粉末冶金

粉末冶金
粉末冶金

粉末冶金材料

粉末冶金材料

用粉末冶金工艺制得的多孔、半致密或全致密材料(包括制品)。粉末冶金材料具有传统熔铸工艺所无法获得的独特的化学组成和物理、力学性能,如材料的孔隙度可控,材料组织均匀、无宏观偏析(合金凝固后其截面上不同部位没有因液态合金宏观流动而造成的化学成分不均匀现象),可一次成型等。

[英文]:powder metallurgy material

[解释]:

用粉末冶金工艺制得的多孔、半致密或全致密材料(包括制品)。粉末冶金材料具有传统熔铸工艺所无法获得的独特的化学组成和物理、力学性能,如材料的孔隙度可控,材料组织均匀、无宏观偏析(合金凝固后其截面上不同部位没有因液态合金宏观流动而造成的化学成分不均匀现象),可一次成型等。通常按用途分为7类。

①粉末冶金减摩材料。又称烧结减摩材料。通过在材料孔隙中浸润滑油或在材料成分中加减摩剂或固体润滑剂制得。材料表面间的摩擦系数小,在有限润滑油条件下,使用寿命长、可靠性高;在干摩擦条件下,依靠自身或表层含有的润滑剂,即具有自润滑效果。广泛用于制造轴承、支承衬套或作端面密封等。

②粉末冶金多孔材料。又称多孔烧结材料。由球状或不规则形状的金属或合金粉末经成型、烧结制成。材料内部孔道纵横交错、互相贯通,一般有30%~60%的体积孔隙度,孔径1~100微米。透过性能和导热、导电性能好,耐高温、低温,抗热震,抗介质腐蚀。用于制造过滤器、多孔电极、灭火装置、防冻装置等。

③粉末冶金结构材料。又称烧结结构材料。能承受拉伸、压缩、扭曲等载荷,并能在摩擦磨损条件下工作。由于材料内部有残余孔隙存在,其延展性和冲击值比化学成分相同的铸锻件低,从而使其应用范围受限。

④粉末冶金摩擦材料。又称烧结摩擦材料。由基体金属(铜、铁或其他合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)3部分组成。其摩擦系数高,能很快吸收动能,制动、传动速度快、磨损小;强度高,耐高温,导热性好;抗咬合性好,耐腐蚀,受油脂、潮湿影响小。主要用于制造离合器和制动器。

⑤粉末冶金工模具材料。包括硬质合金、粉末冶金高速钢等。后者组织均匀,晶粒细小,没有偏析,比熔铸高速钢韧性和耐磨性好,热处理变形小,使用寿命长。可用于制造切削刀具、模具和零件的坯件。

⑥粉末冶金电磁材料。包括电工材料和磁性材料。电工材料中,用作电能头材料的有金、银、铂等贵金属的粉末冶金材料和以银、铜为基体添加钨、镍、铁、碳化钨、石墨等制成的粉末冶金材料;用作电极的有钨铜、钨镍铜等粉末冶金材料;用作电刷的有金属-石墨粉末冶金材料;用作电热合金和热电偶的有钼、钽、钨等粉末冶金材料。磁性材料分为软磁材料和硬磁材料。软磁材料有磁性粉末、磁粉芯、软磁铁氧体、矩磁铁氧体、压磁铁氧体、微波铁氧体、正铁氧体和粉末硅钢等;硬磁材料有硬磁铁氧体、稀土钴硬磁、磁记录材料、微粉硬磁、磁性塑料等。用于制造各种转换、传递、储存能量和信息的磁性器件。

⑦粉末冶金高温材料。包括粉末冶金高温合金、难熔金属和合金、金属陶瓷、弥散强化和纤维强化材料等。用于制造高温下使用的涡轮盘、喷嘴、叶片及其他耐高温零部件。

粉末冶金弥散强化材料(英文:powder metallurgy dispersion-strenthened mat erial)

金属或合金基体相与高度弥散的、基本上不溶于基体的金属或非金属相所组成的粉末冶金材料。其主要特征是高温强度高和抗蠕变性能好。强化机理与沉淀强化类似。但沉淀强化合金在高于沉淀相生成温度加热时,沉淀相会发生粗化和重溶,因此使用温度受到限制。而弥散强化合金,弥散相可以稳定到基体固相线温度。弥散质点的存在改变了合金的屈服强度、加工硬化、蠕变和断裂行为。高温强度,特别是蠕变速率受弥散相几何参数(即基体中质点间的间距、质点的直径、形状(长宽比))的影响。其机制既受位错绕过第二相的影响,也受晶界滑移的影响,还没有一个被普遍接受的蠕变模型。弥散相选择的一般原则是:生成自由能高,熔点高,与基体不互溶,相界能低(即界面结合良好)等。弥散相通常是氧化物,也可以是稳定的金属间化合物,甚至是纯金属。

典型的弥散强化材料有:(1)烧结铝粉(SAP)。用表面氧化法制造。SAP有很高的高温强度和抗蠕变性能,使用温度达500℃,远优于一般铝合金。它主要用于:反应堆中的核燃料包套,飞机机翼和机身,压气机叶轮,高温活塞等。

(2)弥散强化铜。弥散质点一般为Al2O3,常用内氧化法制造。经弥散强化后,铜的强度、硬度得到很大的提高,导电性降低不多。它常用作电阻焊的电极,白炽灯灯丝引线,电子管零件和电子工业中的其他材料。

弥散强化材料的主要制造方法是粉末冶金法,其代表性方法分类如图。

(3)弥散强化高温合金。最早的弥散强化镍基合金是ThO2(2%)强化镍(TD-Ni)。一般用共沉淀法制得。用湿法制得的还有用Th02强化的Ni-Mo、Ni-Co、Ni-Cr-Al 等合金。机械合金化法出现之后,又发展了一系列镍基、铁基和钴基合金。已经使用的有10多种。弥散相一般为ThO2和Y203。表中列出了几个典型的合金。MA754的性质优于ThO2-Ni-Cr,已成功地用作喷气发动机叶片。MA956E是以Fe-Cr-Al为基的材料,有优越的抗氧化性和抗腐蚀性。MA6000E合金,1000h的断裂应力在80 0OC以上远优于TD-Ni和IN792。1100℃时,TD-Ni和IN792的1000h断裂应力只有20~30MPa,而MA6000E还有160MPa。因此MA6000E是一种好的叶片材料。

(4)其他。例如:弥散强化铅(DS-Pb),是惟一类似于SAP的例子,弥散相为Pb O,主要用于声音衰减、化工器具、放射屏蔽和电池;含铝、锆的镁合金(铝和锆均溶于镁,但溶解后析出A1Zr4弥散相);金属间化合物FeAl3、FeNiAl9强化的Al-Fe合金等。

https://www.360docs.net/doc/c63540275.html, 2008年03月07日12:23

03月07日讯粉末冶金是一项很有发展的新技术、新工艺,已广泛应用在农机、汽车、机床、冶金、化工、轻工、地质勘探、交通运输等各方面。粉末冶金材料有工具材料及机械零件和结构材料。工具材料大致有粉末高速钢、硬质合金、超硬材料、陶瓷工具材料及复合材料等。机械零件和结构材料有粉末减摩材料,包括多孔减摩材料和致密减摩材料;粉末冶金铁基零件及粉末冶金非铁金属零件等。

1.硬质合金

硬质合金由硬质基体(质量分数为70%~97% )和粘结金属两部分组成。硬质基体是难熔金属的碳化物,如碳化钨及碳化钛等;粘结金属为铁族金属及合金,以钴为主。

(1)硬质合金的种类和牌号

硬质合金为一种优良的工具材料,主要用作切削刀具、金属成形工具、矿山工具、表面耐磨材料及高刚性结构部件。类型有含钨硬质合金,钢结硬质合金,涂层硬质合金,细晶粒硬质合金等。钢结硬质合金是一种新型的工模具材料,性能介于高速工具钢和硬质合金之间,是以一种或几种碳化物(如WC、TiC)为硬化相,以碳钢或合金钢(如高速工具钢、铬钼钢等)粉末为粘结剂,经配料、压制、烧结而制成的粉末冶金材料。退火处理后,可进行切削加工;淬火、回火处理后,有相当于硬质合金的高硬度和耐磨性,一定的耐热、耐蚀和抗氧化性。适于制造麻花钻、铣刀等形状复杂的刀具、模具和耐磨件。

含钨硬质合金按其成分和性能特点分为钨钴类(WC-Co系)、钨钛钴类(WC-TiC-Co 系)、钨钛钽(铌)类【WC-TiC-TaC(NbC)-Co系、WC –TaC(NbC)-Co系】。

钨钴类硬质合金的主要化学成分是碳化钨(WC)及钴。牌号为―YG+数字‖(YG为―硬钴‖汉语拼音字首),数字表示钴平均质量分数。如YG6表示钴平均质量分数为6%,余量为碳化钨的钨钴类硬质合金。该类合金的抗弯强度高,能承受较大的冲击,磨削加工性较好,但热硬性较低(800~900℃),耐磨性较差,主要用于加工铸铁和非铁金属的刃具。

钨钛钴类硬质合金的主要化学成分是碳化钨、碳化钛(TiC)及钴。牌号为―YT+数字‖(YT 为―硬钛‖汉语拼音字首),数字表示碳化钛平均质量分数。如YT15表示TiC为15%,其余为WC和Co的硬质合金。该类硬质合金的热硬性高(900~1100℃),耐磨性好,但抗弯强度较低,不能承受较大的冲击,磨削加工性较差,主要用于加工钢材。

钨钛钽(铌)类硬质合金又称为通用硬质合金或万能硬质合金。它是由碳化钨、碳化钛、碳化钽(TaC)或碳化铌(NbC)和钴组成。牌号为―YW+顺序号‖(YW表示―硬万‖汉语拼音字首),如YW1表示万能硬质合金。该类硬质合金是在上述硬质合金中添加TaC或NbC,它的热硬性高(>1000℃),其它性能介于钨钴类与钨钛钴类之间,它既能加工钢材,又能加工非铁金属。

(2)硬质合金的性能及应用

1) 性能

硬质合金的硬度高,室温下达到86~93HRA,耐磨性好,切削速度比高速工具钢高4~7倍,刀具寿命高5~80倍,可切削50HRC左右的硬质材料;抗弯强度高,达6000MPa,但抗弯强度较低,约为高速工具钢的1/3~1/2,韧性差,约为淬火钢的30%~50%;耐蚀性和抗氧化性良好;线膨胀系数小,但导热性差。

2) 应用

硬质合金主要用于制造高速切削或加工高硬度材料的切削刀具,如车刀、铣刀等;也用作模具材料(如冷拉模、冷冲模、冷挤模等)及量具和耐磨材料。根据GB2075—87规定,切削加工用硬质合金按切削排出形式和加工对象范围不同,分为P、M、K三个类别,同时又依据加工材质和加工条件不同,按用途进行分组,在类别后面加一组数字组成代号。如P01、P10、P20……,每一类别中,数字越大,韧性越好,耐磨性越低。

2.粉末高速钢

高速钢的合金元素含量高,采用熔铸工艺时会产生严重的偏析使力学性能降低。金属的损耗也大,高达钢锭重量的30%~50%。粉末高速钢可减少或消除偏析,获得均匀分布的细小碳化物,具有较大的抗弯强度和冲击强度;韧性提高50%,磨削性也大大提高;热处理时畸变量约为熔炼高速钢的十分之一,工具寿命提高1~2倍。

采用粉末冶金方法还可进一步提高合金元素的含量以生产某些特殊成分的钢。如成份为9W-6Mo-7Cr-8V-8Co-2.6C的A32高速钢,切削性能是熔炼高速钢的1~4倍。

常用高速钢牌号为W18Cr4V和W6Mo5Cr4V2,含有0.7%~0.9%C,及>10%的钨、铬、钼、钒等合金元素。其中碳保证高速钢具有高硬度和高耐磨性,钨和钼提高钢的热硬性,铬提高钢的淬透性,而钒则提高钢的耐磨性。

3.铁和铁合金的粉末冶金

在粉末冶金生产中,铁粉的用量比其金属粉末大得多。铁粉的60%~70%用于制造粉末冶金零件。主要类型有铁基材料、铁镍合金、铁铜合金及铁合金和钢。粉末冶金铁基结构零件具有精度较高,表面粗糙值小,不需或只需少量切削加工,节省材料,生产率高,制品多孔,可浸润滑油,减摩、减振、消声等特点。广泛用于制造机械零件,如机床上的调整垫圈、调整环、端盖、滑块、底座、偏心轮,汽车中的油泵齿轮、活塞环,拖拉机上的传动齿轮、活塞环,以及接头、隔套、油泵转子、挡套、滚子等。

粉末冶金铁基结构材料的牌号用―粉‖、―铁‖、―构‖三字的汉语拼音字首―FTG‖,加化合碳含量的万分数、主加合金元素的符号及其含量的百分数、辅加合金元素的符号及其含量的百分数和抗拉强度组成。如FTG60-20,表示化合碳量0.4%~0.7%,抗拉强度200MPa的粉末冶金铁基结构材料;FTG60Cu3Mo-40,表示化合碳量0.4%~0.7%,合金元素含量Cu2%~4%、Mo0.5%~1.0%,抗拉强度400MPa的粉末冶金铁基结构材料;FTG60Cu3Mo-40(55R),表示该烧结铜钼钢热处理后的抗拉强度为550MPa。

4.摩擦材料和减摩材料

粉末冶金摩擦材料是一种复合材料,它由高摩擦系数组元、高耐磨组元和高机械强度的组元所组成,用作离合器和制动器材料;粉末冶金减摩材料能够控制材料的孔隙,而这些孔隙中可以浸渗油,也能以固体润滑剂分布在金属里的复合材料的形式来制造,其中自润滑轴承在粉末冶金制品中占有重要的地位。摩擦材料和减摩材料是粉末冶金的特殊制品。

粉末冶金摩擦材料根据基体金属不同分为铁基材料和铜基材料,其辅助组元为润滑组元和摩擦组元。润滑组元有石墨和铅,占摩擦材料的5%~25%,改善材料的抗粘、抗卡性,

提高耐磨性;摩擦组元有SiO2、SiC、Al2O3等,提高材料的摩擦系数,改善耐磨性,防止焊合。据工作条件不同,分为干式和湿式材料,湿式材料宜在油中工作。其牌号由―粉摩‖两字的汉语拼音字首―FM‖,加基体金属骨架组元序号(铜基为1,铁基为2)、顺序号和工作条件汉语拼音字首―S‖或―G‖组成。如FM101S,表示顺序号为01的铜基、湿式粉末冶金摩擦材料;FG203G,表示顺序号为03的铁基、干式粉末冶金摩擦材料。

粉末冶金减摩材料分为铁基材料和铜基材料,具有多孔性,主要用来制造滑动轴承。这种轴承材料压制成轴承后,放在润滑油中因毛细现象可吸附润滑油(一般含油率12%~30%),故称含油轴承。轴承在工作时,由于发热膨胀使孔隙变小;轴旋转时带动轴承间隙中的空气层,降低了摩擦表面的静压力,在粉末空隙内外形成压力差,使润滑油被抽到工作表面。停止工作时,润滑油又渗入孔隙中,故含油轴承可自动润滑。

粉末冶金减摩材料的牌号由粉末冶金滑动轴承的―粉‖、―轴‖两字汉语拼音字首―FZ‖,加上基体主加组元序号(铁基为1,铜基为2)、辅加组元序号和含油密度组成。如FZ1360,表示辅加组元为碳、铜,含油密度为5.7~6.2g/cm3的铁基粉末滑动轴承用减摩材料。

5.粉末冶金非铁金属机械零件

烧结金属非铁金属材料应用较多的是铜及其合金,另外还有铝烧结制品、烧结钛及钛合金。

⑴烧结铜及铜合金

烧结纯铜应用较少,只用于要求高导电性和无磁性零件。常用的烧结铜基合金有青铜(铜-锡)和黄铜(铜-锌),还有铜-镍-锌、铜-镍、铜-铝等合金系。铜基材料具有耐腐蚀的特点,有一定的强度和韧性,较容易进行加工,采用一般的压制烧结工艺即可生产。

烧结铜基合金多用于制造含油轴承、摩擦材料、电器接点材料及发汗材料的渗透金属,作为高密度机械零件常用于制作小型齿轮、凸轮、垫圈、螺母等,也可用粉末轧制的方法生产带材。

⑵铝烧结制品

铝基材料与铁基、铜基材料的性能相近,但质量轻,节约能源。铝烧结制品与其压铸件相比尺寸精度高、组织均匀,粉末锻造铝基材料的抗拉强度和屈服强度均高于普通铝锻件。铝烧结材料可用做精密机械零件、多孔含油轴承材料和过滤材料,在交通运输、仪器仪表、家庭用具、宇宙飞行等方面均有应用。

烧结铝制件几乎可以用所有的粉末冶金工艺生产。成形工艺有模压、等静压、轧制、挤压等。烧结在低露点(-40℃)的惰性或还原性气氛中进行,也可在真空中进行烧结。通过复压、冷锻或热锻进一步提高烧结件的密度和强度。为获得美观的表面可进行机械抛光、化学处理和电化处理。

⑶烧结钛及钛合金

钛的密度小、强度高、耐蚀性好、使用温度范围广(540℃~-253℃)。钛基航空结构材料多用热锻、热等静压、热压、热挤压、粉末热轧等热成形工艺,以增加制品的密度,改善制品的性能。典型的钛基合金为Ti-6Al-4V,用于制做飞机机架配件

提高粉末冶金制品压坯密度的新技术

2007-4-19 来源:中国矿冶设备网

粉末冶金是一种能够制备复杂形状的近净型产品的生产技术,其制备的零件性能与其密度有很大的关系。对铁基粉末冶金零件而言,密度达到7.2g/cm 后,其硬度、抗拉强度、疲劳强度、韧性等都会随密度的增加而呈几何级数增大。例如,密度对烧结钢性能的影响见图1 。而传统一次压制次烧结生产的铁基粉末冶金制品,其密度一般在7.1 g/cm (相对密度约90%)以下,因此其力学性能远低于同类材料的全致密件。为了扩大粉末冶金制品的应用范围,提高粉末冶金材料的性能尤其是力学性能,各国经过多年的研究,开发出了多种不同的生产工艺,如高温烧结、渗铜技术、复压复烧、粉末锻造、热等静压、喷射沉积、温压工艺、快速压制等。这些新技术的出现,对粉末冶金材料和制品的发展起了突破性的促进作用,明显扩大了粉末冶金技术的应用范围,推动了粉末冶金工业的快速发展。

1 温压技术

温压技术是美国Hoeganaes公司在加拿大多伦多举行的pMaTEC94(1994International ConferenceOn Powder Metallurgy and Particulate Materials)国际粉末冶金和颗粒材料会议上首次公布的。它被公布之后,很快被用于实际生产中,现已被认为是进入20世纪90年代以来粉末冶金零件生产技术方面最为重要的一项技术进步。而国际粉末冶金学界称誉温压技术为“开创铁基粉末冶金零部件应用新纪元”和“导致粉末冶金技术革命”的新型成形技术。

1.1 传统温压

所谓温压(Warm Compaction,WC)就是指采用特殊的粉末加温、粉末输送和模具加热系统,将加有特殊润滑剂的预合金粉末和模具加热至130~150℃ ,同时为保证良好的粉末流动性和粉末充填行为,将温度波动控制在±2.5℃ 以内,然后按传统粉末压制工艺进行压制的一项新型粉末冶金生产技术。目前世界上已推出的受专利保护的温压工艺有瑞典Hoeganaes AB公司的DensmixTM、美国Hoeganaes公司的Ancordense 和加拿大Quebec Metal Powder(QMP)的Flowment WP等。与传统的粉末冶金压制工艺相比,温压工艺具有以下一些技术特点:.

(1)能以较低的成本制造出高性能的铁基粉末冶金零部件。由于与普通的模压相比较,粉末及模具仅加热到150℃ 左右,故可在普通粉末压机上添加加热系统就可改造为温压机,所需投入并不大。而且采用温压工艺生产的生坯强度高,又可直接进行附加的机加工,而压制压力和脱模压力均能较低,故模具寿命高,可显著降低成本,是一种不复杂但效益高的新技术。据资料分析,温压工艺虽比常规一次压制烧结工艺的相对成本提高了20%,但比浸铜工艺、复压复烧工艺、粉末锻造工艺,分别降低了20 %、30 %和80 %。

(2)零件压坯密度高。通过采用温压技术,通常能使铁基粉末冶金零件的压坯密度达到7、25~7.60 g/cm3 ,与传统一次压制烧结工艺相比提高了0.15~ 0.3 g/cm3 。

(3)产品具有高强度。与传统模压工艺相比,用温压制造的零件的疲劳强度可提高10%~40%,极限抗拉强度提高10 %,烧结态极限抗拉强度≥1 200 MPa。特别是零件

经温压、烧结后进行适度的复压,其疲劳性能与粉末热锻件相当。

(4)能够制造形状复杂以及要求精度高的零件。采用温压技术,能使压坯的脱模压力降低30%以上,而压坯强度提高125%.~200%,并且弹性后效小(0.1%~0.16%),烧结收缩率也只有0.025%~ 0.08 %左右。这一切均为制造形状复杂以及尺寸精度要求高的零件创造了良好的条件。

(5)压坯密度分布均匀。采用温压工艺制备的齿轮类零件,其齿部与根部问的密度差比常规压制工艺低0.1~0.2 g/cm 。

1.2 流动温压

在传统温压的基础上,德国的Fraunhofer应用材料研究所开发出来了流动温压(Warm Flow Compaction,WFC)。Fraunhofer研究所是从1996年4月开始对温压技术进行基础性研究的,其中包括对温压压制过程的计算机模拟和温压件烧结机制的研究。流动温压是以温压工艺为基础并结合金属注射成形(Metal Iniection Molding,MIM )工艺的优点而发展起来的。它是指在一定温度下,将一定量的粗粉(粒度为100um 左右)和微细粉[粒度为0.5~20 um,一般占l0%~20%(质量分数)]以及热塑性润滑剂相混合配制出性能均一并且具有良好流动性的混合粉末,然后和传统温压工艺一样在80~130℃ 下进行压制,最后烧结而制成成品的粉末冶金新技术。它的关键技术是提高混合粉末的流动性,为此,Fraunhofer研究人员选用了两种方法,其一是在粉末中加入微细粉末,使之填充到大颗粒之间的间隙中,从而提高混合粉末的松装密度;其二是加入比传统粉末冶金工艺更多但比粉末注射成形少得多的粘结剂和润滑剂,使混合粉末在压制中转变为一种填充性很好的黏流体,混合粉末良好的流变行为使得粉末在压制过程中可以流向各个角落而不产生裂纹。由于加入了适量的微细粉末和加大了润滑剂的含量而大大提高了混合粉末的流动性、填充能力和成形性,因此流动温压具有可成形形状复杂的零件、性能均一、高密度、低成本等特点。利用该工艺可成形形状非常复杂的零件,如垂直于压制方向上的凹槽、孔以及螺纹孔等。Fraunhofer研究人员还发现,流动温压工艺几乎适用于所有的粉末体系,但最适合于成形低合金钢、Ti以及WC—Co等硬质合金粉末。

1.3 高压温压

在美国奥兰多举行的PMC TEC2002国际会议上,日本丰田汽车中心研发室的研究人员MikioKondoh披露了利用温压、模壁润滑(Die Wall Lubrication,DWL)和高压制压力,制得近乎全致密的铁基粉末压坯u 。他们发现,采用水中弥散分布的无污染硬脂酸锂(粒度为10um)作为润滑剂,这种润u滑剂用于加热的模具上,能在压坯表面迅速形成1um厚均匀的化学吸附润滑膜层,通过机械化学反应,可在高压下压制。他们比较了两种粉末的高压温压压制,ASC100.29铁粉在1 176 MPa、150℃ 条件下温压,可得到7.74 g/cm 3的压坯密度(同样压力下,室温压制时压坯密度只有7.3 g/cm ),弹性后效<0.1%(而室温时为0.35%)。并且脱模压力随压力的增大而降低(1 176 MPa压力下时脱模压力只有10 MPa左右),这与室温压制时相反,见.图2. 用压缩性更好的ABC100.30铁粉于模壁润滑、1 960 MPa、150℃ 时温压,其压坯密度甚至高达7.85 g/cm3(相对密度达到99.9%),压坯强度也达到180 MPa左右。而同样压力下室温压制密度只有7.3 g/cm3 左右,这说明压制压力对温压的效果有很大影响。压制压力越大,温压效果越好。

2 高速压制技术

同样在PM TEC2002会议上,瑞典Hoeganaes AB公司的Paul Skoglund等提出了高速压制(High Velocity Compaction,HVC)的粉末冶金制造新方法。他们用液压冲击机在压制压力为600~1 000 MPa、压制速度为2~30 m/s(比传统压制快500~1000倍)的条件下

进行压制,得到了压坯密度为7.4 g/cm3以及重量将近5 kg的粉末冶金铁基零件,这样重量的粉末冶金制品将大大扩大粉末冶金的应用范围。其原理为,液压驱动的重锤可以产生强烈的冲击波,在很短的时间内(0.02 S左右)将压制能量通过压模传给粉末进行致密化,重锤的质量和冲击时的速度决定压制能量与致密化程度;另外,高速压制可以产生多重冲击波,每间隔0.3 s的一个个附加冲击波将密度不断提高,重锤的质量与冲击时的速度决定压制能量与致密化程度。与传统压制相比,高速压制的密度可提高0.3 g/cm3左右,因而抗拉强度和屈服强度能相应地提高20%~25%。高速压制压坯的径向弹性后效很小,故脱模压力较小,并且压坯密度均匀,其偏差小于0.01 g/cm3。高速压制工序与传统压制一样,模具设计也相似,模具使用寿命可达10万次以上。用高速压制工艺可以生产阀座、气门导管、主轴承盖、轮毂、齿轮、法兰、连杆、轴套以及轴承座等产品。Paul Skoglund 等还预测了用与HVC相关的工艺方法能够制造出铁基零件的可能最大密度及其费用,见表1。从表1可以看出,与其它粉末冶金制造方法相比,高速压制特别是高速复压具有明显的技术和经济优势,并且该技术可使粉末冶金制品的应用范围进一步扩大。

3 粉末冶金技术的应用及预测

近些年来,我国粉末冶金零件行业在不断地提高产品质量和开发新产品、新材料、新工艺。例如,宁波东睦新材料股份公司用粉末冶金方法生产出了其他方法无法生产的摩托车用变档凸轮从动齿轮,其密度可达7.4~7.9 g/cm3。扬州保来得工业公司用温压工艺生产出了冲击钻用的冲击棘轮,其烧结态的密度为7.2 g/cm ,冲击功≥ 15 J,拉伸强度≥480 MPa,与传统工艺相比,其生产成本可降低50%。而国际上利用温压等新工艺制造出了越来越多的标志性产品。例如,德国Sinterstahl GmbH公司用温压技术生产出了复杂的摩擦传动用同步齿环,并在美国新奥尔兰举行的PM TEC国际会议上获奖。该零件的齿部密度≥7.3g/cm3 ,环体密度≥7.1 g/cm3,压坯强度≥28 MPa,抗拉强度≥850 MPa。该齿环由于使用了温压技术和采用了粉末冶金零件,使得综合成本降低了38%。日本日立粉末金属公司采用温压工艺生产的粉末冶金小节锥半角斜伞齿轮,成功地取代了过去以机加工锻钢坯的昂贵生产工艺,并获得了日本粉末冶金协会颁发的1999年度新设计奖。Stackpole Ltd公司用粉末冶金技术生产的行星齿轮托架组件获得了MPIF 2001年度大奖和EPMA 创新奖。法国Federal Mogul公司为汽车工业制造了使用性能与锻造以及粉末锻造相近但成本较低的温压连杆,获得了2000年度的EPMA(欧洲粉末冶金协会)创新大奖,该公司计划2002年生产350~600 g重的各种连杆1 500万件。日本日产汽车公司用粉末冶金温压工艺开发出了汽车发动机链轮以及用温压一高温烧结工艺开发出了直喷汽油(DIG)汽车发动机无声链条系统用链轮,并都确定了批量生产的技术因素。

粉末冶金行业的发展与汽车制造业密切相关,据统计铁基粉末制品市场份额的约70%在汽车制造业。在北美,典型家用轿车上粉末冶金制品的用量2002年已达17.7 kg/辆(1997年仅为7 kg/辆),预计到2003年将达到18.4 kg/辆,见表2。而一些大型运输车上使用的粉末冶金零件甚至超过了22.6 kg/N 。据对我国粉末冶金零件市场的预测,在2000年生产规模的基础上,到2005年,摩托车、汽车行业将分别有40%、70%的增幅,达到1 300万、300万辆左右。而且,在近年来新上市的汽车中,粉末冶金零件的种类和重量也在逐渐增多。例如,前几年才投放市场的上海通用汽车有限公司生产的别克(Buick)轿车,每辆使用粉末冶金零件达35种,12.5 kg,用量是普通桑塔纳轿车的4倍(每辆用粉末冶金零件仅15种3 kg)。因此,随着我国汽车行业的快速发展,必将为我国的粉末冶金行业提供一个广阔的发展市场。

4 结束语

在市场化的今天,粉末冶金新材料的一个重要开发方向是使粉末经过一次压制/烧结制造出高密度的烧结材料。除改善产品性能、增加新产品外,粉末冶金技术的另一个发展方向是降低生产成本。像温压、流动温压、高压温压、高速压制等新的粉末冶金生产技术,能以较低的加工成本制造高性能铁基P/M 零件,这为进一步扩大粉末冶金零件的应用范围提供了新的技术途径。

本文系本网编辑转载,转载目的在于传递更多信息;刊登信息任何部分之错误或疏失(如涉及作品内容、版权及其它问题),敬请及时联系本网,本网将在最短时间给予妥善处理!

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/

590 66 < 690 35 60 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值烧结铁-铜合金和 烧结铜钢的化学 成分(%). 材料牌号 Fe Cu C FC-0200 烧结铁-镍合金和烧结镍 钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 注: 用差减法求出的其它 元素(包括为了特殊目的 而添加的其它元素)总量 的最大值为% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号最小强 度 (A)(E) 拉伸性能 横 向 断 裂 压缩 屈服 强度 %) 硬度 密度屈 服 极 限 极限 强度 屈服强 度 %) 伸 长 率 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 310 120 11HR B N/A 120 190 160 350140 18 140 210 180 390 160 26 170 230 200 430 180 36 FC-0205-30 -35 -40 -45 210 240 240 < 410 340 37HR B N/A 240 280 280 < 520 370 48 280 340 310 < 660 390 60 310 410 340 < 790 410 72 FC-0205-60HT -70HT -80HT -90HT 410 480 < 660 390 19HR C 58HRC 480 550< 760 490 25 58 550620 (D) < 830 590 31 58 620 690 < 930 660 36 58 FC-0208-30 -40 210 240 240 < 410 390 50HR B N/A

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

粉末冶金常识

粉末冶金常识 1、粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形 和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称“金属粉末“)。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为“粉末冶金材料“)或制品(称为“粉末冶金制品“)。 2、粉末冶金常识之粉末冶金最突岀的优点是什么? 粉末冶金最突岀的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和 制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造岀合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高 达95%X上,它还能在一些制品中以铁代铜,做到了“省材、节能“。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类? 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3 )消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项? 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物 理性能主要包括那几项? 用于粉末冶金的粉末物理性能主要包括以下三项:( 1)粉末的颗粒形状;( 2)粉末的粒度和粒度组成;(3)粉末的比表面。

粉末冶金基本知识篇

粉末冶金基本知识篇 绪论 粉末冶金(也称金属陶瓷法):制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 粉末冶金工艺:1)、制取金属、合金、金属化合物粉末以及包覆粉末; 2)、将原料粉末通过成形、烧结以及烧结后的处理制得成品。大概流程:物料准备(包括粉末预先处理(如加工,退火)、粉末分级、混合和干燥等)→成形→烧结→烧结后处理(精整、浸油、机加工、热处理、粉末冶金的特点: 1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料: ①能控制制品的孔隙度(多孔材料、多孔含油轴承等); ②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材 料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等); ③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越: ①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分 的偏析); ②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔 金属)。 粉末冶金技术的优越性和局限性: 优越性:1)、无切削、少切削,能够大量节约材料,节省能源,节省劳动。普通铸造合金切削量在30-50%,粉末冶金产品可少于5%。2)、能够大量能够制备其他方法不能制备的材料。3)、能够制备其他方法难以生产的零部件。 局限性:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 常用粉末冶金材料:粉末冶金减摩、多孔、结构、工具模、高温和电磁材料。 第一章:粉末的制取 第一节:概述 制粉方法分类: 机械法:由机械破碎、研磨或气流研磨方法将大块材料或粗大颗粒细化的方法。物理法:采用蒸发凝聚成粉或液体雾化的方法使材料的聚集状态发生改变,获得粉末。 化学法:依靠化学或电化学反应,生成新的粉态物质(气相沉积、还原化合、电化学发)。 在固态下制取粉末的方法包括:有机械粉碎法和电化腐蚀法;还原法;还原-化合法。 在气态制备粉末的方法包括:蒸气冷凝法;羟基物热离解法。 在液态制备粉末的方法有:雾化法;置换法、溶液氢还原法;;水溶液电解法;熔盐电解法。 从过程的实质看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。机械法是将原材料机械地粉碎,而化学成分基本上不发生变化;物理化学法是

JIS Z2550-2000标准日本粉末冶金

JIS 烧结金属材料——规格 JIS Z 2550:2000 平成12年(2000)3月20日修正 日本工业标准调查会审议 (日本标准协会发行)

Z 2550:2000 前言 本标准是以工业标准化法为基础,经过日本工业标准调查会审查,由通商产业大臣修改的日本工业标准。根据本标准,对JIS Z 2550:1989(机械构造部件用烧结材料)修改置换。 JIS Z 2550附属书如下所示。 附属书(规定)机械构造部件用烧结材料 主管大臣:通商产业大臣制订:昭和58(1983).11.1 修改:平成12(2000).3.20 公示:平成12(2000).3.21 拟订原案合作者:日本粉末冶金工业协会 审议部会:日本工业标准调查会非铁金属部会(部会长神尾彰彦) 如对此标准有意见或者疑问,请联系工业技术院标准部标准业务科产业基盘标准化推进室(100-8921东京都千代田区霞关1条3-1) 并且,日本工业标准根据工业标准化法第15条规定,以5年为最大期限,必须在此期限内附日本工业标准调查会审议,并及时确认、修改或废止。

日本工业标准 烧结金属材料——规格 Sintered metal materials—Specification 序本标准是以1996年第一版发行的ISO 5755,Sintered metal materials—Specification为基础,制订的日本工业标准,但日本工业标准与ISO标准值的规定项目不一样,不可能直接对比统一。这次修改,在附属书中对采用ISO的材料的日本工业标准材料进行了规定,使两者可以并用。不过,因ISO开始了原国际标准的修改工作,需要注意ISO材料记号的使用。此外,本标准中有侧线或者点线的部分,为附属书材料特性试验的相关部分,是国际标准中没有的事项。 1. 适用范围此标准规定了轴承与机械部件使用的烧结金属材料的化学成分、机械特性 及物理特性。 备注1 选择粉末冶金材料时,材料的特性不单是化学成分及密度,还要考虑到制造方 法。已经适用于制品、用途的材料特性,锻造品和铸造品或许不同。因此,在确认特性 时,最好与生产者联系。 2.此标准对应的国际标准如下所示 ISO 5755,Sintered metal materials—Specification 2. 引用标准以下的标准因被本标准引用,构成了本标准规定的一部分。这些引用标准, 适用其最新版本。 JIS Z 2202 金属材料冲击试验片 JIS Z 2241 金属材料拉伸试验方法 备注ISO 6892,Metallic materials—Tensile testing at ambient temperature与本标准 同等。 JIS Z 2242 金属材料冲击试验方法 JIS Z 2244 维氏硬度试验—试验方法 JIS Z 2245 洛氏硬度试验—试验方法 备注ISO-4498-1,Sintered metal materials(excluding hardmetal)—Determination of apparent hardness—Part1:虽然限定了烧结材料的规格,但试验方法同等。 JIS Z 2501 烧结金属材料密度、含油率及开放气孔率试验方法 备注ISO 2738,Permeable sintered metal materials—Determination of density,oil content and open porosity与此标准一致。 JIS Z 2507 烧结轴承—径向压碎强度试验方法 备注ISO 2739,Sintered metal bushes—Determination of radial crushing strength与 此标准一致。 3. 选取样本选取样本遵循相关的日本工业标准。 4. 试验方法为了评价附表1到附表9及附属书的指示特性,适用以下的试验方法。4.1 化学成分成分分析尽量按日本工业标准规定的方法进行。没有合适的标准时,根据 和受试者的协议进行试验。 4.2 开放气孔率开放气孔率遵从JIS Z 2501进行试验。 4.3 含油率含油率遵从JIS Z 2501进行试验。 4.4 拉伸强度拉伸强度使用附图1.所示试验片,遵从JIS Z 2241进行试验。 4.5 外观硬度外观硬度遵从JIS Z 2244或JIS Z 2202进行试验。

粉末冶金常识

粉末冶金常识 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"什么是铁基粉末冶金 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物理性能主要包括那几项

粉末冶金原理考试题标准答案

2006 粉末冶金原理课程I考试题标准答案 一、名词解释:( 20 分,每小题 2 分) 临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度 比表面积:单位质量或单位体积粉末具有的表面积 一次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒; 离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。 电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出 气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程 颗粒密度:真密度、似密度、相对密度 比形状因子:将粉末颗粒面积因子与体积因子之比称为比形状因子 压坯密度:压坯质量与压坯体积的比值 粒度分布:将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布 二、分析讨论:( 25 分) 1 、粉末冶金技术有何重要优缺点,并举例说明。( 10 分) 重要优点: * 能够制备部分其他方法难以制备的材料,如难熔金属,假合金、多孔材料、特殊功能材料(硬质合金); * 因为粉末冶金在成形过程采用与最终产品形状非常接近的模具,因此产品加工量少而节省材料; * 对于一部分产品,尤其是形状特异的产品,采用模具生产易于,且工件加工量少,制作成本低 , 如齿轮产品。重要缺点: * 由于粉末冶金产品中的孔隙难以消除,因此粉末冶金产品力学性能较相同铸造加工产品偏低; * 由于成形过程需要模具和相应压机,因此大型工件或产品难以制造; * 规模效益比较小 2 、气体雾化制粉过程可分解为几个区域,每个区域的特点是什么?( 10 分) 气体雾化制粉过程可分解为金属液流紊流区,原始液滴形成区,有效雾化区和冷却区等四个区域。其特点如下: 金属液流紊流区:金属液流在雾化气体的回流作用下,金属流柱流动受到阻碍,破坏了层流状态,产生紊流; 原始液滴形成区:由于下端雾化气体的冲刷,对紊流金属液流产生牵张作用,金属流柱被拉断,形成带状 - 管状原始液滴; 有效雾化区:音高速运动雾化气体携带大量动能对形成带状 - 管状原始液滴的冲击,使之破碎,成为微小金属液滴冷却区。此时,微小液滴离开有效雾化区,冷却,并由于表面张力作用逐渐球化。 3 、分析为什么要采用蓝钨作为还原制备钨粉的原料?( 5 分) 采用蓝钨作为原料制备钨粉的主要优点是 * 可以获得粒度细小的一次颗粒,尽管二次颗粒较采用 WO3 作为原料制备的钨粉二次颗粒要大。 * 采用蓝钨作为原料,蓝钨二次颗粒大,(一次颗粒小),在 H2 中挥发少,通过气相迁移长大的机会降低,获得 WO2 颗粒小;在一段还原获得 WO2 后,在干氢中高温进一步还原,颗粒长大不明显,且产量高。

粉末冶金_论文司宗甲

先进制造技术---粉末冶金技术 2013届机械在职研究生司宗甲(扬州保来得科技实业有限公司) 摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇 一、世界粉末冶金工业概况 2012年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2010年起,世界铁粉市场持续增长,4年时间增加了近20%。 汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。 粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。 欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。 工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。 二、粉末冶金技术简介 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧

粉末冶金基础知识参考文本

粉末冶金基础知识参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

粉末冶金基础知识参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 (一)粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末, 其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要 求其杂质和气体含量不超过1%~2%,否则会影响制品的 质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际 的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗 粒体中不同尺寸所占的百分比即为粒度分布。

⑵颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末的填充特性与颗粒的大小、形状及表面性质有关。 ⑵流动性

粉末冶金材料标准表

粉末冶金材料标准表 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/

590 66 < 690 35 60 烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 注: 用差减法求出的其它元素 (包括为了特殊目的而添 加的其它元素)总量的最大值 为%。▲ 注: 用差减法求出的其它元素 (包括为了特殊目的而添 加的其它元素)总量的最大值 烧结铁-铜合金和 烧结铜钢的化学 成分(%). 材料牌号Fe Cu C FC-0200 烧结铁-镍合金和烧结镍 钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 注: 用差减法求出的其它 元素(包括为了特殊目的 而添加的其它元素)总量 的最大值为% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号 最小强 度 (A)(E) 拉伸性能 横 向 断 裂 压缩 屈服 强度 %) 硬度 密度 屈 服 极 限 极限 强度 屈服强 度 %) 伸 长 率 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 310 120 11HR B N/A 120 190 160 350140 18 140 210 180 390 160 26 170 230 200 430 180 36 FC-0205-30 -35 -40 -45 210 240 240 < 410 340 37HR B N/A 240 280 280 < 520 370 48 280 340 310 < 660 390 60 310 410 340 < 790 410 72 FC-0205-60HT -70HT -80HT -90HT 410 480 < 660 390 19HR C 58HRC 480 550< 760 490 25 58 550620 (D) < 830 590 31 58 620 690 < 930 660 36 58

粉末冶金工艺及材料基础知识介绍

粉末冶金工艺及材料基础知识介绍 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。

1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布

粉末冶金常识

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"什么是铁基粉末冶金 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物理性能主要包括那几项

什么是粉末冶金

什么是粉末冶金 一、概述 粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。 粉末冶金现状和发展前景。 我国粉末冶金行业已经经过了近10年的高速发展,但与国外的同行业仍存在以下几方面的差距:(1)企业多,规模小,经济效益与国外企业相差很大。(2)产品交叉,企业相互压价,竞争异常激烈。(3)多数企业缺乏技术支持,研发能力落后,产品档次低,难以与国外竞争。(4)再投入缺乏与困扰。添加(5)工艺装备、配套设施落后。(6)产品出口少,贸易渠道不畅。 随着我国加入WTO以后,以上种种不足和弱点将改善,这是因为加入WTO后,市场逐渐国际化,粉末冶金市场将得到进一步扩大的机会;而同时随着国外资金和技术的进入,粉末冶金及相关的技术水平也必将得到提高和发展。 二、特点 粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。 (1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。 (2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。 (3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。 (4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。 (5)可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。 (6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。 我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。 三、粉末冶金的生产过程 (1)生产粉末。粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。 (2)压制成型。粉末在500~600MPa压力下,压成所需形状。 (3)烧结。在保护气氛的高温炉或真空炉中进行。烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具

粉末冶金常用烧结方法

粉末冶金常用烧结方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

粉末冶金常用烧结方法 《often-used teehnigues in powder metallurgy sintering》摘要:粉末冶金是一门重要的零件成形技术。粉末冶金新技术、新工艺的不断出现,必将促进高技术产业的快速发展,也必将带给材料工程和制造技术光明的前景。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。因此,大力发展粉末冶金新技术的研究,对提高我国粉末冶金产品的档次和技术水平,缩短与国外先进水平的差距具有非常重要的意义。粉末冶金烧结就是将粉末或粉末压坯经过加热而得到强化和致密化制品的方法和技术。烧结是粉末冶金过程中最重要的工序。在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。Abstract:Powder metallurgy forming technology is an important part。New technology of powder metallurgy technologies, emerging, will promote the rapid development of high-tech industry, will bring brighter prospects of material engineering and manufacturing technology. At present, the low overall level of powder metallurgy industry in China, process and equipment behind, compared with foreign advanced technical level there is a large gap. Therefore, development of study on the new technology of powder metallurgy, on improving the grade of powder metallurgical products and technology, reduced the gap

粉末冶金日本工业标准JISZ

日本工业标准 JIS Z 2550-1983 机械结构零件用烧结材料 Sinted Materials for Structural Parts 1. 适用标准本标准规定了机械结构零件用烧结金属材料。但是,这种材料都是烧结态材料。 备考作为参考,在本标准中一并记入了国际单位制(SI)的单位与数值,它们都附加有{}。 2.种类与记号材料的种类与记号是根据材料的化学成分与机械性能来划分的,如表1所示。 3. 质量材料的机械性能、密度及化学成分如表2所示。

① 1N/mm2=1MPa。 ②化学成分中,SMS1种相当SUS 316和SUS 304,SMS2种相当410。 ③所谓其它,是磷、硫、锰、硅等。 备考:表2也适用于烧结后进行尺寸整形者。 参考:(1)关于SMF种材料的硬度与热处理,各种烧结材料的表面处理,含油处理后的各项性能,作为参考值,在解说中给出。 再者,关于含碳量与适用的热处理可参照解说。 (2)用高纯氢中烧结或真空烧结制造的不锈钢系的质量,例如解说中所示。 4. 试验

4.1 机械性能试验 4.1.1 拉伸试验 (1)试件试件是用下列方法制造的: (a)压制压坯用阴模内部的形状与尺寸 (b)压坯压坯高度为4.00~5.00mm,压坯中不得有肉眼可见的分层及其它缺陷。 (c)润滑方法用油布拭擦阴模内表面,或用将60g硬脂酸锌溶于1L四氯化碳中制成的溶液涂覆阴模内表面。另外,将硬脂酸锌之类的润滑剂添加于使用的粉末中,充分进行混合也可以。 (d)成形成形压坯所需之粉末量依据测定质量,测定充填体积,或将粉末充满阴模后将上表面刮平来决定。 成形方面,有规定成形压力和规定压坯密度二种情况。在规定压制压力的场合,一组压坯对于规定的压力变化不得大于±3%,质量方面,对于平均值的变化不得大于±2%。在规定压坯密度的场合,一组压坯对于规定的高度变化不得大于±2%,和质量方面,对于规定的值变化不得大于±1%。 另外,关于压制速度,保压时间,脱模方法及一组压坯的数量,皆由当事者间协商决定。 (e)烧结烧结条件根据当事者间的协定进行。但是,对于烧结温度范围,保温时间,加热—冷却条件及烧结气氛的各项条件都必须进行记录。 (2)试验方法试验方法按照JIS Z 2241(金属材料拉伸试验方法)进行。 4.1.2 冲击试验 (1)试件试件是用下列方法制造的: (a)压制压坯用阴模内部的形状及尺寸图2示阴模内部的形状及尺寸。

粉末冶金的工艺流程-粉末成形

粉末成形 简介 粉末冶金生产中的基本工序之一,目的是将松散的粉末制成具有预定几何形状、尺寸、密度和强度的半成品或成品。模压(钢模)成形是粉末冶金生产中采用最广的成形方法。18世纪下半叶和19世纪上半叶,西班牙、俄国和英国为制造铂制品,都曾采用了相似的粉末冶金工艺。当时俄国索博列夫斯基(П.Г.Соболевсκий)使用的是钢模和螺旋压机。英国的沃拉斯顿(W.H.Wollaston)使用压力更大的拉杆式压机和纯度更高的铂粉,制得了几乎没有残余孔隙的致密铂材。后来,模压成形方法逐渐完善,并用来制造各种形状的铜基含油轴承等产品。20世纪30年代以来,在粉末冶金零件的工业化生产过程中,压机设备、模具设计等方面不断改进,模压成形方法得到了更大的发展,机械化和自动化已达到较高的程度。为了扩大制品的尺寸和形状范围,特别是为了提高制品密度和改善密度的均匀性相继出现和发展了多种成形方法。早期出现的有粉末轧制、冷等静压制、挤压、热压等;50年代以来又出现了热等静压制、热挤压、热锻等热成形方法。这些方法推动了全致密、高性能粉末金属材料的生产。 主要功能 (1)将粉末成形为所要求的形状; (2)赋予坯体以精确的几何形状与尺寸,这时应考虑烧结时的尺寸变化; (3)赋予坯体要求的孔隙度和孔隙类型; (4)赋予坯体以适当的强度,以便搬运。 根据成形时是否从外部施加压力,可分为压制成形和无压成形两大类。 压制成形主要有:封闭钢模冷压成形、流体等静压制成形、粉末塑性成形、三轴向压制成形、高能率成形、挤压成形、轧制成形、振动压制成形等; 无压成形主要有:粉浆浇注、松装烧结等。 模压成形 模压成形将金属粉末装入钢模型腔,通过模冲对粉末加压使之成形。 模压过程装在模腔中的粉末由于颗粒间的摩擦和机械啮合作用会产生所谓“拱桥”现象,形成许多大小不一的孔隙。加压时,粉末体的体积被压缩,其过程一般用压坯相对密度-压制压力曲线表示(图1)。在开始阶段粉末颗粒相对移动并重新分布,孔隙被填充,从而使压坯密度急剧增加,达到最大装填密度;这时粉末颗粒已被相互压紧,故当压制压力增大时,压坯密度几乎不变,曲线呈现平坦。随后继续增加压制压力,粉末颗粒将发生弹、塑性变形或脆性断裂,使压坯进一步致密化。由于颗粒间的机械啮合和接触面上的金属原子间的引力,压制后的粉末体成为具有一定强度的压坯。 压制压力与压坯密度分布在模压过程中压制压力主要消耗于以下两部分:①克服粉末颗粒之间的摩擦力(称为内摩擦力)和粉末颗粒的变形抗力;②克服粉末颗粒对模壁的摩擦力(称为外摩擦力)。由于外摩擦力的存在,模压成形的压坯密度分布实际上是不均匀的。例如单向压制时,离施压模冲头较近的部分密度较

粉末冶金的优缺点及其技术

粉末冶金的优缺点及其技术 粉末冶金工艺的优点: 1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。 3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。 4、粉末冶金法能保证材料成分配比的正确性和均匀性。 5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。 4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

相关文档
最新文档