抗磁性

顺磁性抗磁性铁磁性

原子物理学 顺磁性,抗磁性,铁磁性 指导教师:XXX 专业:XXXX 学号:XXXXXXXXXX 姓名:XXX XXXX大学 XXXX年X月X日

顺磁性,抗磁性,铁磁性 摘要: 一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相反,此类物质称为抗磁性的;另一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相同,此类物质称为顺磁性的;而某些物质,如铁、钴、镍以及一些稀土元素和许多氧化物,在受到外磁场磁化后,显出比顺磁性强的很多的磁性,在失去磁场后,还保留磁性,这种现象称为铁磁性。 关键词:顺磁性,抗磁性,铁磁性 一、顺磁性 简介:顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10^-5~10^-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 定义:顺磁性是一种弱磁性。当分子轨道或原子轨道上有落单的原子或电子时,就会产生顺磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10^-5),并且随温度的降低而增大。 原理:顺磁性物质可以被看作是由许多微小的磁棒组成的,这些磁棒可以旋转,但是无法移动。这样的物质受到外部磁场的影响后其磁棒主要顺磁力线方向排列,但是这些磁棒互相之间不影响。热振动不断地使得磁棒的方向重新排列,因此磁棒指向不排列比排列的可能性高。因此磁力线的强度越强顺磁性物质内磁棒的排列性就越强。以上模型当然只是一个简化的模型。实际上顺磁性物质内部并没有小磁棒,而是微观的磁矩。在顺磁性物质中这些磁矩互相之间不影响。然而与铁磁性不同的是在顺磁性物质中外部磁场消失后物质内的磁场立刻就由于热运动消失了。磁化向量与磁场强度成正比 , 物质的磁化率越高,它就越容易被磁化。因此磁化率是衡量顺磁性的强度的量。 由于磁化率和相对磁导率之间有以下简单关系磁导率往往也被看 作是衡量顺磁性的量。假如磁矩之间有耦合的话物质内就会产生磁性有序状态,在这种情况下磁化率会非常复杂,因此这样的物质不再是顺磁性的。总的来说这

强力磁铁知识及规格

强力磁铁知识及规格 强力磁铁 强力磁铁,是指钕铁硼磁铁。它相比于铁氧体磁铁、铝镍钴、钐钴的磁性能大大的超越了其他几种磁铁,钕铁硼磁铁可以吸附本身重量的640倍的重量,所以钕铁硼常被业外人士称为强力磁铁。 中文名强力磁铁外文名Strong magnet别称钕铁硼磁铁吸附重量640倍的重量成分铼、钕、铁、硼 强力磁铁的存放注意事项: 1、强力磁铁不要接近电子器材,接近的话会影响电子设备及控制回路而影响使用。 2、磁铁不要存放在潮湿的环境中,以免其氧化,导致外观、物理特性及磁性能发生变化。 3、对金属物体有敏感反应的人若接近磁体,会照成皮肤粗糙、泛红。若出现上述反应,请不要接触强力磁铁。 4、不要将磁铁接近软盘、硬盘驱动器、信用卡、磁带、借记卡、电视显像管等。若将磁铁接近磁性记录器等器件,会影响甚至破坏记录数据。 磁铁作用 1 指南北 2 吸引磁性小物体

3 电磁铁可以做电磁继电器 4.电动机 5 发电机 性能曲线 处于强力磁铁技术饱和磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是11000Oe以上。 将一个磁体在闭路环境下被外磁场充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中磁体的磁感应强度都小于剩磁。钕铁硼是现今发现的Br最高的实用永磁材料。 强力磁铁使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基本消除。钕铁硼的Hcj会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj的牌号。 磁的发现 先秦时代我们的先人已经积累了许多这方面的认识,在探寻铁矿时常会遇到磁铁矿,即磁石(主要成分是四氧化三铁)。这些发现很早就被记载下来了。《管子》的数篇中最早记载了这些发现:“山上有磁石者,其下有金铜。” 其他古籍如《山海经》中也有类似的记载。磁石的吸铁特性很早就被人发现,《吕氏春秋》九卷精通篇就有:“慈招铁,或引之也。”那时的人称“磁”为“慈”他们把磁石吸引铁看作慈母对子女的吸引。并认为:“石是铁的母亲,但石有慈和不慈两种,慈爱的石头能吸引他的子女,不慈的石头就不能吸引了。” 汉以前人们把磁石写做“慈石”,是慈爱石头的意思。 既然磁石能吸引铁,那么是否还可以吸引其他金属呢?我们的先民做了许多尝试,发现磁石不仅不能吸引金、银、铜等金属,也不能吸引砖瓦之类的物品。西汉的时候人们已经认识到磁石只能吸引铁,而不能吸引其他物品。当把两块磁铁放在一起相互靠近时,有时候互相吸引,有时候相互排斥。现在人们都知道磁体有两个极,一个称N 极,一个称S 极。同性极相互排斥,异性极相互吸引。那时的人们并不知道这个道理,但对这个现象还是能够察觉到的。 到了西汉,有一个名叫栾大的方士,他利用磁石的这个性质做了两个棋子般的东西,通过调整两个棋子极性的相互位置,有时两个棋子相互吸引,有时相互排斥。栾大称其为“斗棋”。他把这个新奇的玩意献给汉武帝,并当场演示。汉武帝惊奇不已,龙心大悦,竟封栾大为“五利将军”。栾大利用磁石的性质,制作了新奇的玩意蒙骗了汉武帝。 地球也是一个大磁体,它的两个极分别在接近地理南极和地理北极的地方。因此地球表面的磁体,可以自由转动时,就会因磁体同性相斥,异性相吸的性质指示南北。这个道理古人不够明白,但这类现象他们很清楚。 磁现象的应用 「在传统工业中的应用」: 在讲述磁性材料的磁性来源、电磁感应、磁性器件时,我们已经提到了有些磁性材料的实际应用。实际上,磁性材料已经在传统工业的各个方面得到了广泛应用。 例如,如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都

磁性吸附剂

1、吸附剂的制备 表1 试验号 1 2 3 4 实验结果反应时间 /min 反应温度 /℃ 反应pH 吸附剂量/g 磁力表征 /N t T pH m F 1 5 20 10 1.0 1.87×10-2 2 5 30 11 1.0 2.04×10-2 3 5 40 12 1.0 1.53×10-2 4 1 5 20 11 1.0 2.20×10-2 5 15 30 12 1.0 1.50×10-2 6 15 40 10 1.0 2.01×10-2 7 25 20 12 1.0 1.41×10-2 8 25 30 10 1.0 2.07×10-2 9 25 40 11 1.0 2.21×10-2 K1 5.44×10-2 5.48×10-2 5.95×10-2 K2 5.71×10-2 5.61×10-2 6.45×10-2 K3 5.69×10-2 5.75×10-2 4.44×10-2 k1 1.81×10-2 1.83×10-2 1.98×10-2 k2 1.90×10-2 1.87×10-2 2.15×10-2 k3 1.90×10-2 1.92×10-2 1.48×10-2 极差R 0.09×10-20.09×10-20.67×10-2 通过正交试验结果得出对吸附剂磁性影响最大的一个因素是pH,最佳的pH 条件是11,当pH=10时需要较长的反应时间才能制出磁性较强的吸附剂,pH=12时无论反映时间多长,制得的吸附剂磁性都不强。通过多次实验的经验得出,低的反应温度可以用较长的反应时间来弥补,也就是说在较高温度条件下用较短的反应时间可以制得磁性相当的在较低反应温度条件下用较长的反应时间制得的吸附剂。 通过正交试验表得出磁性的强弱顺序是9>4>2>6>1,其他几个磁性较弱,在

第九章 超导电性

第九章 超导电性 1911年荷兰物理学家昂内斯(H.R.Onnes)在研究水银在低温下的电阻时,发现当温度降低至4.2K 以下后,水银的电阻突然消失,呈现零电阻状态。昂内斯便把这种低温下物质具有零电阻的性能称为超导电性。1933年迈斯纳(W. Meissner)和奥克森菲尔德(R. Ochsenfeld)发现,不仅是外加磁场不能进入超导体的内部,而且原来处在外磁场中的正常态样品,当温度下降使它变成超导体时,也会把原来在体内的磁场完全排出去。到1986年,人们已发现了常压下有28种元素、近5000种合金和化合物具有超导电性。常压下,Nb 的超导临界温度T c =9.26K 是元素中最高的。合金和化合物中,临界温度最高的是Nb 3Ge ,T c =23.2K 。此外,人们还发现了氧化物超导材料和有机超导材料。 1987年2月,美国的朱经武等宣布发现了T c ~93K 的氧化物超导材料,同月21日和23日,中国科学院物理所的赵忠贤、陈立泉等人和日本的S. Hikami 等人也都独立地发现Y-Ba-Cu-O 化合物的T c ~90K 。中国学者率先公布了材料的化学成份。液氮温区超导材料的出现激起了全世界范围的对高临界温度超导材料研究的热潮。 发现超导电性是二十世纪物理学特别是固体物理学的重要成就之一。在超导电性领域的研究工作中,先后有九位科学家前后四次荣获诺贝尔物理学奖。 §9.1 超导电性的基本性质 物质由常态转变为超导态的温度称其为超导临界温度,用T c 表示。超导临界温度以绝对温度来度量。超导体与温度、磁场、电流密度的大小密切相关。这些条件的上限分别称为临界温度(critical temperature, T c )、临界磁场(critical magnetic field, H c )和临界电流密度(critical electric current density, J c )。超导电性有两个最基本的特性:完全导电性和完全抗磁性。 9.1.1 完全导电性 对于超导体来说,在低温下某一温度T c 时,电阻会突然降为零,显示出完全导电性。图9.1表示汞在液氦温度附近电阻的变化行为。在4.2K 下对铅环做的实验证明,超导铅的电阻率小于3.6×10-25Ω·cm ,比室温下铜的电阻率的4.4×10-16分之一还小。实验发现,超导电性可以被外加磁场所破坏,对于温度为T (T <T c =的超导体,当外磁场超过某一数值H c (T )的时候,超导电性就被破坏了,H c (T )称为临界磁场。在临界温度T c ,临界磁场为零。H c (T )随温度的变化一般可以近似地表示为抛物线关系: ?????????=21)(c co c T T H T H (9.1)

研究凝聚态物质的理论——朗道

研究凝聚态物质的理论 ——朗道 1962,L.D.朗道,一位前苏联科学家通过对凝聚态物质的理论,特别是液氦的研究获得诺贝尔奖. 朗道是一个很有才华的人,他18岁时,就发表了一篇分析双原子分子的光谱的论文.在19岁大学毕业以后,他继续研究有关量子力学的各种问题.他觉得许多最根本的问题已经被别人抢先解决了,大有“余生也晚”之憾.但是,他毕竟不虚此生,到底还是在理论物理学的许多领域里作出了许多杰出的贡献. 早在他巡行欧洲之时,年轻的朗道已经表现出非凡的才华.他虽然没育象泡利那样写出相对论和量子力学方面的经典式的论著,但他却接触了大量的新问题,萌发了迥异于人的新概念,打下了广阔的工作基础.在丹麦,他接触了量子电动力学方面的问题,特别是提出了电磁场量的可测性这样的基本问题.在剑桥,他探索了物质的磁性.在苏黎世,他进一步发展了凝聚态物理学方面的思想. 就其实质来说,凝聚态物理学中的量子力学方法是量子力学的应用而不是量子力学本身.这也许是象抱利和朗道这样的理论物理学家之所以不太喜欢它的根本原因.但是,正如授予朗道以诺贝尔物理学奖的公告所指出的那样,朗道对凝聚态物理学的理论贡献是他最主要的成就.他发展了物质磁性的理论,提出了抗磁性问题的完全解,’这个发现后来被称为“朗道抗磁性理论”.他发展了所谓二级相变的理论,也提出了关于液态氦的超流性理论.据说有人问过他:“你一生中最得意的工作是什么?”他说:“当然是超流性理论,因为迄今尚未有人真正懂得它.” 关于液氦超流动性问题,朗道认为这是由于在液氦中存在着原子间的相互作用,因而可以把液体看成具有一定量子态和能级的整体。对于处于低激发能级态的低温液体,可以近似假定每一个能级都是若干准粒子或元激发的能量之和.每一个元激发具有一定动量P和能量ε并在物体内运动。于是,可以把弱激发系统看成准粒子或元激发所组成的理想气体,因而原子之间相互作用的性质被概括到元激发能谱ε(P)元中.当元激发谱中有一极小值时,可以有两种类型的元激发,即声子和旋子。为了说明超流动性,声子态和旋子态必须被一能隙△分隔开来(但是朗道没有说明这个能隙存在的理由)。 朗道根据自己的超流理沦,不仅对液氦五的全部已知性质作了详尽的描述,而且还预言了液氦五的一此全新的特性。为了说明超流动性,朗道还曾经预言氦的元激发谱在开始一段线性上升以后达到极大值,然后开始下降,而在某个一定动量P。处通过极小值。朗道的这一预言,后来由帕列夫斯基等人在非弹性散射实验而直接证实。1941年,朗道在苏联杂志《实验物理学和理论物理学》第l卷上所发表的那篇((氦l的超流动性理论》的著名论文,已经反映了他在这方面的卓越研作.他为一门崭新的物理学科即量子液体物理学的诞生奠定了基础。 白璧微瑕。使自己的学生与诺贝尔奖无缘给朗道造成了一定的负面影响。更加遗憾的是正当朗道步入科学的丰产期时, 一场车祸剥夺了他的工作能力。 朗道也许是上个世纪最有个性的物理学家。作为一个物理学家他就像莫斯科物理问题研究所所长卡皮查所说: “朗道在整个理论物理学领域中都做了工作, 所有这些工作都可以用一个词来描述———卓越。”作为一个普通人, 他是“简单化作风和民主作风, 无限偏执和过分自信的奇妙混合体。”这种复杂或矛盾的性格处处体现在他的生活中。

磁铁常识资料

常用的磁性材料通常分为 5===其它 而比较常用的是铁氧体永磁和钕铁硼永磁 主要有粘结和烧结两种加工形式 主要加工成圆环,圆片,圆柱,方块,扇形,瓦形,T形等形状 1===xxxx'S 2===汇微张'S 3===435万磁解'R 不过磁铁一般都加工成规则形状且尺寸一般都做成整数位负公差尺寸;所以设计时应当尽量往这两点上靠,在成本和交期上都会比较占优;而异形磁铁则需要专门向厂商订做,成本相对增加一些,交期看订货量一般在5-7天左右. 磁铁常识 1如何订购磁铁? 为使我们能更有效地配合您的工作,我们需要您在下订单之前确认以下内容: 1.什么材质,性能? 2.尺寸与公差? 3.是否要充磁?若要充磁,是何种方式,轴向?径向? 4.磁铁工作环境的最高温度?

5.订购数量? 6.表面处理?镀锌,镀镍? 7.如需特别处理,请告知。 2钕铁硼磁铁有哪些应用? 钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、传感器,音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。 3磁性材料类比 铁氧体性能低和中,价格最低,温度特性良,耐腐蚀,性能价格比好 钕铁硼性能最高,价格中,强度好,不耐高温和腐蚀 钐钴性能高,价格最高,脆,温度特性优,耐腐蚀 铝镍钴性能低和中,价格中,温度特性优,耐腐蚀,耐干扰性差 SmCo,铁氧体,钕铁硼可用烧结和粘结方法制造,烧结磁性能高,成型较差,粘结磁铁成型性好,性能降低很多。 AlNiCo可用铸造和烧结方法制造,铸造磁铁性能较高,成型性较差好,烧结磁铁较低,成型性较好。 4钕铁硼由那些材料组成? 钕铁硼永磁铁的主要原材料有稀土金属钕(Nd)32%、金属元素铁(Fe)64%和非金属元素硼(B)1%(少量添加镝(Dy)、铽(Tb)、钴(Co)、铌(Nb)、镓(Ga)、铝(Al)、铜(Cu)等元素)。钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分应与化合物Nd2Fe14B分子式相近。但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁。只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时才能获得较好的永磁性能。

磁性物理复习参考

第二章 抗磁性的来源 1.拉莫尔进动导致的抗磁性(经典、局域电子)。轨道电子在外磁场作用下,产生拉莫尔进动,其感生出的磁化强度总是与外场H反平行,表现为抗磁性。 2.朗道抗磁性(巡游电子)。金属中的抗磁性,来源于传导电子在外磁场作用下进行回旋运动,外磁场使电子的能量量子化,从连续的能级变为不连续的能级,这种量子化引起了导体能量随磁场的变化,从而表现出抗磁性。 n为单位体积电子数 顺磁性的来源 1.泡利顺磁性(巡游电子):对于传导电子,在外场的作用下,自旋向上和自旋向下两个子能带中的电子在费米面附近的态密度发生变化,由此产生的磁化强度正比与外场H,表现为顺磁性。只有费米能级附近的电子才能改变自旋取向。 顺磁性与抗磁性是同时表现出的 2.固有磁矩取向顺磁性(朗之万顺磁性、顺磁性的经典理论、局域电子):材料中的原子磁矩都是互相独立的,每个原子都在进行热振动,符合玻尔兹曼统计。在无外加磁场时,磁矩随机取向,磁化为0,当外加磁场时,磁矩按磁场方向取向,即表现正的磁化率。 3.van vleck顺磁性:考虑磁场对本征波函数的作用,这种顺磁性来源于磁场对电子云的改变。即二阶微扰使激发态混入基态,使电子态发生微小变化所致。(它基本不依赖于温度) 第三章 外斯分子场理论,基本特点,如何解释铁磁性: 外斯假设铁磁性物质中每一个磁矩都受到内部的一个分子场的作用,它使原子磁矩自发地一致取向,产生自发磁化,铁磁体中的分子场与自发磁化强度成正比(H m=λM)。在分子场和

外加磁场的作用下,铁磁体的宏观磁化强度随外场和温度的变化,可以用玻尔兹曼统计得到: 其磁化率与温度的关系: TTc:居里外斯定律。这里的C与泡利顺磁性中的C相同 在T=Tc发散 居里外斯定律: 铁磁性材料磁化率随温度变化: 反铁磁与亚铁磁:解释为材料中存在两套磁晶格,分别感受到不同的有效场。 局域电子的stoner模型 d和s电子在重叠的ds轨道重新分配 在2个自旋方向不同的次能带中的电子数目的不同导致了局域电子系统的自发磁化 Stoner criterion for FM

铁磁、反铁磁、顺磁、抗磁

铁磁性 铁磁性 Ferromagnetism 过渡族金属(如铁)及它们的合金和化合物所具有的磁性叫做铁磁性,这个名称的由来是因为铁是具有铁磁性物质中最常见也是最典型的。钐(Samarium),钕(neod ymium)与钴的合金常被用来制造强磁铁。 铁磁理论的奠基者,法国物理学家P.-E.外斯于1907年提出了铁磁现象的唯象理论。他假定铁磁体内部存在强大的“分子场”,即使无外磁场,也能使内部自发地磁化;自发磁化的小区域称为磁畴,每个磁畴的磁化均达到磁饱和。实验表明,磁畴磁矩起因于电子的自旋磁矩。1928年W.K.海森伯首先用量子力学方法计算了铁磁体的自发磁化强度,给予外斯的“分子场”以量子力学解释。1930年F.布洛赫提出了自旋波理论。海森伯和布洛赫的铁磁理论认为铁磁性来源于不配对的电子自旋的直接交换作用。 铁磁性材料存在长程序,即磁畴内每个原子的未配对电子自旋倾向于平行排列。因此,在磁畴内磁性是非常强的,但材料整体可能并不体现出强磁性,因为不同磁畴的磁性取向可能是随机排列的。如果我们外加一个微小磁场,比如螺线管的磁场会使本来随机排列的磁畴取向一致,这时我们说材料被磁化[1]。材料被磁化后,将得到很强的磁场,这就是电磁铁的物理原理。 当外加磁场去掉后,材料仍会剩余一些磁场,或者说材料"记忆"了它们被磁化的历史。这种现象叫作剩磁,所谓永磁体就是被磁化后,剩磁很大。 当温度很高时,由于无规则热运动的增强,磁性会消失,这个临界温度叫居里温度(Curie temperature)。 如果我们考察铁磁材料在外加磁场下的机械响应,会发现在外加磁场方向,材料的长度会发生微小的改变,这种性质叫作磁致伸缩(magnetostriction)。

固体物理课程教学大纲(0740734016)

《固体物理学》课程简介 课程内容: 《固体物理学》是物理学中内容极丰富、应用极广泛的分支学科. 它是应用物理学的专业基础课、必修课. 固体物理学是研究固体的结构及组成粒子之间的相互作用与运动规律的学科,阐明固体的性能和用途,尤其以固态电子论和固体的能带理论为主要内容。通过固体物理学的整个教学过程,使学生理解晶体结构的基本描述,固体电子论和能带理论,以及实际晶体中的缺陷、杂质、表面和界面对材料性质的影响等,掌握周期性结构的固体材料的常规性质和研究方法,了解固体物理领域的一些新进展. 要求学生深入理解其基本概念,有清楚的物理图象,能够熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力. 本课程内容主要包括:晶体结构,固体的结合,晶格振动,晶格缺陷,固体电子论,能带理论

Brief Introduction Course Description: Solid State Physics is one strong branch course of physics for its abundant contents and wide application. It is a basic or compulsory course of Applied Physics. The subject focuses on the relationship between the solid microstructure and particles and the law of their motion. The subject illustrates the solid properties and application, especially solid state theory and band theory. Through all teaching course, students can understand basic description of crystal structure, solid state theory, band theory and the effect of defect, impurity, surface and interface on material properties. Through the teaching course, students can master the general quality and method of periodic structural solid materials. And the students can know the advanced development in solid state physics fields. The students are required to penetrate with basic conception, make clear physical image, master basic physical method skillfully and fall to work on analyzing and solving problem by using the learned knowledge synthetically. The main sections of this course: crystal structure, binding of solid, lattice vibration, lattice defect, solid electronic theory, band theory.

磁性材料基本知识

磁性基本现象 自发磁化: 从“磁性来源”中我们了解到,某些原子的核外电子的自旋磁矩不能抵消,从而产生剩余的磁矩。但是,如果每个原子的磁矩仍然混乱排列,那么整个物体仍不能具有磁性。只有所以原子的磁矩沿一个方向整齐地排列,就象很多小磁铁首尾相接,才能使物体对外显示磁性,成为磁性材料。这种原子磁矩的整齐排列现象,就称为自发磁化。 既然磁性材料内部存在自发磁化,那么是不是物体中所有的原子都沿一个方向排列整齐了呢?当然不是,否则,凡是钢铁等就会永远带有磁性,成为一块大磁铁,永远能够相互吸引了(实际上,两块软铁不会自己相互吸引)。事实上,磁性材料绝大多数都具有磁畴结构,使得它们没有磁化时不显示磁性。磁畴: 所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如右图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。下图为在显微镜中观察到的磁性材料中常见的磁畴形状,其中左面是软磁材料常见的条形畴,黑白部分因为不同的磁畴其磁矩方向不同而具有不同的亮度,它们的交界面就是畴壁;中间是树枝状畴和畴壁;右面是薄膜材料中可以见到的磁畴形状。实际的磁性材料中,磁畴结果五花八门,如条形畴、迷宫畴、楔形畴、环形畴、树枝状畴、泡状畴等。 既然磁畴内部的磁矩排列是整齐的,那么在磁畴壁处原子磁矩又是怎样排列的呢?在畴壁的一侧,原子磁矩指向某个方向,假设在畴壁的另一侧原子磁矩方向相反。那么,在畴壁内部,原子磁矩必须成某种形式的过渡状态。实际上,畴壁由很多层原子组成。为了实现磁矩的转向,从一侧开始,每一层原子的磁矩都相对于磁畴中的磁矩方向偏转了一个角度,并且每一层的原子磁矩偏转角度逐渐增大,

物质的反磁性

反磁性 定义 抗磁性(亦作反磁性)是一些类别的物质,当处在外加磁场中,会对磁场产生的微弱斥力的一种磁性现象。 起因 抗磁性的成因,是当物质处在外加磁场中,外加磁场使得物质电子轨道(更精确的讲法:轨域)运动产生改变的连带效应。当施加一外源磁场B时,会对运动中的电子(电荷q)产生了磁力F=q(v×B)。此力改变了电子所受的向心力,使得电子轨道运动或是加速,或是减慢。电子速度因此受到改变,而连带改变了其与外加磁场相反方向上的轨道磁矩。 考虑两个电子轨域:一个顺时针运动,一个逆时针运动。一进入页面方向的外加磁场会使顺时针转动电子的向心力增加,而使其自页面出来方向上的磁矩增加。同样的外加磁场则会使逆时针转动电子的向心力减少,而使其进入页面方向上的磁矩减少。两者的改变都与进入页面方向的外加磁场相抗衡。然而,外加磁场对于多数日常物质所感生的磁矩却非常小,因此净效应会是一种斥力。 所有物质都会对外加磁场作出不同程度的抗磁性反应;但是对于同时拥有其他磁性性质的材料来说(如铁磁性和顺磁性),抗磁性可以完全忽略不计。那些仅仅或者很大程度显示抗磁性的物质被称之为

抗磁性材料或者抗磁性子。那些被认为具有抗磁性的材料通常被非物理学家作为非磁性物质看待。它们包括水,DNA,绝大多数有机化合物如石油和一些塑料,和金属如水银(元素),金和铋。 理论解释 尽管物质抗磁性本质上是量子效应,但通过纯经典的朗之万抗磁性理论可以获得一致的解释。 朗之万抗磁性理论 朗之万抗磁性理论可用于解释闭壳层原子构成的物质的抗磁性。强度的磁场作用在电荷量为质量为的电子上,电子受洛伦兹 力作用将进行频率为的拉莫尔进动。单位时间内转动速 度为,含个电子的原子所产生的环状电流为(采用国际单 位制) 环状电流产生的磁矩等于电流强度与闭合环包含的面积。假定外 场沿轴方向。平均的环内面积为,其中为电子到轴的均方距离。可知磁矩为 若电荷分布呈球对称, 可设,其中 为电子到核的均方距离。则。若

人教版三年级科学第四单元《磁铁》知识点整理

第四单元《磁铁》知识点整理 1. 磁铁的形状有条形、圆形、环形、马蹄形、槽型等。 2. 磁铁不一定是铁做的。 3. 磁铁能吸引铁制的物体,这种性质叫磁性。 4. 磁铁隔着一些物体也能吸铁。 5. 磁铁上磁力最强的部分叫磁极,磁铁有两个磁极。 6. 任何磁铁都有南、北两极,磁铁摔成两段后,每段仍有两个磁极。 7. 一般情况下,一块磁铁的磁力大小是固定的。不同磁铁的磁力大小是不同的。 8. 指南针由磁针、方位盘、支架三部分组成。 9. 磁铁能指南北方向。指南的磁极叫南极,用“S”表示;指北的磁极叫北极,用“N”表示。 10. 磁铁的同极相互排斥,异极相互吸引。两个磁极的作用是相互的。 11. 两个或多个磁铁吸在一起,磁力变大;两个磁铁排斥结合在一起,磁力会变小。 12. 指南针是利用磁铁能指南北的性质,制成的指示方向的仪器。指南针上有东、南、西、北、东南、东北、西南、西北八个方向。 13. 指南针的使用方法见书本P77 14. 钢针用磁铁的磁极沿一个方向摩擦可以变成磁铁。——磁化 15. 生活中用到磁铁的地方:门吸、塑料铅笔盒、喇叭(扬声器)、冰箱密封条、耳机…… 16. 中国最早的指南针叫司南,它的勺柄是南极;后来又做成了指南鱼和水浮式指南针 17. 如何判断一块磁铁的南北极? 方法一:用细绳捆在中间悬挂起来,让它自由转动,静止下来,指南的一头就是南极,指北的一头就是北极。 方法二:放到泡沫上,让它在水面上它自由转动,静止下来,指南的一头就是南极,指北的一头就是北极。 方法三:用一块已知南北极的磁铁(或指南针)去试,能被南极吸引的那头是北极,能被北极吸引的那头是南极。 18. 两块外形一样的金属条,一块磁铁,一块是铁,不借助其他物品,你能分辨哪块是磁铁,哪块是铁? 用乙的一头去吸甲的中间,如果能吸住,那么乙是磁铁,甲是铁;如果吸不住,那么甲是磁铁,乙是铁。

简析固体物理发展史

简析固体物理学发展史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合(范德瓦耳斯键合)和氢键合。根据X射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。 布洛赫和布里渊分别从不同角度研究了周期场中电子运动的基本特点,为固体电子的能带理论奠定了基础。电子的本征能量,是在一定能量范围内准连续的能级组成的能带。相邻两个能带之间的能量范围是完整晶体中电子不许可具有的能量,称为禁带。利用能带的特征以及泡利不相容原理,威耳逊在1931年提出金属和绝缘体相区别的能带模型,并预言介于两者之间存在半导体,为尔后的半导体的发展提供理论基础。 贝尔实验室的科学家对晶体的能带进行了系统的实验和理论的基础研究,同时掌握了高质量半导体单晶生长和掺杂技术,导致巴丁、布喇顿以及肖克莱于1947~1948年发明晶体管。

第八章 固体的磁性

第八章固体的磁性 1 固体中存在哪几种抗磁性?铁磁性和反铁磁性是怎样形成的?铁磁和反铁磁材料在低温和高温下的磁化有什么特点? 饱和电子结构的抗磁性和朗道抗磁性。 根据磁矩相互作用的交换能理论,当交换能是正值时,磁矩将倾向于采取平行的排列(铁磁性),当交换能是负值时,磁矩将倾向于采取反平行的排列(亚铁磁性) 反铁磁性:低温时,磁化率是随温度增加的,这是由于磁矩的反平行排列作用起着抵制磁化的作用,随着温度的升高,反平行排列的作用逐步减弱,因而磁化率不断增加,在奈尔温度一双,磁化率随温度升高而下降,磁化率在高温遵循居里-外斯定律χ=C/(T+θ),注意分母中常数θ>0,符号和铁磁体高温顺磁性正好相反,显然反映了反平行排列作用的影响。 铁磁性材料:在居里温度一下具有铁磁性,在很弱的磁场下它就可以达到接近饱和的磁化强度,在居里温度以上,铁磁材料转变为顺磁性的,磁化率遵循居里外斯定律,χ=C/(T - θ) p 2简述大块磁体为什么会分成许多畴,为什么磁畴的分割不会无限进行下去? 促使铁磁体的自发磁化分割成为磁畴的根本原因是自发磁化所产生的静磁能,磁场的范围随着磁畴的分割而不断减小,从而使静磁能不断降低。所以,从静磁能来看,自发磁化将趋向于分割成为磁化方向不同的磁畴,以降低静磁能,而且,分割越细,静磁能越低。但是由于磁畴之间的界壁破坏了两边磁矩的平行排列,使交换能增加,所以畴壁本身具有一定的能量,磁畴的分割意味着在铁磁体中引入更多的畴壁,使畴壁能增加。由于这个缘故,磁畴的分割不会无限的进行下去,而是进行到再分割所增加的畴壁能将超过静磁能的减少。 3简单阐述物质顺磁性的来源 原子的固有磁矩不为零,磁矩取向愈接近B,能量愈低,正是由于磁矩在磁场中的取向作用,产生了顺磁性现象。 4画出铁磁性、反铁磁性和亚铁磁性的磁矩排列示意图 铁磁性:箭头等长平行 饭铁磁性:箭头等长反平行 亚铁磁性:箭头向上与箭头向下的不等长 5简述铁磁体中磁畴是如何产生的,磁化强度的变化是通过磁畴的哪两种运动实现的? 促使铁磁体的自发磁化分割成为磁畴的根本原因是自发磁化所产生的静磁能,磁场的范围随着磁畴的分割而不断减小,从而使静磁能不断降低。所以,从静磁能来看,自发磁化将趋向于分割成为磁化方向不同的磁畴,以降低静磁能,而且,分割越细,静磁能越低。 磁化强度的变化是依靠畴壁的移动或磁矩的转动来实现的 6写出低温时铁磁性盐类化合物的自发磁化强度随温度的变化关系,并简单说明其理由 黄昆410页 7为什么金属铜的抗磁性比其离子盐中的抗磁性低? 金属铜的内层电子和其离子盐是饱和的电子结构,因此是抗磁性的,但是金属铜还必须考虑载流子对磁化率的贡献,载流子具有顺磁性,它们部分地抵消了内层离子的抗磁性,从而

磁铁的基本常识

磁铁的基本常识 古希腊人和中国人发现自然界中有种天然磁化的石头,称其为“吸铁石”。这种石头可以魔术般的吸起小块的铁片,而且在随意摆动后总是指向同一方向。早期的航海者把这种磁铁作为其最早的指南针在海上来辨别方向。经过千百年的发展,今天磁铁已成为我们生活中的强力材料。通过合成不同材料的合金可以达到与吸铁石相同的效果,而且还可以提高磁力。在18世纪就出现了人造的磁铁,但制造更强磁性材料的过程却十分缓慢,直到20世纪20年代制造出铝镍钴(Alnico)。随后,20世纪50年代制造出了铁氧体(Ferrite),70年代制造出稀土磁铁[Rare Earth magnet 包括钕铁硼(NdFeB)和钐钴(SmCo)]。至此,磁学科技得到了飞速发展,强磁材料也使得元件更加小型化。 什么是磁化(取向)方向? 大多数磁性材料可以沿同一方向充磁至饱和,这一方向叫做“磁化方向”(取向方向)。没有取向方向的磁铁(也叫做各向同性磁铁)比取向磁铁(也叫各向异性磁铁)的磁性要弱很多。 什么是标准的“南北极”工业定义? “北极”的定义是磁铁在随意旋转后它的北极指向地球的北极。同样,磁铁的南极也指向地球的南极。在没有标注的情况下如何辨别磁铁的北极? 很显然只凭眼睛是无法分辨的。可以使用指南针贴近磁铁,指向地球北极的指针会指向磁铁的南极。 如何安全的处理和存放磁铁? 要始终十分小心,因为磁铁会自己吸附到一起,可能会夹伤手指。磁铁相互吸附时也有可能会因碰撞而损坏磁铁本身(碰掉边角或撞出裂纹)。 将磁铁远离易被磁化的物品,如软盘,信用卡,电脑显示器,手表,手机,医疗器械等。 磁铁应远离心脏起搏器。 较大尺寸的磁铁,每片之间应加塑料或硬纸垫片以保证可以轻易地将磁铁分开。 磁铁应尽量存放在干燥,恒温的环境中。 如何做到隔磁? 只有能吸附到磁铁上的材料才能起到隔断磁场的作用,而且材料越厚,隔磁的效果越好。 什么是最强的磁铁? 目前最高性能的磁铁是稀土类磁铁,而在稀土磁铁中钕铁硼是最强力的磁铁。但在200摄氏度以上的环境中,钐钴是最强力的磁铁。 怎样来定义磁铁的性能? 主要有如下3个性能参数来确定磁铁的性能: 剩磁Br :永磁体经磁化至技术饱和,并去掉外磁场后,所保留的Br称为剩余磁感应强度。 矫顽力Hc:使磁化至技术饱和的永磁体的B降低到零,所需要加的反向磁场强度称为磁感矫顽力,简称为矫顽力 磁能积BH:代表了磁铁在气隙空间(磁铁两磁极空间)所建立的磁能量密度,即气隙单位体积的静磁能量。由于这项能量等于磁铁的Bm和Hm的乘积,因此称为磁能积。 磁场:对磁极产生磁作用的空间为磁场 表面磁场:永磁体表面某一指定位置的磁感应强

磁性材料基础知识

磁性材料基础知识(入门) 磁性材料: 概述:磁性是物质的基本属性之一。磁性现象是与各种形式的电荷运动相关联的,由于物质 内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性。一切物质都具有磁性。自然界的 按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物 质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料。 1.磁性材料的分类,性能特点和用途: 铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物。他们大多具有亚铁磁性。特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。饱和磁化强度低,不适合高磁密度场合使用。居里温度比较低。 2 铁磁性材料: 指具有铁磁性的材料。例如铁镍钴及其合金,某些稀土元素的合金。在居里温度以下,加外磁时材料具有较大的磁化强度。 3 亚铁磁性材料: 指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。 4 永磁材料: 磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。可分为三类,金 属永磁,例,铝镍钴,稀土钴,铷铁硼等。 铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等。 5软磁材料: 容易磁化和退磁的材料。锰锌铁氧体软磁材料,其工作频率在1K-10M之间。镍锌铁氧体软磁材料,工作频率一般在1-300MHZ

6.金属软磁材料: 同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。 术语: 1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。 2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。 3 磁通密度矫顽力,他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度,使磁感应强度B减小到0时的磁感应强度。 4 内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度。 5 磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积。 6 起始磁导率:磁性体在磁中性状态下磁导率的极限值。 7 损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交 变磁场的每周期中,损耗能量与储存能量的2派之比。 8 比损耗角正切:这是材料的损耗角正切与起始导磁率的比值。 9 温度系数:在两个给定温度之间,被测的变化量除以温度变化量。 10 磁导率的比温度系数:磁导率的温度系数与磁导率的比值。 11 居里温度:在此温度上,自发磁化强度为零,即铁磁性材料(或亚磁性材料)由铁磁状态 (或亚铁磁状态)转变为顺磁状态的临界温度。

磁性材料基础知识

概述:磁性是物质的基本属性之一.磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性.一切物质都具有磁性.自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料. 磁性材料的分类,性能特点和用途: 1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物.他们大多具有亚铁磁性. 特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用.饱和磁化强度低,不适合高磁密度场合使用.居里温度比较低. 2 铁磁性材料:指具有铁磁性的材料.例如铁镍钴及其合金, 某些稀土元素的合金.在居里温度以下,加外磁时材料具有较大的磁化强度. 3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度. 4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大.可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等. 铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等. 5软磁材料:容易磁化和退磁的材料.锰锌铁氧体软磁材料,其工作频率在1K-10M之间.镍锌铁氧体软磁材料,工作频率一般在1-300MHZ 金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁, 铁铝合金, 铁钴合金,铁镍合金等,常用于变压器等. 术语: 1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度.在实际应用中, 饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度. 2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度. 3 磁通密度矫顽力, 他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度, 使磁感应强度B减小到0时的磁感应强度. 4内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度. 5磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积. 6 起始磁导率:磁性体在磁中性状态下磁导率的极限值. 7 损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交

相关文档
最新文档