成都中考数学综合题专练∶反比例函数

成都中考数学综合题专练∶反比例函数
成都中考数学综合题专练∶反比例函数

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.

(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;

(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;

(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,

理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,

∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,

∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,

∴﹣1≤y1﹣y2≤1,

即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”

(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,

∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),

∴顶点坐标为:(1,a﹣1),

又∵抛物线y=x2﹣2x+a的开口向上,

∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,

∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,

∴﹣1≤y1﹣y2≤1,即,

∴0≤a≤1

(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,

∵y= +2x﹣4

∴当x=1时,函数有最小值a﹣2,

当x=2时,函数有最大值,即a﹣2≤y≤ ,

∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,

∴﹣1≤y1﹣y2≤1,即,

∴1≤a≤2;

∴a的最大值是2,a的最小值1

【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即

0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.

2.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)

(1)试确定上述比例函数和反比例函数的表达式;

(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?

(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.

【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,

∴反比例函数解析式为y= ,正比例函数解析式为y= x;

(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;

(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,

∴OE= OA= ,点D(,2),

∴点B(3,4),

又∵点F在正比例函数y= x图象上,

∴F(,),

∴DF= 、BC=3、EA= ,

∴四边形DFCB的面积为 ×( +3)× = .

【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.

3.如图,一次函数y=kx+b的图象交反比例函数y= (x>0)的图象于A(4,-8)、B (m,-2)两点,交x轴于点C.

(1)求反比例函数与一次函数的关系式;

(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?

(3)以O、A、B、P为顶点作平行四边形,请直接写出点P的坐标.

【答案】(1)解:∵反比例函数y= (x>0)的图象于A(4,-8),

∴k=4×(-8)=-32.

∵双曲线y= 过点B(m,-2),

∴m=16.

由直线y=kx+b过点A,B得:,

解得,,

∴反比例函数关系式为,一次函数关系式为

(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵O(0,0),A(4,-8)、B(16,-2),

分三种情况:①若OB∥AP,OA∥BP,

∵O(0,0),A(4,-8),

∴由平移规律,点B(16,-2)向右平移4个单位,向下平移8个单位得到P点坐标为(20,-10);

②若OP∥AB,OA∥BP,

∵A(4,-8),B(16,-2),

∴由平移规律,点O(0,0)向右平移12个单位,向上平移6个单位得到P点坐标为(12,6);

③若OB∥AP,OP∥AB,

∵B(16,-2),A(4,-8),

∴由平移规律,点O(0,0)向左平移12个单位,向下平移6个单位得到P点坐标为(-12,-6);

∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)

【解析】【分析】(1)将点A(4,-8),B(m,-2)代入反比例函数y= (x>0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x的范围;(3)根据平行四边形的性质,即可直接写出.

4.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD 的面积为2.

(1)求的值及 =4时的值;

(2)记表示为不超过的最大整数,例如:,,设 ,若

,求值

【答案】(1)解:设A(x0, y0),则OD=x0, AD=y0,

∴S△AOD= OD?AD= x0y0=2,

∴k=x0y0=4;

当x0=4时,y0=1,

∴A(4,1),

代入y=mx+5中得4m+5=1,m=-1

(2)解:∵,

∴=mx+5,整理得,mx2+5x-4=0,

∵A的横坐标为x0,

∴mx02+5x0=4,

当y=0时,mx+5=0,

x=- ,

∵OC=- ,OD=x0,

∴m2?t=m2?(OD?DC),

=m2?x0(- -x0),

=m(-5x0-mx02),

=-4m,

∵- <m<- ,

∴5<-4m<6,

∴[m2?t]=5

【解析】【分析】(1)根据反比例函数比例系数k的几何意义,即可得出k的值;根据反比例函数图像上的点的坐标特点,即可求出A点的坐标,再将A点的坐标代入直线y=mx+5中即可求出m的值;

(2)解联立直线与双曲线的解析式所组成的方程组,得出mx2+5x-4=0,将A点的横坐标代入得出mx02+5x0=4,根据直线与x轴交点的坐标特点,表示出OC,OD的长,由m2?t=m2?(OD?DC)=-4m,根据m的取值范围得出5<-4m<6,从而答案。

5.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.

(1)若点A的坐标为(a,3),求a的值;

(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;

(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.

【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;

(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,

则∠ADO=∠CEO=90°,

∴∠DAO+∠AOD=90°,

∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,

当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,

∵∠AOD=∠BOE,∴∠DAO=∠EOC,

∴△ADO≌△OEC,

又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),

由△ADO≌△OEC得,CE=OD=3,EO=DA=2,

所以C(-3,-2);

(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,

则∠ADO=∠CEO=90°,

∴∠DAO+∠AOD=90°,

∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,

∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,

∵∠AOD=∠BOE,∴∠DAO=∠EOC,

∴△ADO∽△OEC,

∴,

∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,

∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,

∴A( n,- m),代入y=-中,

得mn=18.

【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;

(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;

(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出

,根据锐角三角函数的定义,及特殊锐角三角函数值得出

,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.

6.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.

(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.

①若其不变长度为零,求b的值;

②若1≤b≤3,求其不变长度q的取值范围;

(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为________.

【答案】(1)解:函数y=x-1没有不变值;

∵函数有-1和1两个不变值,

∴其不变长度为2;

∵函数有0和1两个不变值,

∴其不变长度为1;

(2)解:① 函数y=2x2-bx的不变长度为0,

方程2x2-bx=x有两个相等的实数根,

∴△=(b+1)2=0,

b=-1,

②∵2x2-bx=x,

∴,

1≤b≤3,

1≤ ≤2,

函数y=2x2-bx的不变长度的取值范围为1≤q≤2.

(3)1≤m≤3或m<-

【解析】【解答】解(3)依题可得:函数G的图像关于x=m对称,

∴函数G:y=,

当x2-2x=x时,即x(x-3)=0,

∴x3=0,x4=3,

当(2m-x)2-2(2m-x)=x时,

即x2+(1-4m)x+(4m2-4m)=0,

∴△=(1-4m)2-4×(4m2-4m)=1+8m,

当△=1+8m0时,即m-,此方程无解,

∴q=x4-x3=3-0=3;

当△=1+8m 0时,即m -,此方程有解,

∴x5=, x6=,

①当-m0时,

∵x3=0,x4=3,

∴x60,

∴x4-x63(不符合题意,舍去),

②∵当x5=x4时,

∴m=1,

当x6=x3时,

∴m=3,

当0m1时,

x3=0(舍去),x4=3,

此时0x5x4, x60,

∴q=x4-x63(舍去);

当1m3时,

x3=0(舍去),x4=3,

此时0x5x4, x60,

∴q=x4-x63(舍去);

当m3时,

x3=0(舍去),x4=3(舍去),

此时x53,x60,

∴q=x5-x63(舍去);

综上所述:m的取值范围为:1m3或m < -,

【分析】(1)根据题目定义即可得出函数y=x-1没有不变值;再分别求出函数、函数的不变值,从而求出其不变长度.

(2)① 由已知条件得方程2x2-bx=x有两个相等的实数根,即根的判别式△=(b+1)2=0,从而求出 b=-1;

②由题意得2x2-bx=x,求出方程的根,再根据1≤b≤3,即可求出函数y=2x2-bx的不变长度的取值范围.

(3)依题可得:函数G的图像关于x=m对称,分情况讨论写出函数G的解析式,根据定义和一元二次方程求出值,再分情况讨论即可得出答案.

7.如图1,已知双曲线y= (k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:

(1)若点A的坐标为(3,1),则点B的坐标为________;当x满足:________时,≤k′x;

(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限.

四边形APBQ一定是________;

(3)若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.

(4)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.

【答案】(1)(﹣3,﹣1)

;﹣3≤x<0或x≥3

(2)平行四边形

(3)∵点A的坐标为(3,1),

∴k=3×1=3,∴反比例函数的解析式为y= ,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),

由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,

则四边形CDEF是矩形,

CD=6,DE=6,DB=DP=4,CP=CA=2,

则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积

=36﹣2﹣8﹣2﹣8=16.

(4)解:mn=k时,四边形APBQ是矩形,不可能是正方形,理由:当AB⊥PQ时四边形APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.因为mn=k,易知P、A关于直线y=x对称,所以PO=OA=OB=OQ,所以四边形APBQ是矩形.

【解析】【解答】解:(1)∵A、B关于原点对称,A(3,1),

∴点B的坐标为(﹣3,﹣1).由图象可知,当﹣3≤x<0或x≥3时,≤k′x.

故答案为(﹣3,﹣1),﹣3≤x<0或x≥3;(2)∵A、B关于原点对称,P、Q关于原点对称,

∴OA=OB,OP=OQ,∴四边形APBQ是平行四边形.故答案为:平行四边形;

=36﹣2﹣8﹣2﹣8=16.

【分析】(1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.(2)利用对角线互相平分的四边形是平行四边形证明即可.(3)利用分割法求面积即可.(3)根据矩形的性质、正方形的性质即可判定.

8.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.

(1)求一次函数的函数表达式;

(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面

积.

【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,

代入反比例函数解析式,=y,

解得y=6,

∴点A的坐标为(1,6),

又∵点A在一次函数图象上,

∴1+m=6,

解得m=5,

∴一次函数的解析式为y1=x+5

(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,

∴2= ,解得x=3,

∴点C的坐标为(3,2),

过点C作CD∥x轴交直线AB于D,

则点D的纵坐标为2,

∴x+5=2,

解得x=﹣3,

∴点D的坐标为(﹣3,2),

∴CD=3﹣(﹣3)=3+3=6,

点A到CD的距离为6﹣2=4,

联立,

解得(舍去),,

∴点B的坐标为(﹣6,﹣1),

∴点B到CD的距离为2﹣(﹣1)=2+1=3,

S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.

【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系

数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.

9.在平面直角坐标系中,抛物线经过点,、,,其中、

是方程的两根,且,过点的直线与抛物线只有一个公共点

(1)求、两点的坐标;

(2)求直线的解析式;

(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,

∴x1=-2,x2=4,

∴A(-2,2),C(4,8)

(2)解:①设直线l的解析式为y=kx+b(k≠0),

∵A(-2,2)在直线l上,

∴2=-2k+b,

∴b=2k+2,

∴直线l的解析式为y=kx+2k+2①,

∵抛物线y= x2②,

联立①②化简得,x2-2kx-4k-4=0,

∵直线l与抛物线只有一个公共点,

∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,

∴k=-2,

∴b=2k+2=-2,

∴直线l的解析式为y=-2x-2;

②平行于y轴的直线和抛物线y= x2只有一个交点,

∵直线l过点A(-2,2),

∴直线l:x=-2

(3)解:由(1)知,A(-2,2),C(4,8),

∴直线AC的解析式为y=x+4,

设点B(m,m+4),

∵C(4.8),

∴BC= |m-4|= (4-m)

∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,

∴D(m, m2),E(m,-2m-2),

∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,

∵DC∥EF,

∴△BDC∽△BEF,

∴,

∴,

∴BF=6 .

【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.

10.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2 ).

(1)直接写求∠BAO的度数;

(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?

(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.

【答案】(1)解:∵A(?2,0),B(0,),

∴OA=2,OB=,

在Rt△AOB中,tan∠BAO=,

∴∠BAO=60°

(2)解:S1=S2;

理由:∵∠BAO=60°,∠AOB=90°,

∴∠ABO=30°,

∴OA'=OA= AB,△AOA'是等边三角形,

∴OA'=AA'=AO=A'B,

∵∠B'A'O=60°,∠A'OA=60°,

∴B'A'∥AO,

根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中BA′边上的高相等,

∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),

即S1=S2

(3)证明:S1=S2不发生变化;

理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,

∵△A'B'O是由△ABO绕点O旋转得到,

∴BO=OB',AO=OA',

∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,

∴∠AON=∠A'OM,

在△AON和△A'OM中,,

∴△AON≌△A'OM(AAS),

∴AN=A'M,

∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),

即S1=S2.

【解析】【分析】(1)先求出OA,OB,再用锐角三角函数即可得出结论;(2)根据旋转的性质和直角三角形的性质可证得OA'=AA'=AO=A'B,然后根据等边△AOA'的边AO、AA'上的高相等,即可得到S1=S2;(3)根据旋转的性质可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后利用“角角边”证明△AON和△A'OM全等,根据全等三角形对应边相等可得AN=A'M,然后利用等底等高的三角形的面积相等证明.

11.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4).点D为抛物线上一点

(1)求抛物线的解析式及A点坐标;

(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;

(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围________.

【答案】(1)解:将B(4,0),C(0,4)代入y=x2+bx+c得,

,解得,

所以抛物线的解析式为,

令y=0,得,解得,,

∴A点的坐标为(1,0)

(2)解:设D点横坐标为,则纵坐标为,

①当∠BCD=90°时,如下图所示,连接BC,过C点作CD⊥BC与抛物线交于点D,过D作DE⊥y轴与点E,

由B、C坐标可知,OB=OC=4,

∴△OBC为等腰直角三角形,

∴∠OCB=∠OBC=45°,

又∵∠BCD=90°,

∴∠ECD+∠OCB=90°

∴∠ECD=45°,

∴△CDE为等腰直角三角形,

∴DE=CE=a

∴OE=OC+CE=a+4

由D、E纵坐标相等,可得,

解得,,

当时,D点坐标为(0,4),与C重合,不符合题意,舍去.

当时,D点坐标为(6,10);

②当∠CBD=90°时,如下图所示,连接BC,过B点作BD⊥BC与抛物线交于点D,过B作FG⊥x轴,再过C作CF⊥FG于F,过D作DG⊥FG于G,

∵∠COB=∠OBF=∠BFC=90°,

∴四边形OBFC为矩形,

又∵OC=OB,

∴四边形OBFC为正方形,

∴∠CBF=45°

∵∠CBD=90°,

∴∠CBF+∠DBG=90°,

∴∠DBG=45°,

∴△DBG为等腰直角三角形,

∴DG=BG

∵D点横坐标为a,

∴DG=4-a,

而BG=

解得,,

当时,D点坐标为(4,0),与B重合,不符合题意,舍去.

当时,D点坐标为(2,-2);

综上所述,D点坐标为(6,10)或(2,-2).

(3)3+ <m <6或 3- <m <2

【解析】【解答】解:(3)当BC为斜边构成Rt△BCD时,如下图所示,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',

∵BC为圆O'的直径,

∴∠BDC=∠BD'C=90°,

∵,

∴D到O'的距离为圆O'的半径,

∵D点横坐标为m,纵坐标为,O'点坐标为(2,2),

化简得:

由图像易得m=0或4为方程的解,则方程左边必有因式,

∴采用因式分解法进行降次解方程

或或,

解得,,,

当时,D点坐标为(0,4),与C点重合,舍去;

当时,D点坐标为(4,0),与B点重合,舍去;

当时,D点横坐标;

当时,D点横坐标为;

结合(2)中△BCD形成直角三角形的情况,

可得△BCD为锐角三角形时,D点横坐标m的取值范围为3+ <m <6或 3- <m <2.【分析】(1)利用待定系数法求抛物线的解析式,再令y=0,求A的坐标;(2)设D点横坐标为a,代入函数解析式可得纵坐标,分别讨论∠BCD=90°和∠CBD=90°的情况,作出图形进行求解;(3)当BC为斜边构成Rt△BCD时,以BC中点O'为圆心,以BC为直径画圆,与抛物线交于D和D',此时△BCD和△BCD'就是以BC为斜边的直角三角形,利用两点间距离公式列出方程求解,然后结合(2)找到m的取值范围.

12.综合与探究

如图,抛物线的图象经过坐标原点O,且与轴的另一交点为( ,0).

(1)求抛物线的解析式;

(2)若直线与抛物线相交于点A和点B(点A在第二象限),设点A′是点A关于原点O的对称点,连接A′B,试判断ΔAA′B的形状,并说明理由;

(3)在问题(2)的基础上,探究:平面内是否存在点P,使得以点A,B,A′,P为顶点的四边形是菱形?若存在直接写出点P的坐标;若不存在,请说明理由.

相关主题
相关文档
最新文档