一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法知识梳理及典型练习题(含答案)
一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法

1.一元一次不等式解法

任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为;当a <0时,解集为. 2.一元二次不等式及其解法

(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.

(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.

(3)一元二次不等式的解:

(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为的形式. (2)将分式不等式转化为整式不等式求解,如: ?f (x )g (x )>0;<0 ?f (x )g (x )<0; ≥0 ?≤0 ?

()已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]

D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,

-1].故选A .

设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R }

B.{x |x ≠1,x ∈R }

C.{x |x ≥1}

D.{x |x ≤1}

解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,

解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.

已知-12<1

x <2,则x 的取值范围是( )

A.-2

2

B.-1

2

C.x <-1

2

或x >2

D.x <-2或x >1

2

解:当x >0时,x >1

2;当x <0时,x <-2.

所以x 的取值范围是x <-2或x >1

2,故选D.

不等式1-2x

x +1

>0的解集是.

解:不等式1-2x

x +1>0等价于(1-2x )(x +1)>0,

也就是????x -12(x +1)<0,所以-1<x <12. 故填.

()若一元二次不等式2kx 2+kx -<0对一切实数x 都成立,则k 的取值范围为

________.

解:显然k ≠0.若k >0,则只须(2x 2+x )max <,解得k ∈?;若k <0,则只须<(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).

类型一 一元一次不等式的解法

已知关于x 的不等式(a +b )x +2a -3b <0的解集为?

???-∞,-1

3,求关于x 的不等式(a -3b )x +b -2a >0的解集.

解:由(a +b )x <3b -2a 的解集为????-∞,-1

3, 得a +b >0,且3b -2a a +b

=-1

3,

从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,

得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:

一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b

=-1

3是解本题的关键.

解关于x 的不等式:(m 2-4)x <m +2.

解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为?,不符合 ②当m =2时,原不等式的解集为R ,符合 (2)当m 2-4>0即m <-2或m >2时,x <1

m -2.

(3)当m 2-4<0即-2<m <2时,x >1

m -2

.

类型二 一元二次不等式的解法

解下列不等式:

(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}. (3)?.

(4)因为Δ<0,可得原不等式的解集为R .

(2013·金华十校联考)已知函数f (x )=?????-x +1,x <0,

x -1,x ≥0,

则不等式x +(x +1)f (x

+1)≤1的解集是( )

A.{x |-1≤x ≤2-1}

B.{x |x ≤1}

C.{x |x ≤2-1}

D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①

?

????x +1<0,

x +(x +1)[-(x +1)+1]≤1或 ②?

????x +1≥0,x +(x +1)[(x +1)-1]≤1, 解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.故选C.

类型三 二次不等式、二次函数及二次方程的关系

已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1}, ∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,

∴由韦达定理知?

????-5+1=b ,-5×1=c ,∴?????b =-4,c =-5.

已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的

解集.

解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},

∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得

?????-b

a =2+3,c a =2×3,

a <0.

即?????b =-5a ,c =6a ,a <0. 代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,

∴所求不等式的解集为?

??

?

??x |-12<x <-13.

类型四 含有参数的一元二次不等式

解关于x 的不等式:mx 2-(m +1)x +1<0.

解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};

(2)当m ≠0时,不等式为m ????x -1

m (x -1)<0. ①当m <0,不等式为????x -1

m (x -1)>0, ∵1m <1,∴不等式的解集为????

??

x |x <1m 或x >1. ②当m >0,不等式为???

?x -1

m (x -1)<0. (Ⅰ)若1m <1即m >1时,不等式的解集为??????

x |1m <x <1;

(Ⅱ)若1m >1即0<m <1时,不等式的解集为???

???x |1<x <1m ;

(Ⅲ)若1

m =1即m =1时,不等式的解集为?.

点拨:

当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)

的不确定性,对m <0与m >0进行讨论;第三层次:1

m 与1大小的不确定性,对m <1、m

>1与m =1进行讨论.

解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).

解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].

当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2

a ,所以当a >0时,

解集为(-∞,-1]∪????2

a ,+∞; 当-2<a <0时,解集为????2a ,-1; 当a =-2时,解集为{x |x =-1};

当a <-2时,解集为?

???-1,2a . 类型五 分式不等式的解法

(1)解不等式x -1

2x +1

≤1.

解:x -12x +1≤1 ?x -12x +1-1≤0 ?-x -22x +1≤0 ?x +22x +1

≥0.

x +2

2x +1≥0 ??

????(x +2)(2x +1)≥0,2x +1≠0. 得{xx >-1

2

或x ≤-2}.

※(2)不等式x -2

x 2+3x +2>0的解集是.

解:x -2x 2+3x +2>0?x -2

(x +2)(x +1)>0?

(x -2)(x +2)(x +1)>0,

数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:

分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.

(1)若集合A ={x |-1≤2x +1≤3},B =????

??

x |x -2x ≤0,则A ∩B =( )

A.{x |-1≤x <0}

B.{x |0<x ≤1}

C.{x |0≤x ≤2}

D.{x |0≤x ≤1}

解:易知A ={x |-1≤x ≤1},B 集合就是不等式组?

????x (x -2)≤0,

x ≠0的解集,求出B =

{}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.

(2)不等式≤0的解集为( ) A.B.

C.∪[1,+∞)

D.∪[1,+∞) 解:≤0?

得-

类型六 和一元二次不等式有关的恒成立问题

(1)若不等式x 2+ax +1≥0对于一切x ∈????0,1

2成立,则a 的最小值为( ) A.0 B.-2 C.-5

2

D.-3

解:不等式可化为ax ≥-x 2-1,由于x ∈????0,12, ∴a ≥-????x +1

x .∵f (x )=错误!在错误!上是减函数, ∴????-x -1x max

=-52.∴a ≥-5

2.

(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )

A.1<x <3

B.x <1或x >3

C.1<x <2

D.x <1或x >2

解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1], 依题意,只须??x <1或x >3,故选B. 点拨:

对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.

对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值

范围.

解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-

2,2]上恒大于0,故有:?????f (-2)>0,f (2)>0即?????x 2-4x +3>0,x 2-1>0解得?

????x >3或x <1,x >1或x <-1. ∴x <-1或x >3.

类型七 二次方程根的讨论

若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A.a <-1

B.a >1

C.-1

D.0≤a <1

解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2

+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.

1.不等式≤0的解集是( ) A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]

解:≤0?≤0,且x ≠-1,即x ∈(-1,2],故选D.

2.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为,则m 的取值范围是( ) A.m >0

B.0<m <2

C.m >

D.m <0

解:由不等式的解集形式知m <0.故选D.

3.()已知一元二次不等式f (x )<0的解集为,则f (10x )>0的解集为( ) A.{x |x <-1或x >lg2} B.{x |-1-lg2} D.{x |x <-lg2}

解:可设f (x )=a (x +1)(a <0),由f (10x )>0可得(10x +1)<0,从而10x <,解得x <-lg2,故

选D.

4.()在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),

则其边长x (单位:m )的取值范围是( ) A.[15,20] B.[12,25] C.[10,30]

D.[20,30]

解:设矩形的另一边为ym ,依题意得=,即y =40-x , 所以x (40-x )≥300,解得10≤x ≤30.故选C.

5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( ) A.a <-12 B.a >-4 C.a >-12

D.a <-4

解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.

6.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是____________. 解:∵x ∈(1,2),∴x -1>0.则x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k

7.()已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数

m 的取值范围是________.

解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即解得-<m <0.故填??

?

?-

22,0. 8.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.

解:x 2-ax -a ≤-3的解集不是空集?x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.

9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;

(2)若f(x)的最大值为正数,求a的取值范围.

解:(1)∵f(x)+2x>0的解集为(1,3),

∴f(x)+2x=a(x-1)(x-3),且a<0.

因而f(x)=a(x-1)(x-3)-2x

=ax2-(2+4a)x+3a.①

由方程f(x)+6a=0得ax2-(2+4a)x+9a=0.②

因为方程②有两个相等的实根,所以

Δ=[-(2+4a)]2-4a·9a=0,

即5a2-4a-1=0,解得a=1或a=-.

由于a<0,舍去a=1,将a=-代入①得f(x)的解析式f(x)=-x2-x-.

(2)由f(x)=ax2-2(1+2a)x+3a=a-,

及a<0,可得f(x)的最大值为-.

由解得a<-2-或-2+<a<0.

故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-)∪(-2+,0).

10.解关于x的不等式:>1(a>0).

解:(x-2)[(a-1)x+2-a]>0,

当a<1时有(x-2)<0,

若>2,即0<a<1时,解集为{x|2<x<};

若=2,即a=0时,解集为?;

若<2,即a<0时,解集为{x|<x<2}.

初中数学 一元二次不等式解法

2.3.2 一元二次不等式解法 二次函数y=x2-x-6的对应值表与图象如下: x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 由对应值表及函数图象(如图2.3-1)可知 当x=-2,或x=3时,y=0,即x2-x=6=0; 当x<-2,或x>3时,y>0,即x2-x-6>0; 当-2<x<3时,y<0,即x2-x-6<0. 这就是说,如果抛物线y= x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程 x2-x-6=0 的解就是 x1=-2,x2=3; 同样,结合抛物线与x轴的相关位置,可以得到 一元二次不等式 x2-x-6>0 的解是 x<-2,或x>3; 一元二次不等式 x2-x-6<0 的解是

-2<x<3. 上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集. 那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢? 我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0). 为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解. 我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解. (1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知 不等式ax2+bx+c>0的解为 x<x1,或x>x2; 不等式ax2+bx+c<0的解为 x1<x<x2. (2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c =0有两个相等的实数根x1=x2=-b 2a,由图2.3-2②可知不等式ax2+bx+c>0的解为 x≠-b 2a; 不等式ax2+bx+c<0无解.

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D.{x |-1≤x <2} 4.若不等式ax 2 +bx -2>0的解集为? ????? x |-2

5.不等式x(x-a+1)>a的解集是{} x|x<-1或x>a,则( ) A.a≥1 B.a<-1 C.a>-1 D.a∈R 6.已知函数f(x)=ax2+bx+c,不等式f(x)>0的解集为{} x|-30的解集是(1,+∞),则关于x的不等式ax+b x-2 >0 的解集是________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

一元二次方程练习题(较难)

一元二次方程练习题 1、已知关于x 的方程0)1(222=+--k x k x 有两个实数根1x 、2x ⑴、求k 的取值范围; ⑵、若12121-?=+x x x x ,求k 的值。 、 2.、已知关于x 的一元二次方程 有两个实数根1x 与2x (1)求实数m 的取值范围; (2)若7)1)(1(21=--x x ,求m 的值。 } 3.已知)(11y x A , ,)(22y x B , 是反比例函数x y 2 -= 图象上的两点,且212-=-x x ,3 21=?x x . (1)求21y y - 的值及点A 的坐标; (2)若-4<y ≤ -1,直接写出x 的取值范围. 【 4.(本小题8分)已知关于x 的方程014)1(2 2=+++-k x k x 的两根是一个矩形的两邻边的长。 (1)k 为何值时,方程有两个实数根; (2)当矩形的对角线长为 时,求k 的值。 ;

5.已知关于x 的一元二次方程 . 】 (1)求证:方程总有两个不相等的实数根; (2)当Rt△ABC 的斜边长 ,且两直角边和是方程的两根时,求△ABC 的周长和面积. ~ 6.如果一元二次方程02=++c bx ax 的两根1x 、2x 均为正数,且满足1< 2 1x x <2(其中1x >2x ),那么称这个方程有“邻近根”. (1)判断方程03)13(2=++-x x 是否有“邻近根”,并说明理由; (2)已知关于x 的一元二次方程01)1(2 =---x m mx 有“邻近根”,求m 的取值范围. 。 7.设关于x 的一元二次方程0122=++px x 有两个实数根,一根大于1,另一根小于1,试求实数p 的范围. ¥ 8.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,商店为适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可

高一数学必修 不等式知识点总结

不等式 一、基本不等式 1、0a b a b ->?>;0a b a b -=?=;0a b a b -?<;②,a b b c a c >>?>;③ a b a c b c >?+>+;④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+;⑥0,0a b c d ac bd >>>>?>;⑦()0,1n n a b a b n n >>?>∈N >;⑧()0,1n n a b a b n n >>?>∈N >. 3、设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数,ab 称为正数a 、b 的几何平均数.4、均值不等式定理:若0a >,0b >,则2a b ab +≥,即 2a b ab +≥.5、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22 ,2 a b ab a b R +≤∈;③()20,02a b ab a b +??≤>> ???;④()2 22,22a b a b a b R ++??≥∈ ??? .6、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p . 例:(13-14耀华7)若2-m 与|m |-3异号,则m 的取值范围是 A、m >3 B、-33 解析:由题.323,03020302><<-∴? ??>-<-???<->-m m m m m m 或或得答案:D 例:(13-14蓟县11)已知实数的最小值为则且、y x y x R y x 12,1,+=+∈解析:22323))(12(12+≥++=++=+y x x y y x y x y x 当且仅当222y x =

解一元二次方程及一元二次不等式练习题-

一元二次方程练习题 1. 解下列方程:(1)2(1) 9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 2. 用直接开平方法解下列方程: (1)25(21) 180y -=; (2)21(31)644x +=; (3)26(2) 1x +=; (4)2()(00)ax c b b a -=≠,≥ 3. 填空 (1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 4. 用适当的数(式)填空: 23x x -+ (x =- 2);2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 5. 用配方法解方程. 23610x x --= 22540x x --= 6. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 7. 用适当的方法解方程(1)23(1) 12x +=; (2)2410y y ++=; (3)2884x x -=; (4)2310y y ++=. (5) ()9322=-x ; (6)162=-x x ; 一元二次不等式 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 0(0)ax bx c a ++=>之间判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 一、解下列一元二次不等式:

第41讲--基本(均值)不等式

第41讲 基本(均值)不等式 夯实基础 【p 87】 【学习目标】 1.了解基本(均值)不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 【基础检测】 1.若函数f(x)=x +1 x -2 (x>2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4 2.若a>0,b>0,且1 4 a +4 b =1,则ab 的最大值为______________. 3.若a>0,则a +8 2a +1 的最小值为__________. 4.已知两正数x ,y 满足x +y =1,则z =????x +1x ??? ?y +1 y 的最小值为________.

【知识要点】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥ __2ab__(a ,b ∈R ); (2)b a +a b ≥__2__(a ,b 同号); (3)ab ≤ ????a +b 22(a ,b ∈R ); (4) ????a +b 22≤a 2+b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b>0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x>0,y>0, (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p(简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4 (简记:和定积最大).

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

完整版一元二次不等式及其解法教学设计

元二次不等式及其解法 设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高; 逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课 正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学 生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决 问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学 生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5 第三章《不等式》第二节一元 次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不 等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领 悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数 之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解 决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 教学重点】一元二次不等式的解法。 教学难点】一元二次方程、一元二次不等式和二次函数的关系。 教学策略】 探究式教学方法 创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)课前准备】教具:“几何画板”及PPT 课件. 粉笔:用于板书示范. 第1 页共4 页

一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2 (2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

基本(均值不等式)不等式知识点基础练习

VIP 免费 欢迎下载 学生姓名: 任课教师: 试卷审查教师: 测试科目: 涉及章节: 教师评语: 不等是知识点 ★ 知 识 梳理 ★ 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>,则2a b ab +≥,当且仅当a b =时等号成立. 2求最值:当ab 为定值时,22,a b a b ++有最小值;当a b +或22a b +为定值时,ab 有最大值(0,0a b >>). 3.拓展:若0,0a b >>时,22 2 1122a b a b ab a b ++≤≤≤+,当且仅当a b =时等号成立. ★ 重 难 点 突 破 ★ 1.重点:理解基本不等式2 a b ab +≤ 等号成立条件,掌握用基本不等式证明不等式 会用基本不等式解决简单的最大(小)值问题. 2.难点:利用基本不等式2a b ab +≤求最大值、最小值 3.重难点:正确运用基本不等式证明不等式,会用基本不等式求某些函数的最值 二 方法技巧讲解 (1) 灵活运用基本不等式处理不等关系 问题1. 已知正数x 、y 满足x +2y =1,求 x 1+y 1的最小值. 点拨:∵x 、y 为正数,且x +2y =1, 日期: 2012- 时间:

∴x 1+y 1=(x +2y )(x 1+y 1) =3+x y 2+y x ≥3+22, 当且仅当 x y 2=y x ,即当x =2-1,y =1-22时等号成立. ∴x 1+y 1的最小值为3+22. (2)注意取等号的条件 问题2. 已知两正数x,y 满足x+y=1,则z=11()()x y x y ++ 的最小值为 。 点拨: 错解1、因为对a>0,恒有12a a +≥,从而z=11()()x y x y ++≥4,所以z 的最小值是4。 错解2、222222()22x y xy z xy xy xy xy xy +-==+-≥22(21)-=-,所以z 的最小值是2(21)-。 错因分析:解一等号成立的条件是11,11,1x y x y x y x y ====+=且即且与相矛盾。解二等号成立的条件是2,2xy xy xy ==即,与104 xy <≤相矛盾。 解析:z=11()()x y x y ++=1y x xy xy x y +++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210( )24x y t xy +<=≤=,由2()f t t t =+在10,4?? ???上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值254 。 ★ 热 点 考 点 题 型 探 析★ 考点1 利用基本不等式求最值(或取值范围) 题型1. 当积ab 为定值时,求和a b +最小值

均值不等式练习题

均值不等式知识点: 二、习题讲解: 例1: (1)求y = x+Z(x>O)的最小值 (2)求y = x + 2(x ≥ 2)的最小值 X (3)己知x>2,求y = x+ —的最小值x-2 变式训练: 4 1.已知x>o,求y = 2- X -一的最大值 X 2.当x>-l时,求f(x)= x+ —的最小值 x + 1 3?已知xv-?求函数y=4x-2+—-一的最上值 4 4x-5 4?己知JU b. c ∈ R ?求证:a2 +b2 + c2≥ ab+bc+ ac y= 2-3x--(x>0)的最大值是2-4石 5?X 6.y = ZxH—-—,x>3 x-3 7.y = 2sinx÷-—,xu(O,τr) Sin X

例2: (1)已知OVXV丄,求y =ZX(I-2x)的最衣值 2 2 (2)已知:a、b都是正数,Ka + b = l, α=a÷i, β = b+-f求a+β的最小值a b 变式训练: 1.己知OVXV 求函数y =x(l - 3x)的最大值 2.当0 Cx <4时,求y =χ(8 - 2x)的最人值。 3.设0

2.设x ∈f θ,-1,则函数y = 2血x + 1的最小值为 2 丿 sin2x 5 Z X Y - — 4x+ S 3.己知Xnz 则f(x)=-~~ 的最小值 2 2x-4 y=手宀的最小值是 4. √X 2 + 2 IK X 2 + 7x+10 “ 一… 求y= (x>-l)的值域。 χ- + 5 6求函数y =-==的值域。 7?设x ,y,z 为正实数.且满足x-2y+3z = 0 ?则的最小值 例 4:己知a,b,cwR+,且a + b+c = l?求证:丄 + —+ - ≥9 变式训练: 1 4 1.己知a >0,b >0,a +b= 2 >则y = — +二的最小值是 2正数x 5y 满足X +2y = l,求l∕x+l∕ y 的最小值。 例3:求函数y = X - +3x+3 x+1 (x>-l)的1?小值 变式训 练:

一元二次不等式及其解法练习题.doc

一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (1)2 6+ (2)2 21)-; (3 ; (4)当0a b >>时,12log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)2211 0___a b a b >>?. 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >,④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化 8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22 ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.

一元二次不等式练习题含答案

一元二次不等式练习题含 答案 Last revision on 21 December 2020

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D .{x |-1≤x <2} 4.若不等式ax 2+bx -2>0的解集为???? ??x |-2a 的解集是{}x |x <-1或x >a ,则( ) A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-30的解集是(1,+∞),则关于x 的不等式ax +b x -2 >0的解集是________. 10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________. 三、解答题 11.解关于x 的不等式:ax 2-2≥2x -ax (a <0). . 12.设函数f (x )=mx 2-mx -1. (1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 答案 1.【解析】 ∵S ={x |-50,Δ≤0,即????? a >0,4-12a ≤0,∴a ≥13 . 【答案】 B

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

相关文档
最新文档