09 材料科学基础 第九章 材料的亚稳态 教案

09 材料科学基础 第九章 材料的亚稳态 教案
09 材料科学基础 第九章 材料的亚稳态 教案

材料亚稳态

第9章材料的亚稳态 材料的稳定状态是指其体系自由能最低时的平衡状态,通常相图中所显示的即是稳定的平衡状态。但由于种种因素,材料会以高于平衡态时自由能的状态存在,处于一种非平衡的亚稳态。同一化学成分的材料,其亚稳态时的性能不同于平衡态时的性能,而且亚稳态可因形成条件的不同而呈多种形式,它们所表现的性能迥异,在很多情况下,亚稳态材料的某些性能会优于其处于平衡态时的性能,甚至出现特殊的性能。因此,对材料亚稳态的研究不仅有理论上的意义,更具有重要的实用价值。 材料在平衡条件下只以一种状态存在,而非平衡的亚稳态则可出现多种形式,大致有以下几种型: 1).细晶组织。当组织细小时,界面增多,自由能升高,故为亚稳状态。其中突出的例子是超细的纳米晶组织,其晶界体积可占材料总体积的50%以上; 2).高密度晶体缺陷的存在。晶体缺陷使原子偏离平衡位置,晶体结构排列的规则性下降,故体系自由能增高。另外,对于有序合金,当其有序度下降,甚至呈无序状态(化学无序)时,也使自由能升高; 3).形成过饱和固溶体。即溶质原子在固溶体中的浓度超过平衡浓度,甚至在平衡状态是互不溶解的组元发生了相互溶解; 4).发生非平衡转变,生成具有与原先不同结构的亚稳新相,例如钢及合金中的马氏体。贝氏体,以及合金中的准晶态相等; 5).由晶态转变为非晶态,由结构有序变为结构无序,自由能增高。 9.1纳米晶材料 霍尔—佩奇(Hall-Petch)公式指出了多晶体材料的强度与其晶粒尺寸之间的关系,晶粒越细小则强度越高。但通常的材料制备方法至多只能获得细小到微米级的晶粒,霍尔—佩奇公式的验证也只是到此范围。如果晶粒更为微小时,材料的性能将如何变化?制得这种超细晶材料,是一个留待解决的问题。自20世纪80年代以来,随着材料制备新技术的发展,人们开始研制出晶粒尺寸为纳米(nm)级的材料,并发现这类材料不仅强度更高(但不符合霍尔一佩奇公式),其结构和各种性能都具有特殊性,引起了极大的兴趣和关注。纳米晶材料(或称纳米结构材料)已成为国际上发展新材料领域中的一个重要内容,并在材料科学和凝聚态物理学科中引出了新

材料科学基础第三章答案

第三章 1. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。 2. 如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol) 3. 已知Cu的熔点tm=1083℃,熔化潜热Lm=1.88×103J/cm3,比表面能σ=1.44×105 J/cm3。(1)试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。 4. 试推导杰克逊(K.A.Jackson)方程 5. 铸件组织有何特点? 6. 液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么? 7. 已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10. 分析纯金属生长形态与温度梯度的关系。 11. 什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12. 简述纯金属晶体长大的机制。13. 试分析单晶体形成的基本条件。 14. 指出下列概念的错误之处,并改正。(1) 所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2) 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。(3) 在任何温度下,液体金属中出现的最大结构起伏都是晶胚。

关于亚稳态

亚稳态是指触发器无法在某个规定时间段内达到一个可确认的状态。当一个触发器进入亚稳态时,既无法预测该单元的输出电平,也无法预测何时输出才能稳定在某个正确的电平上。在这个稳定期间,触发器输出一些中间级电平,或者可能处于振荡状态,并且这种无用的输出电平可以沿信号通道上的各个触发器级联式传播下去。 1.亚稳态发生的原因 在同步系统中,如果触发器的setup time / hold time不满足,就可能产生亚稳态,此时触发器输出端Q在有效时钟沿之后比较长的一段时间处于不确定的状态,在这段时间里Q端毛刺、振荡、固定的某一电压值,而不是等于数据输入端D的值。这段之间成为决断时间(resolution time)。经过resolution time之后Q端将稳定到0或1上,但是究竟是0还是1,这是随机的,与输入没有必然的关系。 2.亚稳态的危害 由于输出在稳定下来之前可能是毛刺、振荡、固定的某一电压值,因此亚稳态除了导致逻辑误判之外,输出0~1之间的中间电压值还会使下一级产生亚稳态(即导致亚稳态的传播)。逻辑误判有可能通过电路的特殊设计减轻危害(如异步FIFO中Gray码计数器的作用),而亚稳态的传播则扩大了故障面,难以处理。 3.亚稳态的解决办法 只要系统中有异步元件,亚稳态就是无法避免的,因此设计的电路首先要减少亚稳态导致错误的发生,其次要使系统对产生的错误不敏感。前者要*同步来实现,而后者根据不同的设计应用有不同的处理办法。用同步来减少亚稳态发生机会的典型电路如图1所 示。 左边为异步输入端,经过两级触发器同步,在右边的输出将是同步的,而且该输出基本不存在亚稳态。其原理是即使第一个触发器的输出端存在亚稳态,经过一个CLK周期后,第二个触发器D端的电平仍未稳定的概率非常小,因此第二个触发器Q端基本不会产生亚稳态。注意,这里说的是―基本‖,也就是无法―根除‖,那么如果第二个触发器Q出现了亚稳态会有什么后果呢?后果的严重程度是有你的设计决定的,如果系统对产生的错误不敏感,那么系统可能正常工作,或者经过短暂的异常之后可以恢复正常工作,例如设计异步FIFO时使用格雷码计数器当读写地址的指针就是处于这方面的考虑。如果设计上没有考虑如何降低系统对亚稳态的敏感程度,那么一旦出现亚稳态,系统可能就崩溃了。 4 亚稳态与系统可靠性 使用同步电路以后,亚稳态仍然有发生的可能,与此相连的是平均故障间隔时间MTBF(mean time between failure),亚稳态的发生概率与时钟频率无关,但是MTBF与时钟有密切关系。有文章提供了一个例子,某一系统在20MHz 时钟下工作时,MTBF约为50年,但是时钟频率提高到40MHz 时,MTBF 只有1 分钟!可见降低时钟频率可以大大减小亚稳态导致系统错误的出现,其原因在于,时钟周期如果尽可能的大于resolution time 可减小亚稳态传递到下一级的机会,可提高系统的MTBF,

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

武汉理工 材料科学基础 课后答案 第九章

第九章答案 9-2什么叫相变?按照相变机理来划分,可分为哪些相变? 解:相变是物质系统不同相之间的相互转变。按相变机理来分,可以分为扩散型相变和非扩散型相变和半扩散型相变。依靠原子或离子长距离扩散进行的相变叫扩散型相变。非扩散型型相变指原子或离子发生移动,但相对位移不超过原子间距。 9-3分析发生固态相变时组分及过冷度变化相变驱动力的影响。 解:相变驱动力是在相变温度下新旧相的体自由能之差(),而且是新相形成的必要条件。当两个组元混合形成固溶体时,混合后的体系的自由能会发生变化。可以通过自由能-成分曲线来确定其相变驱动力的大小。过冷度是相变临界温度与实际转变温度之 差,相变形核的热力学条件是要有过冷度。已知驱动力与过冷度之间的关系是: ,这进一步说明了形核的热力学条件。 9-4马氏体相变具有什么特征?它和成核-生成相变有何差别? 解:马氏体相变是替换原子经无扩散切变位移(均匀或不均匀)并由此产生形状改变和表面浮凸、曾不变平面应变特征的一级形核、长大的相变。 特征:具有剪切均匀整齐性、不发生原子扩散、相变速度快、相变有一定范围、有很大的切变型弹性应变能。 成核-生长过程中存在扩散相变,母相与晶相组成可相同可不同,转变速度较慢,无明显的开始和终了温度。 9-5试分析应变能及表面能对固态相变热力学、动力学及新相形状的影响。 解:物质的表面具有表面张力σ,在恒温恒压下可逆地增大表面积dA,则需功σdA,因为所需的功等于物系自由能的增加,且这一增加是由于物系的表面积增大所致,故称为表面自由能或表面能。应变能和表面能可以影响相变驱动力的大小,和新相的形状。 9-6请分析温度对相变热力学及动力学的影响。 解:当温度降低,过冷度增大,成核势垒下降,成核速率增大,直至达到最大值;当温度继续下降,液相粘度增加,原子或分子扩散速率下降。温度过高或过低对成核和生长速率均不利,只有在一定的温度下才有最大成核和生长速率。 9-7调幅分解与脱溶分解有何异同点?调幅分解所得到的显微结构与性能有何特点?

材料科学基础课后作业第三章

3-3.有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的w Ni=90%,另一个铸件的w Ni=50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重?为什么?找出消除偏析的措施。 答: 合金在凝固过程中的偏析与溶质原子的再分配系数有关,再分配系数为k0=Cα/C L。对一给定的合金系,溶质原子再分配系数与合金的成分和原子扩散能力有关。根据Cu-Ni合金相图,在一定成分下凝固,合金溶质原子再分配系数与相图固、液相线之间的水平距成正比。当w Ni=50% 时,液相线与固相线之间的水平距离更大,固相与液相成分差异越大;同时其凝固结晶温度比w Ni=90%的结晶温度低,原子扩散能力降低,所以比偏析越严重。 一般采用在低于固相线100~200℃的温度下,长时间保温的均匀化退火来消除偏析。 3-6.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,w Bi=50%的合金在520℃时开始凝固出成分为w Sb=87%的固相。w Bi=80%的合金在400℃时开始凝固出成分为w Sb=64%的固相。根据上述条件,要求: 1)绘出Bi-Sb相图,并标出各线和各相区的名称; 2)从相图上确定w Sb=40%合金的开始结晶终了温度,并求出它在400℃时的平衡相成分及其含量。

解:1 )相图如图所示; 2)从相图读出结晶开始温度和结晶终了温度分别为495℃(左右),350℃(左右) 固、液相成分w Sb(L) =20%, w Sb(S)=64% 固、液相含量: %5.54%10020-6440-64=?=L ω %5.45%100)1(=?-=L S ωω 3-7.根据下列实验数据绘出概略的二元共晶相图:組元A 的熔点为1000℃,組元B 的熔点为700℃;w B =25%的合金在500℃结晶完毕,并由73-1/3%的先共晶α相与26-2/3%的(α+β)共晶体所组成;w B =50%的合金在500℃结晶完毕后,则由40%的先共晶α相与60%的(α+β)共晶体组成,而此合金中的α相总量为50%。 解:由题意由(α+β)共晶含量得 01.03226--25.0?=+)()()(αβααωωωB B B 6.0--5.0=+)()()(αβααωωωB B B

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料科学基础 第九章习题

(1) 试分析金属塑性变形行为对下列材料与零件的重要意义: A 、冲压钢板; B 、汽车板簧; C 、铆钉; D 、高压蒸汽管道法兰盘的紧固螺栓。 (2) 单滑移、复滑移及交滑移的滑移带形貌有什么特征?试结合图解说明。 (3) 若平均晶粒直径为1mm 和0.0625mm 的纯铁的屈服强度分别为112.7MPa 和196MPa ,则平均晶粒直径为0.0196mm 的纯铁的屈服强度为多少? (4) 面心立方晶体的)111(和)111(面各有几个密排方向?共可组成几个滑移系?这些滑移系能否有数个共同发生作用的情况?若有,是复滑移还是交滑移? (5) 通常强化金属材料的方法有哪些?试述它们强化金属的微观机理,并指出其共同点。 (6) 面心立方体沿[131]轴拉伸,确定如下滑移系的分切应力:(111) [01_ 1]、(111) [101_]、(111) [11_ 0]。拉伸应力为6.9×105Pa 。 (7) 铝(层错能约为200mJ/m 2)和不锈钢(层错能约为10mJ/m 2),那一种材料的形变第III 阶段开始得更早?为什么 (8) 如图所示,1个单晶体经弯曲后,估计导致弯曲的同号刃位错的总柏氏矢量的大小。求这些位错的位错密度。(设单个位错柏氏矢量为b ) (9) 厚度为40mm 厚的铝板,轧制成一侧为20mm 另一侧仍保持为40mm 的楔形 板,经再结晶退火后,画出从20mm 的一侧到40mm 一侧的截面的组织示意图。并说明。

(10)什么叫做二次在结晶,发生二次再结晶的条件是什么? (11)动态回复与动态再结晶的真应力-真应变曲线有什么差异?试解释。

材料科学基础-材料的亚稳态

材料科学基础-材料的亚稳态 (总分:180.00,做题时间:90分钟) 一、论述题(总题数:18,分数:180.00) 1.从内部微观结构角度简述纳米材料的特点。 (分数:10.00) __________________________________________________________________________________________ 正确答案:(纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的性能有突变的材料。按维数分,纳米材料的基本单元可分为3类:(1)零维,指在空间三维尺寸均处在纳米尺度,如纳米粉体材料;(2)一维,指在空间有二维处于纳米尺度,如纳米丝、纳米棒、纳米管等;(3)二维.指在三维空间中有一维处在纳米尺度,如超薄膜、多层膜、超晶格等。 由于纳米微粒的超细尺寸,它与光波波长、中子波长、平均自由程等为同一数量级,因此量子尺寸效应、小尺寸效应、表面效应、宏观量子隧穿效应,以及体积分数超过50%晶界结构的影响使纳米材料呈现出特殊的力学、物理和化学性能。) 解析: 2.试分析的Ni3Al粒子尺寸对Ni-Al合金流变应力影响的作用机制。 (分数:10.00) __________________________________________________________________________________________ 正确答案:(此例中的Ni3Al纳米颗粒是作为第二相分布于基体中的,故应以第二相微粒的弥散强化机制来分析之。) 解析: 3.说明晶体结构为何不存在5次或高于6次的对称轴? (分数:10.00) __________________________________________________________________________________________ 正确答案:(5次或高于6次对称轴不能满足阵点周围环境相同的条件,不具有平移对称性,不能实现有规则周期排列的晶体结构。) 解析: 4.何谓准晶?如何描绘准晶态结构? (分数:10.00) __________________________________________________________________________________________ 正确答案:(准晶系不具有平移对称性,然而是呈一定周期性有序排列的类似于晶态的一种原子聚集态固体。在三维空间中,它们除了具有5次对称轴外,还有8,10或12次对称轴,其衍射花样呈现出非晶体学对称性。大多数准晶相是亚稳的,只能用快速凝固的方法获得。众所周知,用正三角形、正方或正六边形可做平面的周期拼砌,然而用正五边形来拼砌,不能无重叠或无任何间隙铺满整个平面。因此,准晶态结构不能如同晶体那样取一个晶胞来代表其结构,即无法通过平移操作实现周期性。目前较常用的是拼砌花砖方式的模型来表征准晶结构。例如:5次对称的准周期结构可用边长相等、角度分别为36°和144°(窄),以及72°和108°(宽)的两种菱形,遵照特别的匹配法将其构造出来。) 解析:

材料科学基础课后习题谜底第二章

第2章 习题 2-1 a) 试证明均匀形核时,形成临界晶粒的△G K 与其临界晶核体积V K 之间的关系式为 ;2 K K V V G G ?=- ?b) 当非均匀形核形成球冠形晶核时,其△G K 与V K 之间的关系如何? a) 证明 因为临界晶核半径 2K V r G σ =- ?临界晶核形成功 3 2 163()K V G G πσ?= ?故临界晶核的体积 3423K K K V r G V G π?== ?所以 2 K K V V G G ?=-?b) 当非均匀形核形成球冠形晶核时,SL 2K V r G σ=- ?非 临界晶核形成功 3 3 2 4(23cos cos )3() K SL V G G πσθθ?=-+?非 故临界晶核的体积 3 31(23cos cos ) 3 K K V r πθθ=-+非()3 33 3SL 3 281(23cos cos )(23cos cos )33() SL K V V V V V G G G G σπσπθθθθ?=--+?=-+??()所以 2 K K V V G G ?=- ?非2-2 如果临界晶核是边长为a 的正方体,试求出其△G K 与a 的关系。为什么形成立方体晶 核的△G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 326V V G V G A a G a σσ ?=?+=?+令 () 0d G da ?=得临界晶核边长4K V a G σ=- ?临界形核功 用管线敷设技术。线缆敷设过关运行高中资料试卷技术要求电力保护装置做到准确

333 3222 2 44649632()6()()()()K t K V K V V V V V V G V G A G G G G G G σσσσσσσ?=?+=-?+-=-+=?????,球形核胚的临界形核功2K V r G σ =- ?3 322 42216(4()33()K b V V V V G G G G G σσπσππσ?=-?+= ???将两式相比较 3 232 163()1 3262()K K b V t V G G G G πσπσ??==≈??可见形成球形晶核得临界形核功仅为形成立方形晶核的1/2。 2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的,只有△T>0时,才能造成固相的 自由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属)。熔化时表面自由能的变化为: () GL SL SG G G G A σσσ?=-=+-表面终态始态式中G 始态表示金属熔化前的表面自由能;G 终态表示当在少量液体金属在固体金属表面形 成时的表面自由能;A 表示液态金属润湿固态金属表面的面积;σGL 、σSL 、σSG 分别表 示气液相比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固 体金属,根据润湿时表面张力之间的关系式可写出:σSG ≥σGL +σSL 。这说明在熔化时, 表面自由能的变化△G 表≤0,即不存在表面能障碍,也就不必过热。实际金属多属于这种 情况。如果固体金属熔化时液相不与气相接触,则有可能时固态金属过热。

《材料科学基础》课后答案章

第 一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101).(011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的a=b,c=a/2。某晶面在三个晶轴上的截距分别为6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的{111},1110},{123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题: (1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。 (2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。 6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。 解:1、体心立方

材料科学基础第三章

材料科学基础大作业——第3章凝固 2015年 月 日 班级: 姓名: 学号: 分数: 一、解释下列概念及术语: 1、结晶 2、过冷度 3、相起伏 4、均匀形核 5、晶粒度 6、形核率 7、形核功 8、枝晶偏析 9、成分过冷 10、临界形核半径 二、填空题 1. 过冷度的大小与金属的本性、纯度和冷却速度有关。金属不同,过冷度大小 同;金属的纯度越高,过冷度越 ;金属及其纯度确定后,过冷度大小主要取决于冷却速度,冷却速度越大,过冷度越 。 2. 金属和非金属,在结晶时均遵循相同的规律,即结晶过程是 和 的过程。 3. 根据热力学条件,金属发生结晶的驱动力为液态金属和固相金属的 之差。此差值与过冷度呈 比。 4.液态金属的晶胚能否形成晶核,主要取决于晶胚半径是否达到了临界形核半径的要求。此半径与过冷度呈 比。 5. 均匀形核时,过冷度△T 和理论结晶温度T m 之间的关系为 。形核功△G k 与过冷度△T 的平方呈 比,即过冷度越大,形核功越 。 6. 形核率可用12N N N ? =表示,其中N 1为受 影响的形核率因子,N 2为受 影响的形核率因子。 7. 工业生产中,液态金属的结晶总是以 形核方式进行,其所需过冷度一般不超过 ℃。 8. 决定晶体长大方式和长大速度的主要因素是晶核的 和其前沿液体中的 。 9. 光滑界面又称为 界面,粗糙界面又称为 界面,其杰克逊因子α值范围分别为 和 。 10.晶体长大方式主要为 长大机制、 长大机制和 长大机制。其中,大部分金属均以 长大机制进行。 11.在正的温度梯度下,光滑界面的界面形态呈 状;粗糙界面的界面形态为 界面。在负的温度梯度下,一般金属和半金属的界面都呈 状。杰克逊因子α值较高的物质保持 界面形态。 12、金属结晶后晶粒内部的成分不均匀现象叫 ;因初晶相与剩余液相比重不同而造成的偏析叫 。 三、判断题

无机材料科学基础第九章习题

第九章习题与答案 一、判断正误 1、烧结中始终可以只有一相是固态。(对) 2、液相烧结与固相烧结的推动力都是表面能。(对) 3、二次再结晶对坯体致密化有利。(错) 4、扩散传质中压应力区空位浓度<无应力区空位浓度<张应力区空位浓度。(对) 5、晶粒长大源于小晶体的相互粘结。(错) 6、一般来说,晶界是气孔通向烧结体外的主要扩散通道。一般来说,晶界是杂质的富集之 地。(对) 二、填空 1、烧结的主要传质方式有:蒸发-凝聚传质、扩散传质、流动传质和溶解-沉淀传质四种,这四种传质过程的坯体线收缩ΔL/L与烧结时间的关系依次为ΔL/L=0、ΔL/L~t2/5、ΔL/L~t和ΔL/L~t1/3。 三、选择 1、在烧结过程中,只改变气孔形状不引起坯体收缩的传质方式是(a、c)。 a.表面扩散 b.流动传质 c.蒸发-凝聚 d.晶界扩散 2、在烧结过程中只改变坯体中气孔的形状而不引起坯体致密化的传质方式是(b)。 a. 流动传质 b. 蒸发—凝聚传质 c. 溶解—沉淀 d. 扩散传质 四、问答题 1、典型的传质过程有哪些?各采用什么烧结模型?分析产生的原因是什么? 答:典型的传质过程有:固相烧结的蒸发-凝聚传质、扩散传质,液相烧结的流动传质、溶解-沉淀传质。 固相烧结的蒸发-凝聚传质过程采用中心距不变的双球模型。 固相烧结的扩散传质、液相烧结的流动传质、溶解-沉淀传质过程采用中心距缩短的双球模型。 原因:蒸发—冷凝:压力差ΔP;扩散传质:空位浓度差ΔC;流动传质:应力—应变; 溶解—沉淀:溶解度ΔC(大、小晶粒溶解度不同;自由表面与点接触溶解度)。 2、试述烧结的推动力和晶粒生长的推动力。并比较两者的大小。 答:烧结推动力是粉状物料的表面能(γsv)大于多晶烧结体的晶界能(γgb),即γsv>γgb。 晶粒生长的推动力是晶界两侧物质的自由焓差,使界面向晶界曲率半径小的晶粒中心推进。 烧结的推动力较大,约为4~20J/g。晶粒生长的推动力较小,约为0.4~2J/g,因而烧结推动力比晶粒生长推动力约大十倍。 3、在制造透明Al2O3材料时,原始粉料粒度为2μm,烧结至最高温度保温0.5h,测得晶粒尺寸为10μm,试问保温2h,晶粒尺寸多大?为抑制晶粒生长加入0.1%MgO,此时若保温2h,晶粒尺寸又有多大? 解:1、G 2-G02 = kt = 2 μm, G = 10 μm, t = 0.5 h,得 代入数据:G

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料科学基础第二章答案.

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

[精品]材料科学基础第三章答案.doc

笫三章 I.试述结晶相变的热力学条件、动力学条件、能量及结构条件。2.如 果纯银凝固时的最大过冷度与其熔点(tm=1453°C)的比值为0.18, 试求其 凝固驱动力。(△H = -18075J/mol) 3.已知Cu的熔点tm= 1083°C,熔化潜热Lm=1.88xl03J/cm3,比表面能0=1.44x105 J/cm3。 (1)试计算Cu在853°C均匀形核吋的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界品核中的原子数。4.试推导杰克逊(K.A.Jackson)方程5.铸件组织有何特点?6.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?7.已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3, 试计算在LDPE及HDPE中“资自由空I'u厂的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10.分析纯金属生长形态与温度梯度的关系。 II.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12.简述纯金属晶体长大的机制。13.试分析单晶体形成的基本条件。 14.指出下列概念的错误之处,并改正。(1)所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2)金属结晶时,原子从液相无序排列到固相有序排列,使体系爛值减少,因此是一个自发过程。(3)在任何温度下,液体金属中出现的最大结构起伏都是品胚。(4)在任何温度下,液相中出

材料科学基础第二章习题

!异常的公式结尾金属的塑性变形与再结晶 一、填空题 1.常温下,金属单晶体的塑性变形方式为()和()。 2.滑移只能在()应力的作用下发生。 3.与单晶体相比,影响多晶体塑性变形的两个主要因素是()和()。 5.在金属学中,冷热加工的界限是以()来划分的。因此,Cu(熔点为1084℃)在室温下的变形加工为()加工,Sn(熔点为232℃)在室温下的变形加工为()加工。 6.金属再结晶后的晶粒大小主要取决于()、()和()。 二、选择题 1.金属多晶体的晶粒越细,则其()。 A.强度越高,塑性越好 B.强度越高,塑性越差 C.强度越低,塑性越好 D.强度越低,塑性越差 2.随冷塑性变形量增加,金属的()。 A.强度下降,塑性提高 B.强度和塑性都下降 C.强度和塑性都提高 D.强度提高,塑性下降 3.铝的熔点是660.4℃,它的最低再结晶温度为()。 A.-8.8℃ B.100.4℃ C.264.2℃ D.373.4℃ 4.某工厂用冷拉钢丝绳吊运热处理工件去淬火,钢丝绳承载能力远超过工件的重量,但在吊运过程中,钢丝绳发生断裂,其原因是由于钢丝绳()。 A.超载 B.发生再结晶 C.形成带状组织 D.流线分布不合理 5.铜只有通过冷加工并经随后加热才能使晶粒细化,而铁则不需冷加工,只需加热到一定温度就可使晶粒细化,其原因是()。 A.铁总是处于冷加工状态,而铜不是 B.铁可不经过冷加工直接加热便能发生再结晶,而铜不可 C.铁在固态下有同素异构转变,而铜没有 D.铜需经过冷加工后才能发生同素异构转变,而铁不需要 6.铁丝在室温下反复弯折,会越弯越硬,直至断裂,而铅丝在室温下反复弯折,则始终处于软态,其原因是铁发生加工硬化,不发生再结晶,而铅()。

材料科学基础第二章习题(34)备课讲稿

学习资料 1)计算fcc,bcc结构的(001)、(110)、(111)晶面的面密度,计算密排六方 结构的(0001)、(112—0)晶面的面密度。(面密度定义为原子数/单位面积)。 2)从晶体结构的角度,间隙固溶体、间隙相、间隙化合物之间的区别? 3)钛具有hcp结构,在20℃时六方晶胞体积为0.106nm3,c/a = 1.59,求a和c。 求在基面上的原子半径。 4)根据下表所给之值,确定哪一种金属可作为溶质与钛形成固溶度较大的固溶 体: 5)试计算金刚石结构的致密度。 6)In具有四方结构,其相对原子质量为114.82,原子半径为0.1625nm,晶格常 数a=0.3252nm,c=0.4946nm,密度ρ= 7.286g/cm3,试问In的单位晶胞内有多少个原子?In的致密度为多少? 7)按晶体的钢球模型,若球的直径不变,当Fe从fcc转变为bcc时,计算其体 积膨胀多少?经X射线衍射测定,在912℃时,α-Fe的a = 0.2892nm,γ-Fe 的a = 0.3633nm,计算从γ-Fe转变为α-Fe时,其体积膨胀为多少?试说明产生差别的原因。 8)渗碳体(Fe3C)是一种间隙化合物,它具有正交点阵结构,其点阵常数a = 0.4514nm,b = 0.508nm,c = 0.6734nm,其密度为7.66g/cm3,试求Fe3C每 单位晶胞中含Fe原子与C原子的数目。 9)铜的相对原子质量为63.55,密度为8.96g/cm3。(i)计算铜的点阵常数和原子 半径。(ii)测得Au的摩尔分数为40%的Cu-Au固溶体点阵常数a = 0.3795nm,密度为14.213g/cm3,计算说明它是什么类型的固溶体。 10)Zn原子的摩尔分数为3%Zn的Cu-Zn合金固溶体,铜的原子半径为0.128nm, Zn的原子半径为0.133nm。假设点阵常数随Zn原子增加呈线性变化,求这个合金的密度。(Cu和Zn的原子量分别为63.55 和65.37,阿佛加得罗常数是6.0238×1023) 仅供学习与参考

相关文档
最新文档