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升 高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械 挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑 性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。 随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气 隔开。 (3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围 从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里

螺柱焊接原理简介

螺柱焊接原理简介 ——供稿人:集团技术管理部刘春峰 螺柱焊接是将直径2-25mm的螺柱或柱状金属高效、低成本、全断面融合地焊接在金属表面的一种特种焊接工艺方法。此项技术的应用可替代一些传统的加工方法,例如:钻孔、攻丝、手工焊接、焊后处理等。 螺柱焊接过程:首先,将焊接螺柱(或柱状金属)放置于焊接母材上;随后,提升焊接螺柱,同时导通电流,在焊接螺柱和焊接母材之间激发电弧,电弧将焊接螺柱端部和焊接母材表面溶化,并形成焊接熔池;接下来,焊接螺柱和焊接母材相对运动,焊接螺柱在一定速度下受控地插入熔池;最后,焊接电流终止,电弧熄灭,同时熔池凝固,焊接过程完成,形成全断面熔合的焊缝。 螺柱焊接优点:①焊缝全断面熔合,提高了焊接部位的安全性; ②焊接在瞬间完成,提高了焊接工作效率;③可适应多种金属材料; ④热影响区小,焊接母材变形小;⑤焊接损伤很小,母材背面没有或只有很小的焊接损伤;⑥保持中空零件的密闭性;⑦实现单面焊接; ⑧操作简便。

螺柱焊接分类:根据焊接的特性和电源原理,我们通常将螺柱焊接分为电容储能式螺柱焊接和拉弧式螺柱焊接,前者焊接在0.003秒内完成,用于在薄板上焊接螺柱,后者焊接时间在0.1-1.5秒内完成,用于在更复杂的环境下焊接螺柱。 电容储能式螺柱焊接具体可分为:①接触式螺柱焊接;②间隙式螺柱焊接。 拉弧式螺柱焊接具体可分为:①陶瓷保护环模式螺柱焊接;②气体保护模式螺柱焊接;③短周期模式螺柱焊接(分为有气体保护和无气体保护二种)。 无论采用哪种螺柱焊接工艺,要想取得理想的焊接效果,都需要我们对以下参数严格控制: 例如:焊接时间,焊接电流,运动的可控性,设备的易操作性,被焊金属材料的成分等。 以下图示了几种常用的螺柱焊接工艺方法: ●接触式电容储能螺柱焊接: 是一种最常用的电容储能螺柱焊接方法(从下图0.001秒开始工作) ●间隙式电容储能螺柱焊接:

超声波焊接原理

概述 超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。 简介 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。一套超声波焊接系统的主要组件包括超声波发生器,换能器变幅杆/焊头三联组,模具和机架。线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。运动可以产生热能,使两个塑料件的焊接部分达到熔点。一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。 焊接原理 超声波焊接原理:超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅。杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积 超声波金属焊接原理: 超声波金属焊接原理是利用超声频率(超过16KHz )的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将框框振动能量转变为工件间的摩擦功、形变能及有限的温升.接头间的冶金结合是母材不发生熔化的情况下实现的一种固态焊接.因此它有效地克服了电阻焊接时所产生的飞溅和氧化等现象.超声金属焊机能对铜、银、铝、镍等有色金属的细丝或薄片材料进行单点焊接、多点焊接和短条状焊接.可广泛应用于可控硅引线、熔断器片、电器引线、锂电池极片、极耳的焊接。

螺柱焊接工艺

一螺柱焊的原理与用途 采用螺柱焊的连接方法可将金属螺柱、销钉或类似连接紧固件焊至工件上的焊接方法。 焊接时螺柱被夹持在焊枪的夹持器内,操作者或机器人将焊枪移至焊接位置,螺柱与工件接触。焊枪中的磁力提升机构使螺柱上升与工件脱离接触,控制机构同时在螺柱与工件间施加一引弧电压,在螺柱端面与工件间引出电弧,电弧使螺柱端面与工件熔化。随着螺柱被提升到设定的高度,工件间的电压被加到焊接电压,焊接时间达到预设时间,焊接电压被切断并同时提升机构的电磁铁被断电,螺柱在焊枪的弹簧机构的弹力作用下浸入工件熔化形成的熔池,螺柱将部分液态金属挤出,熔池金属冷却结晶形成螺柱与工件的共同连接接头。 二焊接设备及焊接定位夹具 螺柱焊接系统包括焊接电源、焊接控制器、送料机构、焊枪、手工焊接需采用焊接定位夹具确保螺柱焊接位置的准确。 三焊接工艺参数 根据螺柱的型号、直径,焊接工件的材料、厚度等条件选择下列螺柱焊工艺参数:引弧电压、螺柱提升高度、焊接电压、焊接电流、焊接时间。 四焊接操作 1接通焊机电源,检查焊接电缆是否可靠连接,送料机构里螺柱品种是否正确、数量合适,送钉正常。 2焊接时保证焊枪与工件表面垂直,如不垂直要及时调整焊枪的焊接角度。 3进行焊接。焊接过程中要定期检查螺柱夹持器的烧损情况,及时更换。定期清理防护套内壁上的焊接飞溅。 4焊后清理工件表面上的焊接飞溅。 五. 焊工 焊工必须经过专门的训练并具备下列专业知识和技能: (1)熟悉焊机基本技术性能; (2)熟知焊机维护,使用及调整方法; (3)熟知被焊总成的技术要求,装配要点及使用情况; (4)了解工艺参数的选择原则,协助设备调整人员对工艺参数进行调整。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理 焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。 1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和

摩擦焊的应用(1)

摩擦焊的应用 摩擦焊接是利用金属焊接表面摩擦加热的一种热压焊接方法. 摩擦焊技术的主要优点归结为如下几个方面:(1)接头质量好且稳定。焊接过程由机器控制,参数设定后容易监控,重复性好,不依赖于操作人员的技术水平和工作态度。焊接过程不发生熔化,属固相热压焊,接头为缎造组织,因此焊缝不会出现气孔、偏析和夹杂,裂纹等铸造组织的结晶缺陷,焊接接头强度远大于熔焊、钎焊的强度,达到甚至超过母材的强度;(2)效率高。对焊件准备通常要求不高,焊接设备容易自动化,可在流水线上生产,每件焊接时间以秒计,一般只需零点几秒至几十秒,是其它焊接方法如熔焊、钎焊不能相比的;(3)节能、节材、低耗。所需功率仅及传统焊接工艺的1/5~1/15,不需焊条、焊剂、钎料、保护气体,不需填加金属,也不需消耗电极;(4)焊接性好。特别适合异种材料的焊接,与其它焊接方法相比,摩擦焊有得天独厚的优势,如钢和紫铜、钢和铝、钢和黄铜等等;(5)环保,无污染。焊接过程不产生烟尘或有害气体,不产生飞溅,没有孤光和火花,没有放射线。 摩擦焊方法 (1)相位摩擦焊 可实现有相位要求的工件的摩擦焊接,扩大了摩擦焊的应用领域。目前生产中对如六方形断 面的零件、八方钢、汽车操作杆、花键轴、拨叉、两端带法兰的轴等均要求采用相位摩擦焊。在 电控技术和机械技术高度发展的前提下,为大吨位相位摩擦焊机的研制提供了可能。 (2)线性摩擦焊 线性摩擦焊技术,是两个工件以一定的频率和振幅进行往复运动产生热量进行的焊接,它可 以将方形、圆形、多边形截面的金属或塑料焊接在一起。它可以焊接更不规则截面的构件,象叶 片与涡轮等,以后要深入开展线性摩擦焊机原理、振动系统动力学等的研究,为研制大吨位的性 摩擦焊机作准备。 (3)径向摩擦焊 径向摩擦焊由于其引入中间旋转加压圆环,不仅改变了摩擦面的方向,焊件也由相对旋转加 压变为相对固定加压,它非常适合于长管子的焊接,同时它还可以把薄壁铜环焊接到弹体外壁上, 能够使军工产品升级换代。今后要加强径向摩擦焊机理和瞬间大流量液压系统的研究,为大吨位 径向摩擦焊机的研制奠定理论基础。 (4)搅拌摩擦焊

振动摩擦焊接机操作规程

振动摩擦焊接机操作规程 1. 目的: 安全正确地使用超声波焊接机,维护设备和人身安全。 2. 适用范围: 本公司内超声波焊接机。 3. 职责: 3.1注塑车间主管负责,操作工具体实施。 3.2制造部为超声波焊接机的维修和定期保养部门 4. 描述: 4.1设备的启动 4.1.1扭动电控柜右上角的隔离开关旋钮,将其置于POWER ON; 4.1.2检查位于设备正面的2个红色按钮确认处于释放状态; 4.1.3按下接触屏下面的带指示灯的白色启动按钮 4.2胎模安装 4.2.1将升降台降到初始位置; 4.2.2将下胎模放在升降台的正确位置,并将上胎模放在下胎模上面; 4.2.3将升降台升到最顶端位置,即上胎模与振动头驱动板相接触的位置; 4.2.4用螺钉将上胎模固定在驱动板上; 4.2.5将升降台连同下胎模降到初始位置; 4.2.6拧紧上胎模螺钉; 4.2.7将定位销或焊接好的样件放在下胎模上; 4.2.8将升降台再升至下胎模和上胎模合拢; 4.2.9用螺钉将下胎模固定; 4.2.10将升降台降到初始位置; 4.2.11拧紧下胎模的固定螺钉。 4.3设备操作 4.3.1寻找模具的谐振频率; 4.3.2调频完成后按下PARAMETER键,进入PARAMETER画面; 4.3.3根据不同需求选择模式; 4.3.4用户根据不同的产品设置不同的焊接参数 4.3.5将工作台或安全门复位到最低点; 共 1 页第2 页

振动摩擦焊接机操作规程 4.3.6按一下AUTO MODE键,进入AUTO MODE画面; 4.3.7在下胎模上将产品放置到位; 4.3.8同时按住两个Cycle Start键,自动焊接开始,直至安全门完全关闭后松开两个Sycle Sraet键,在画面中可以显示焊接过程中参数的实际变化。 4.3.9焊接完成后取出产品。 4.4设备的停止 关闭设备时,按下操作面板上的紧停按钮(EMERGNCY STOP)断电,并扭动隔离开关旋钮到POWER OFF上。 共 2 页第 2 页

螺柱焊机及螺柱焊技术

螺柱焊机及螺柱焊技术 (成都斯达特焊接研究所成都610051) 摘要:文章介绍了螺柱焊机和螺柱焊接工艺参数,并对电弧螺柱焊机的焊接电源、栓钉穿透焊工艺以及我国螺柱焊接技术的现状作了深入的分析,阐述了螺柱焊接技术的发展趋势。 关键词:螺柱焊机螺柱焊接工艺栓钉穿透焊螺柱焊技术发展 所谓螺柱焊是指在金属或类似金属件的端面与另一金属工件表面之间产生电弧,待接合面熔化时迅速施加压力,完成焊接的一种方法。螺柱焊接方法起源于1918年,由于这种焊接新技术具有快速、可靠、简化工序、降低成本等一系列优点,因而引起了世界各国的普遍重视,经过不断地改进和完善,特别是二次世界大战后得到了迅速发展,现已广泛应用到桥梁、高速公路、房屋建筑、造船、汽车、电站、电控柜等行业。可焊接低碳钢、不锈钢、低合金钢,铜、铝及其合金材质的螺柱、焊钉、销钉、栓钉等。 1螺柱焊机的分类 螺柱焊机分为电弧螺柱焊机和电容放电螺柱焊机两大类,前者以弧焊整流器作为电源进行焊接,后者则以电容器储存的能量瞬间放电而进行焊接。两种焊接方式的特点及应用情况见表1。 1.1 电弧螺柱焊机 电弧螺柱焊机是由焊接电源、控制器、焊枪、地线钳、焊接电缆等部分组成。但大多数焊接设备的焊接电源都与控制器合并为一体,称为主机。比较先进的控制方式是使用微处理器,以便精确设置和适时控制焊接过程中的焊接电流、焊接时间等参数。焊接电源一般为晶闸管控制的或逆变式的弧焊整流器。 用于螺柱焊的直流焊接电源应具有以下特点: a、焊接电源应具有下降的静外特性。只有这样才能维持电弧的稳定性,保证焊接质量。 b、焊接电源应有引弧电流(40~50A)和较高的空载电压(70~100V),以确保100%的引弧成功率,对于大直径的螺柱焊接,其空载电压甚至超过100V。只有这样才能满足提升高度较大时的需求。 c、要有较高的负载电压。按弧焊电源下降特性的定义,当焊接电流≥600A时,

(完整版)螺柱焊结构及原理

螺柱焊(stud welding) 将螺柱一端与板件 (或管件 )表面接触并通电引弧,待接触面熔化后,给螺柱一定压 力完成焊接的方法。 螺柱焊钉 螺柱焊( stud welding)是将螺柱一端与板件(或管件)表面接触,通电引弧, 待接触面熔化后,给螺柱一定压力完成焊接的方法。电弧螺柱焊用圆柱头焊钉适用高层钢骨结构建筑、工业厂房建筑、公路、铁路、桥梁、塔架、汽车、能源、交通设施建筑、机场、车站、电站、管道支架、起重机械及其它钢结构等。 简介主要由螺柱焊电源和焊枪组成. 电弧螺柱焊的基本原理是在待焊螺柱与工件间引燃电弧,当螺柱与工件被加热到合适温度时,在外力作用 下,螺柱送入工件上的焊接熔池形成焊接接头。根据焊接过程中所用焊接 电源的不同,传统电弧螺柱焊可以分为普通电弧螺柱焊和电容储能电弧螺 柱焊两种基本方法 螺柱焊原理分析螺柱焊是将金属螺柱或其他紧固件焊接在工件上的方法。 实现螺柱焊接的方法有多种,如:拉弧式螺柱焊、储能式螺柱焊、电阻焊、 螺柱焊机、储能式凸焊等。与之相对应的焊机也有所不同,分别为拉弧式 螺柱焊机、电阻焊机、凸焊机等。 [1] 螺柱焊机在国内有多种非正规称法,如种焊机,植焊机,种钉机,植钉机,植焊机,螺钉焊机,螺丝焊机等等,均是指螺柱焊机。 储能式螺柱焊机 储能式螺柱焊机采用大容量电容作为焊接能量的来源,通过可控硅精 确控制放电时间,以瞬间低电压-强电流的方式将螺柱尖端迅速熔化,使螺柱和工作面间隙快速合并,将螺柱牢固的焊接在工作面上,整个过程持续 约 1-3ms。 储能式螺柱焊机的工作原理简图如下:

螺柱焊原理图 储能式螺柱焊机采用 220V交流电,通过变压器 1降压,再通过整流桥 2将交流电变为直流电,经过双向整流管3和充电电阻向电容 6充电。由智能芯片精确控制可控硅 5,使储能电容 6瞬间释放全部电量完成整个焊接过程。 储能式螺柱焊机广泛运用于钣金工程、电子业开关柜、试验和医疗设 备、食品工业、家电工业、通讯工程、工业全套炊具、办公室和银行设备、 投币式督货机、玻璃幕墙结构和绝缘技术等。 螺柱焊的特点 1.非常节省时间和成本所有螺柱焊的结构不用钻孔,冲孔,车螺纹,铆接,拧螺纹和精整等步骤。 2.不断扩展结构设计的应用潜力在螺柱焊时起焊接过程是短时间,大电 流和较小的熔深。因此,可以焊接到很薄的板材上。对于使用陶瓷环拉弧 螺柱焊和短周期拉弧螺柱焊的板厚可以到1mm。电容放电拉弧螺柱焊可以到0.6mm,而储能式螺柱可以到0.5mm。 螺柱焊的工件必须是从一侧焊接。 能在全位置焊接,借助于扩展器可以焊接到受限制的垂直隔板上。 由于是短时间焊接且焊后很少变形,故不需要修整。 因为焊接的结构不需要钻孔,故不会造成泄漏。 螺柱焊的接头可以达到很高的强度,即螺柱焊的接头强度大于螺柱本 身强度。 在镀层或高合金板材焊接后,背面没有印痕。 3.良好的经济性 螺柱焊相对于其他焊接方法的优点,在于焊接功率上。对于批量生产 的工件,在很短的焊接时间( 3-980ms)内可打到 8-40个/min(根据不同 直径螺柱和不同焊接功率)。而自动送料螺柱焊机可以达到 60个/min 的超高效率。 标准的螺柱是低成本的。 螺柱焊设备和焊枪具有多种类型,设备的购置费用相对较低。

相关文档
最新文档