高三总复习之电磁感应基础经典讲解

高三总复习之电磁感应基础经典讲解
高三总复习之电磁感应基础经典讲解

2013高考物理复习专题电磁感应教学案【重点知识整合】

一、法拉第电磁感应定律

法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.

二、楞次定律与左手定则、右手定则

1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.

3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).

三、电磁感应与电路的综合

电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:

1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负

极流向正极,该部分电路两端的电压即路端电压,U=

R

R+r

E.

2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.

说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.

【高频考点突破】

考点一电磁感应中的图象问题

电磁感应中常涉及磁感应强度B、磁通量Φ、感应电动势E、感应电流I、安培力F安或外力F外随时间t变化的图象,即B-t图、Φ-t图、E-t图、I-t图、F-t图.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随位移s 变化的图象,即E-s图、I-s图等.

图象问题大体上可分为两类:

1.由给定的电磁感应过程选出或画出正确图象,此类问题要注意以下几点:

(1)定性或定量地表示出所研究问题的函数关系;

(2)在图象中E、I、B等物理量的方向通过正负值来反映;

(3)画图象时要注意横、纵坐标的单位长度定义或表达.

2.由给定的有关图象分析电磁感应过程,求解相应的物理量.

不管是何种类型,电磁感应中的图象问题常需利用右手定则、左手定则、楞次定律和法拉第电磁感应定律等规律进行分析解决.

例1.如图所示,一有界区域内,存在着磁感应强度大小均为B ,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁 场宽度均为L .边长为L 的正方形线框 abcd 的bc 边紧靠磁场边缘置于桌面上.使线框从静止开始沿x 轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是( )

【解析】线框做匀加速直线运动,则有v =at ,v =2as ;由欧姆定律可得电流I =BLv R =BLat R =BL 2as R

,即感应电流大小与时间成正比,与位移的平方根成正比,故A 、C 两项正确,B 、

D两项错误

.

【答案】AC

【变式探究】如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.t=0时,将开关S由1掷到2.q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象正确的是( )

考点二电磁感应中的动力学问题

1.动力学问题的研究对象

2.解决电磁感应中动力学问题的具体思路

电源―→电路―→受力情况―→功、能问题

具体步骤为:

(1)明确哪一部分电路产生感应电动势,则这部分电路就是等效电源;

(2)正确分析电路的结构,画出等效电路图;

(3)分析所研究的导体受力情况;

(4)列出动力学方程或平衡方程并求解.

例2、如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻R.导体棒a和b放在导轨上,与导轨垂直并良好接触.斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场.现对a棒施以平行导轨斜向上的拉力F,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止.当a棒运动到磁场的上边界PQ 处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨.当a棒再次滑回到磁场上边界PQ处时,又恰能沿导轨匀速向下运动.已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计.求:

(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I a与定值电阻R中的电流强度I R之比;

(2)a棒质量m a;

(3)a棒在磁场中沿导轨向上运动时所受的拉力F.

【变式探究】如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:

(1)磁感应强度B 的大小;

(2)电流稳定后,导体棒运动速度v 的大小;

(3)流经电流表电流的最大值I m .

解析:(1)电流稳定后,导体棒做匀速运动,

则有BIL =mg ①

解得B =mg IL .②

(2)感应电动势E =BLv ③

感应电流I =E R

④ 由②③④式解得v =I 2R mg

. (3)由题意知,导体棒刚进入磁场时的速度最大,设为v m

由机械能守恒定律得12

mv 2m =mgh 感应电动势的最大值E m =BLv m ,

感应电流的最大值I m =E m R

联立以上各式解得I m =mg 2gh IR

. 答案:(1)mg IL (2)I 2R mg (3)mg 2gh IR

考点三 电磁感应中的电路、 能量转化问题

1.电路问题

(1)将切割磁感线导体或磁通量发生变化的回路作为电源,确定感应电动势和内阻.

(2)画出等效电路.

(3)运用闭合电路欧姆定律,串、并联电路特点,电功率公式,焦耳定律公式等求解.

2.能量转化问题

(1)安培力的功是电能和其他形式的能之间相互转化的“桥梁”,用框图表示如下:

(2)明确功能关系,确定有哪些形式的能量发生了转化.如有摩擦力做功,必有内能产生;有重力做功,重力势能必然发生变化;安培力做负功,必然有其他形式的能转化为电能.

(3)根据不同物理情景选择动能定理,能量守恒定律,功能关系,列方程求解问题. 例3、如图所示,宽度L =0.5 m 的光滑金 属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为x 轴正方向建立坐标系.金属棒从x 0=1 m 处以v 0=2 m/s 的初速度,沿x 轴负方向做a =2 m/s 2

的匀减速直线运动,运动中金属棒仅受安培力作用.求:

(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;

(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;

(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电量q ,某同学解法为:

先算出经过0.4 s 金属棒的运动距离s ,以及0.4 s 时回路内的电阻R ,然后代入q =ΔΦR

=BLs R

求解.指出该同学解法的错误之处,并用正确的方法解出结果.

【答案】(1)0.1 J

(2)R=0.4x

(3)见规范解答

【变式探究】电阻可忽略的光滑平行金属导轨长S=1.15 m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5 Ω的电阻,磁感应强度B=0.8 T的匀强磁场垂直轨道平面向上.阻值r=0.5 Ω,质量m=0.2 kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q1=0.1 J.(取g=10 m/s2)求:

(1)金属棒在此过程中克服安培力的功W安;

(2)金属棒下滑速度v=2 m/s时的加速度a;

(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理,W重-W安=

1 2mv2m,…….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确

高二物理-选修3-2-电磁感应-期末重点复习资料

电磁感应专题复习 知识网络 第一部分电磁感应现象、楞次定律 知识点一——磁通量 ▲知识梳理 1.定义 磁感应强度B与垂直场方向的面积S的乘积叫做 穿过这个面积的磁通量,。如果面积S与B不垂直,如图所示,应以B乘以在垂直于磁场方向上的投影面积,即 。 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:(韦伯)。 特别提醒: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别;另外,磁通量与线圈匝数无关。

(2)磁通量的变化,它可由B、S或两者之间的夹角的变化引起。 ▲疑难导析 一、磁通量改变的方式有几种 1.线圈跟磁体间发生相对运动,这种改变方式是S不变而相当于B变化。 2.线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 3.线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B不变,而S增大或减小。 4.线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。 二、对公式的理解 在磁通量的公式中,S为垂直于磁感应强度B方向上的有效面积,要正确理解三者之间的关系。 1.线圈的面积发生变化时磁通量是不一定发生变化的,如图(a),当线圈面积由变为时,磁通量并没有变化。 2.当磁场范围一定时,线圈面积发生变化,磁通量也可能不变,如图(b)所示,在空间有磁感线穿过线圈S,S外没有磁场,如增大S,则不变。

3.若所研究的面积内有不同方向的磁场时,应是将磁场合成后,用合磁场根据去求磁通量。 例:如图所示,矩形线圈的面积为S(),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。 (1); (2); (3)。负号可理解为磁通量在减少。 知识点二——电磁感应现象 ▲知识梳理 1.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,即,则闭合电路中就有感应电流产生。 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做切割磁感线运动。 (2)线圈绕垂直于磁场的轴转动。 (3)磁感应强度B变化。 ▲疑难导析

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

电磁感应 知识点总结

第16章:电磁感应 L 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量: $ =BS 如果该面积与磁场夹角为 a,则其投影面积为 Ssin a,则磁通量为 =BSsin a 。磁通量的单位: 韦伯,符号: Wb 、重、难点知识归纳 1. 法拉第电磁感应定律 (1) .产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两 个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过 该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。 这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2) .感应电动势产生的条件:穿过电路的磁通量发生变化。 、知识网络 产生感应电一 闭合电路中的部分导体在做切割磁感线运动 流的方法 闭合电路的磁通量发生变 感应电流方 _ 右手疋则, 向的判定 ? 楞次定律 E=BL v sin 0 感应电动势 A (h 的大小 ■ E - n A t 大小: 方向: 日光 构造 E 2 总是阻碍原电流的变化方向 灯管 镇流器 启动器 日光灯工作原理:自感现象 通电、断电自感实验 实验: 应用 自 感 自感电 动势

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。 这好比一个电源:不论外电路是否闭合, 电动势总是存在的。 但只有当外电路闭合时, 电路 中才会有电流。 (3) .引起某一回路磁通量变化的原因 a 磁感强度的变化 b 线圈面积的变化 c 线圈平面的法线方向与磁场方向夹角 的变化 (4) .电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能是从其它形式的能转化而来的。 在转化和转移中能的总量是保持不变的。 (5) .法拉第电磁感应定律: a 决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b 注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量, 一磁通量的变化量, c 定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的 变化率成正比。 (6 )在匀强磁场中, 磁诵量的变化 △① =①t -①o 有多种形式,主要有 ①S 、 a 不变, B 改变,这时 △①= △ B Ssin a ②B 、 a 不变, S 改变,这时 △①= △ S Bsin a ③B 、 S 不变, a 改变,这时 △①=BS(sin a 2-sin a 1) 在非匀强磁场中,磁通量变化比较复杂。有 几种情况需要特别注意: 形磁铁附近移动,穿过上边线圈的磁通量由方向向 上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减 小到零,再变为方向向上增大。 ②如图16-2所示,环形导线 a 中有顺时针方向的电流, a 环外有 两个同心导线圈b 、c ,与环形导线a 在同一平面内。当 a 中的电流增 ①如图16-1所示,矩形线圈沿a T b T c 在条 a be 图 16-1 a 图 16-2

电磁感应重要专题讲解及试题(带答案)

电磁感应专题 电磁感应中的动力学问题 这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是: 对“双杆”类问题进行分类例析 1、“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 【例1】两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B =0.2T ,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =0.25 Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平 移,速度大小都是v =5.0m/s ,如图所示.不计导轨上的摩擦. (1)求作用于每条金属细杆的拉力的大小. (2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量. 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 【例2】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3. “双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。如【例3】(2003年全国理综卷) 4.“双杆”在不等宽导轨上同向运动。 F=BIL 界状态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力感应电流 确定电源(E ,r ) r R E I +=

知识讲解电磁感应复习与巩固基础

电磁感应复习与巩固 编稿:张金虎审稿:李勇康 【学习目标】 1.电磁感应现象发生条件的探究与应用。 2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。 3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势 sin EBLv??的计算是感应电动势定量计算的重点所在。在应用此公式时要特别注意导体棒的有效切割速度和有效长度。 4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。 【知识络】 【要点梳理】 要点一、关于磁通量?,磁通量的变化??、磁通量的变化率t??? 1、磁通量

磁通量cos BSBSBS???????,是一个标量,但有正、负之分。 可以形象地理解为穿过某面积磁感线的净条数。 2、磁通量的变化 磁通量的变化21??????. 要点诠释: ??的值可能是2?、1?绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感 线垂直的位置转动180?的过程中21??????. 3、磁通量的变化率 磁通量的变化率t???表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。 2121ttt????????, 在回路面积和位置不变时BStt??????(Bt??叫磁感应强度的变化率); 在B均匀不变时SBtt??????,与线圈的匝数无关。 要点二、关于楞次定律 (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。 (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。 (3)楞次定律适用范围:适用于所有电磁感应现象。 (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。 (5)楞次定律是能的转化和守恒定律的必然结果。 要点三、法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即Et????. 要点诠释: 对n匝线圈有Ent????. (1)Ent????是t?时间内的平均感应电动势,当0t??时,Ent????转化为瞬时感应电动势。

第13讲—电磁感应讲解

电磁感应 一、电磁感应、楞次定律 1.电流磁效应:1820年,丹麦物理学家奥斯特发现载流导线能使小磁针偏转,这种作用称为电流的磁效应(为了避免地磁场对实验结果的影响,实验时通电直导线应南北放置)2.电磁感应现象:1831年,英国物理学家法拉第发现了电流磁现象,即“磁生电”现象,产生的电流叫做感应电流。至此,宣告电磁学作为一门同一学科诞生。 3.产生感应电流的条件:穿过闭合导体回路的磁通量发生变化。 也就是:(1)导体回路必须闭合;(2)穿过闭合回路导体的磁通量发生变化,或者闭合回路的部分导体做切割磁感线运动。 理解“导体棒切割磁感线” (1)导体棒是否将磁感线“割断”,如果没有“割断”就不能说切割。甲、乙两图,导体是真“切割”磁感线,而丙图中,导体没有切割磁感线。 (2)即便是导体真“切割”了磁感线,也不能保证就能产生感应电流,对于图甲,尽管导体“切割”了磁感线,但是由于穿过闭合回路的磁通量并没有发生变化,所以并没有感应电流。但对于乙图,导体框的一部分导体“切割”磁感线,穿过线框的磁感线条数越来越少,线框中就有感应电流;对于丙图,闭合导体回路在非匀强磁场中运动,切割了磁感线,同时穿过线框的磁感线条数减少,线框中有感应电流。 (3)即使是闭合回路的部分导体做切割磁感线的运动,也不能 保证一定存在感应电流。如图所示,abcd线框的一部分在匀强 磁场中上下平动,在线框中没有感应电流。 4.磁通量Φ的计算 Φ=中的B是匀强磁场的磁感应强度,S是与磁场方向垂直的有效面积。如(1)公式BS 果磁感线和平面不垂直,S应该取平面在垂直磁感线方向上的投影的有效面积。 (2)当磁感线和平面不垂直,S应该取平面在垂直磁感线方向上的投影的有效面积;当磁场区域的面积小于闭合回路的面积,应该去有效的磁场区域。 (3)磁通量是标量,但是磁通量有正负之分,其正负是这样规定的:任何一个平面都有正、反两个面,若规定磁感线从正面穿入时磁通量为正值,则磁感线从反面穿过时磁通量为负值。所以,匀强磁场穿过闭合曲面的磁通量为0。 (4)磁通量与线圈的匝数无关。

电磁感应理论基础

一、电磁感应现象 1、电生磁:(电流的磁效应) 1)通电直导线周围存在磁场,磁场的方向与电流方向有关; 根据右手螺旋法则判断:用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向; (奥斯特试验) 插入:磁场基础概念 磁感线:在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S 极或传向无穷远处,在磁体内部磁感线从S极到N极。 磁感线是为了形象地研究磁场而人为假想的曲线,并不是客观存在于磁场中的真实曲线。但可以根据磁感线的疏密,判断磁性的强弱。

磁感线密集,则磁性强,稀疏,则弱。 磁感应强度:与磁力线方向垂直的单位面积上所通过的磁力线数目, 又叫磁力线的密度,也叫磁通密度, 用B表示,单位为特斯拉(T)。 磁通量:磁通量是通过某一截面积 的磁力线总数,用Φ表示,单位为韦伯, 符号是Wb。通过一线圈的磁通的表达式为:Φ=B·S(其中B为磁感应强度,S为该线圈的面积。) 2)通电螺旋线圈两端存在磁场,磁场的方向与电流方向有关; 根据右手螺旋法则判断:用右手握住通电螺旋线圈,让四指指向电流的方向,那么大拇指的指向就是磁感线的方向; 3)电生磁的实际应用 ①发电机的转子线圈即励磁线圈;

②变压器(包括电压互感器、电流互感器)的一次线圈; ③交流电动机的定子线圈; 2、磁生电 磁生电的两个试验: 按产生原因的不同,感应电动势分为动生电动势和感生电动势两种。 1)动生电动势。原理:导体做切割磁力线运动时,在导体两端上就会产生电动势。闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流。

人教版高中物理选修3-2重点题型巩固练习] 电磁感应基础知识

人教版高中物理选修3-2 知识点梳理 重点题型(常考知识点)巩固练习 【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是( ) A .奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B .麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C .库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D .安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2. 1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是( ) A .新型直流发电机 B .直流电动机 C .交流电动机 D .交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是( ) A .既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B .既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C .既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D .既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 4.如图所示,矩形线框abcd 放置在水平面内,磁场方向与水平方向成α角,已知4sin 5 α=,回路面积为S ,磁感应强度为B ,则通过线框的磁通量为 ( ) A .BS B . 45BS C .35BS D .34BS 5.如图所示,ab 是水平面上一个圆的直径,在过ab 的竖直平面内有一根通电导线ef 。已知ef 平行于ab ,当ef 竖直向上平移时,电流磁场穿过圆面积的磁通 量将( )

高考物理知识讲解 电磁感应中的电路及图像问题(提高) 专题复习资料含答案

物理总复习:电磁感应中的电路及图像问题 【考纲要求】 1、理解电磁感应中的电路问题 2、理解磁感应强度随时间的变化规律图像 3、理解感应电动势(路端电压)随时间的变化规律图像 4、理解感应电流随时间的变化规律图像 5、理解安培力随时间的变化规律图像 【考点梳理】 考点、电磁感应中的电路及图像问题 要点诠释: 电磁感应现象中图像问题的分析,要抓住磁通量的变化,从而推知感应电动势(电流) 大小变化的规律,用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及 在坐标中的范围。 分析回路中的感应电动势或感应电流的大小及其变化规律,要利用法拉第电磁感应定律 来分析。有些问题还要画出等效电路来辅助分析。 另外,要正确解决图像问题,必须能根据图像的定义把图像反映的规律对应到实际过程 中去,又能根据实际过程的抽象规定对应到图像中去,最终根据实际过程的物理规律进行判 断,这样,才抓住了解决图像问题的根本。 解决这类问题的基本方法: (1)明确图像的种类,是B t -图像还是t φ-图像,E t -图像,或者I t -图像。对于切割 磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移 x 变化的图像,即E -x 图像和I -x 图像。 (2)分析电磁感应的具体过程。 (3)结合楞次定律、法拉第电磁感应定律、左手定则、右手定则、安培定则、欧姆定律、牛顿运动定律等规律判断方向、列出函数方程。 (4)根据函数方程,进行数学分析,如斜率及其变化、两轴的截距等。 (5)画图像或判断图像。 【典型例题】由于磁通量变化引起的 类型一、根据B t -图像的规律,选择E t -图像、I t -图像 电磁感应中线圈面积不变、磁感应强度均匀变化,产生的感应电动势为 S B E n n nSk t t φ??===??,磁感应强度的变化率B k t ?=?是定值,感应电动势是定值, 感应电流E I R r =+就是一个定值,在I t -图像上就是水平直线。 例1、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )

86知识讲解 电磁感应中的能量问题(基础)

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

巩固练习 电磁感应基础知识

【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是()A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D.安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2.1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是()A.新型直流发电机B.直流电动机C.交流电动机D.交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是()A.既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 ?角,已知放置在水平面内,磁场方向与水平方向成.如图所示,矩形线框abcd44??sin,回路面积为S,磁感应强度为B,则通过线框的磁通量为5 )(BS33BS4BS.B A C.D..BS 455 。ef是水平面上一个圆的直径,在过ab的竖直平面内有一根通电导线5.如图所示,ab竖直向上平移时,电流磁场穿过圆面积的磁通efab,当已知ef平行于

高中物理必修第3册第十三章 电磁感应与电磁波测试卷专题练习(解析版)

高中物理必修第3册第十三章 电磁感应与电磁波测试卷专题练习(解析版) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图为两形状完全相同的金属环A 、B 平行竖直的固定在绝缘水平面上,且两圆环的圆心O l 、O 2的连线为一条水平线,其中M 、N 、P 为该连线上的三点,相邻两点间的距离满足MO l =O 1N=NO 2 =O 2P .当两金属环中通有从左向右看逆时针方向的大小相等的电流时,经测量可得M 点的磁感应强度大小为B 1、N 点的磁感应强度大小为B 2,如果将右侧的金属环B 取走,P 点的磁感应强度大小应为 A .21 B B - B .212B B - C .122B B - D .13 B 【答案】B 【解析】 对于图中单个环形电流,根据安培定则,其在轴线上的磁场方向均是向左,故P 点的磁场方向也是向左的.设1122MO O N NO O P l ====,设单个环形电流在距离中点l 位置的磁感应强度为1l B ,在距离中点3l 位置的磁感应强度为3l B ,故M 点磁感应强度 113l l B B B =+,N 点磁感应强度211l l B B B =+,当拿走金属环B 后,P 点磁感应强度2312 P l B B B B ==-,B 正确;故选B. 【点睛】本题研究矢量的叠加合成(力的合成,加速度,速度,位移,电场强度,磁感应强度等),满足平行四边形定则;掌握特殊的方法(对称法、微元法、补偿法等). 2.如图所示,两根相互平行的长直导线过纸面上的M 、N 两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。O 为MN 的中点,P 为MN 连线的中垂线。一质子此时恰好经过P 点,速度方向指向O 点。下列说法正确的是 A .O 点处的磁感应强度为零 B .质子将向右偏转 C .质子将垂直于纸面向外偏转 D .质子将做直线运动 【答案】D 【解析】 【详解】

80知识讲解 电磁感应现象 感应电流方向的判断(基础)

物理总复习:电磁感应现象 感应电流方向的判断 【考纲要求】 1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件; 2、理解楞次定律的基本含义与拓展形式; 3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练运用。 【知识网络】 【考点梳理】 考点一、磁通量 1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。即 cos BS φθ'=。 2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。 3、磁通量的单位:Wb 21 1Wb T m =?。 要点诠释: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。另外,磁通量与线圈匝数无关。 磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。穿过某一面积的磁通量一般指合磁通量。 (2)磁通量的变化21φφφ?=-,它可由B 、S 或两者之间的夹角的变化引起。 4、磁通量的变化 要点诠释: (一)、磁通量改变的方式有以下几种 (1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。 (2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 (3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B 不变,而S 增大或减小。 (4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。

高二物理 知识讲解 电磁感应与电路知识、能的转化和守恒专题 提高含答案

电磁感应与电路知识、能的转化和守恒专题 【学习目标】 1.运用能的转化和守恒定律进一步理解电磁感应现象产生的条件、楞次定律以及各种电磁感应现象中能量转化关系。 2.能够自觉地从能的转化和守恒定律出发去理解或解决电磁感应现象及问题。 3.能够熟练地运用动力学的一些规律、功能转化关系分析电磁感应过程并进行计算。 4.熟练地运用法拉第电磁感应定律计算感应电动势,并能灵活地将电路的知识与电磁感应定律相结合解决一些实际的电路问题。 5.在电磁感应现象中动力学过程的分析与计算。具体地说:就是导体或线圈在磁场中受力情况和运动情况的分析与计算。 6.在电磁感应现象中,不同的力做功情况和对应的能量转化、分配情况。 【要点梳理】 要点一、运用能的转化和守恒定律理解电磁感应现象产生的条件 1.条件 穿过闭合电路的磁通量发生变化。 2.对条件的理解 (1)在电磁感应的过程中,回路中有电能产生。因此电磁感应的过程实质上是一个其它形式的能向电能转化的过程,这个转化过程必定是一个动态的过程,必定伴随着宏观或微观力做功,以实现不同形式能的转化,也就是说必须经过一个动态的或者变化的过程,才能借助磁场将其它形式的能转化为电能。 (2)导体切割磁感线在闭合回路中产生感应电流的过程:如图所示,导体棒ab 运动,回路中有感应电动势E BLv =和感应电流E I R = 产生。有感应电流I 的导体棒在磁场中受到与棒运动方向相反的安培力F BIL =安作用,要维持导体棒运动产生持续的电流必须有外力 F 外克服安培力做功,正是这一外力克服安培力做功的过程使其它形式的能转化为了回路的 电能。可见磁通量发生变化(导体棒相对于磁场运动)是外力克服安培力做功,将其它形式的能转化为电能的充要条件。 (3)闭合电路所包围的磁场随时间发生变化产生感应电流的过程:如图所示,磁感应

电磁感应基础知识

电磁感应基础知识 知识网络 1 2、通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表

3 4、感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 a) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就 会产生感应电动势,它相当于一个电源 b) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感 应电动势,磁通量发生变化的那部分相当于电源。 5、公式 n E ?Φ =与E=BLvsin θ 的区别与联系

6、楞次定律 a)感应电流方向的判定方法 碍产生感应电流的原因 i.阻碍原磁通量的变化或原磁场的变化; ii.阻碍相对运动,可理解为“来拒去留”。 iii.使线圈面积有扩大或缩小趋势; iv.阻碍原电流的变化。

知识点一—磁通量 ▲知识梳理 磁通量 1.穿过某一面积的磁感线条数,在匀强磁场中, =BS,单位是韦伯,简称韦,符号是Wb.使用条件是B为匀强磁场,S为平面在磁场方向上的投影.磁通量虽然是标量,但有正负之分. 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:Wb 。 4.磁通密度 垂直穿过单位面积的磁感线条数,即磁感应强度的大小。 :如图所示,矩形线圈的面积为S (),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的 改变量:绕垂直磁场的轴转过(1);(2);(3)。 解析: 初位置时穿过线圈的磁通量 ;转过 时,; 转过时,;转过时,,负号表示穿过面积S的方向和以上情况相反,故: (1); (2); (3)。负号可理解为磁通量在减少。 变式练习: 1.如图所示,平面M的面积为S,垂直于匀强磁场B,求平面M由 此位置出发绕与B垂直的轴线转过60°时磁通量的变化为 ____________,转过180°时磁通量的变化量为____________。

知识讲解电磁感应与电路知识能的转化和守恒专题提高

电磁感应与电路知识、能的转化和守恒专题 编稿:张金虎审稿:李勇康 【学习目标】 1.运用能的转化和守恒定律进一步理解电磁感应现象产生的条件、楞次定律以及各种电磁感应现象中能量转化关系。 2.能够自觉地从能的转化和守恒定律出发去理解或解决电磁感应现象及问题。3.能够熟练地运用动力学的一些规律、功能转化关系分析电磁感应过程并进行计算。4.熟练地运用法拉第电磁感应定律计算感应电动势,并能灵活地将电路的知识与电磁感应定律相结合解决一些实际的电路问题。 5.在电磁感应现象中动力学过程的分析与计算。具体地说:就是导体或线圈在磁场中受力情况和运动情况的分析与计算。 6.在电磁感应现象中,不同的力做功情况和对应的能量转化、分配情况。 【要点梳理】 要点一、运用能的转化和守恒定律理解电磁感应现象产生的条件 1.条件 穿过闭合电路的磁通量发生变化。 2.对条件的理解 (1)在电磁感应的过程中,回路中有电能产生。因此电磁感应的过程实质上是一个其它形式的能向电能转化的过程,这个转化过程必定是一个动态的过程,必定伴随着宏观或微观力做功,以实现不同形式能的转化,也就是说必须经过一个动态的或者变化的过程,才能借助磁场将其它形式的能转化为电能。 (2)导体切割磁感线在闭合回路中产生感应电流的过程:如图所示,导体棒ab运 动,回路中有感应电动势EBLv?和感应电流EIR?产生。有感应电流I的导体棒在磁场中受到与棒运动方向相反的安培力FBIL?安作用,要维持导体棒运动产生持续的电 流必须有外力F外克服安培力做功,正是这一外力克服安培力做功的过程使其它形式的能转化为了回路的电能。可见磁通量发生变化(导体棒相对于磁场运动)是外力克服安培力做功,将其它形式的能转化为电能的充要条件。

tk电磁感应基础知识专题

高考综合复习——电磁感应(一)电磁感应基础知识、自感专题 ● 知识网络 ● 高考考点 考纲要求: 复习指导: 本章以电场及磁场等知识为基础,研究了电磁感应的一系列现象,通过实验总结出了产生感应电流的条件和判定感应电流方向的一般方法——楞次定律,给出了确定感应电动势大小的一般规律——法拉第电磁感应定律。感应电流的产生和感应电流的方向的判定和感应电动势的计算是电磁感应的基本的内容,纵观近年高考题可以看出题型主要为选择,在物理单科考试中应用较多,在理科综合试题中单独的涉及本考点的题目很少,大多是和电学知识相结合的综合性试题,且可以肯定本考点一定会在高考中出现。 通过对近年高考题目的分析比较可以看出,2006年的高考如果是物理单科有可能感应电流的产生和感应电流的方向的判定方面出题,而如果是理综考试试题,由于命题的要求的限制,单独考查的可能性很小,还应注意本考点与其它考点的结合而出现的综合性题目。还可以看出,矩形线框穿越有界匀强磁场问题,涉及到楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。2006年的高考,感应电动势的计算问题是肯定会出现的一个计算点,如果在选择题中出现,则应以基本计算为主,如果在计算题中出现则应当是一个综合性较强的题目。 ● 要点精析 ☆磁通量相关:

1. 磁通量: 穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁通量。磁通量简称磁通,符号为Φ,单位是韦伯(Wb)。 2. 磁通量的计算 (1)公式Φ=BS 此式的适用条件是:①匀强磁场,②磁感线与平面垂直。 (2)如果磁感线与平面不垂直上式中的S为平面在垂直于磁感线方向上的投影面积。 Φ=B·Ssinθ,其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”。 (3)磁通量的“方向性” 磁感线正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同,求合磁通时应注意相反方向抵消以后所剩余的磁通量。 注意:磁通量是标量。 (4)磁通量的变化(量):△Φ=Φ2-Φ1 △Φ可能是B发生变化而引起,也可能是S发生变化而引起,还有可能是B和S同时发生变化而引起,在确定磁通量的变化时应注意。 (5)磁通量的变化率△Φ/△t:指磁通量的变化快慢。 ☆电磁感应现象的产生条件: 1.产生感应电流的条件: 穿过闭合电路的磁通量发生变化,若电路不闭合,即使有感应电动势产生,也没有感应电流。 2.感应电动势的产生条件: 无论电路是否闭合只要穿过电路的磁通量发生变化,这部分电路就会产生感应电动势.这部分电路或导体相当于电源。 ☆感应电流的方向: 1.右手定则 右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向。 说明: ①伸直四指指向还有另外的一些说法:A.感应电动势的方向;B.导体的高电势处

电磁感应基础训练

一 选择题 1.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针 指向为电流正方向,且不计线圈的自感)? [ ] D t I 0 I t I 0 I (A) (B) (C) (D)

2. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通 过其一端O 的定轴旋转着, B 的 方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成 θ 角(b 为铜棒转动的平面上的一个固定点),则 在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos( 2 θωω+t B L . (B) t B L ωωcos 2 12 . (C) )cos( 22 θωω+t B L . (D) B L 2 ω. (E) B L 2 2 1ω. [ ] E B

3. 如图,长度为l的直导线ab在均匀磁场B 中以速度v 移动,直导线ab中的电动势为 (A) Bl v. (B) Bl v sinα. (C) Bl v cosα.(D) 0. [] D

4.如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与 B 同方 向),BC 的长度为棒长的31 , 则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ A ]

5. 如图所示的电路中,A、B 阻r >>R,L是一个自感系数相当 大的线圈,其电阻与R相等.当 开关K接通和断开时,关于灯泡 A和B的情况下面哪一种说法正确? (A) K接通时,I A >I B. (B) K接通时,I A =I B. (C) K断开时,两灯同时熄灭. (D) K断开时,I A =I B. [ A ]

相关文档
最新文档