电容器组混合补偿原理

电容器组混合补偿原理
电容器组混合补偿原理

电容器组混合补偿原理

Q/GDW 614-2011 农网智能型低压配电箱功能规范和技术条件

Q/GDW 615-2011 农网智能配变终端功能规范和技术条件

智能调控终端

8 强迫风冷系统

采用欧姆龙温控器控制散热风扇强迫风冷,自动监测运行,高温时自启动,

低温时处于休眠状态。

电容补偿过程中的共补的意思是无功集中补偿,提高低压电网的功率因数。分补的意思是:在各个动力线回路中分加入无功补偿装置,提高分支线路的功率因数。也可以说是就地补偿。共补控制器不能用做三相分补控制器使用。1、取样上区别一般三相分补的控制器需要取三个电流信号和三个电压信号,带零线。能检测每一相的功率因数,依此来判断哪一相所缺的无功是多少。共补控制器取样一般取一相电流,另外两相的电压。(三相平衡,检测一路功率因数就可以满足要求了)2、参数设置区别能进行分相补偿的控制器,有设置分补的电

容的容量,也有设置共补的容量而共补的只能设置共补的电容容量3.控制器输出不一样分补的控制器,每一相电容都需要一路输出,ABC 三相就需要三路输出。根据检测每一相的功率因数来分别投切其中的几相。共补的控制器。每三相电容用一路输出点就可以了,一路输出投切三相电容。

补偿器的输出路数zyw系列低压动态补偿柜

三相共补:三相同时投入电网,电容是多少就全部投入到三相中,比如30kvar就全部投进三相中!取一相电流!

单相分补:采用Y型接法,根据每相功率因数的不同有选择型的投入1~3相电容器。就是说把该相电容投入需要补偿的那一相,比如18kvar 的电容就投入6kvar(单相电容的其中一相电容量)到其中的一相中,可以全投!主要适用于三相负载不平衡系统。取样电流要取三相!

分补采用的补偿控制器必须取样三相电流,而共补只需取样其中一相电流。

绝大多数三相平衡的系统均采用共补,少数的负载不平衡系统采用分补,比如照明系统,存在一定单相电机或者单相电焊机的系统。

电容柜自动运行的投切方式:三相均满足投入条件时,优先投共补电容,后根据每相投入条件,投分相电容

共补控制器不能用做三相分补控制器使用。1、取样上区别一般三相

分补的控制器需要取三个电流信号和三个电压信号,带零线。能检测每一相的功率因数,依此来判断哪一相所缺的无功是多少。共补控制器取样一般取一相电流,另外两相的电压。(三相平衡,检测一路功率因数就可以满足要求了)2、参数设置区别能进行分相补偿的控制器,有设置分补的电容的容量,也有设置共补的容量而共补的只能设置共补的电容容量3.控制器输出不一样分补的控制器,

每一相电容都需要一路输出,ABC三相就需要三路输出。根据检测每一相的功率因数来分别投切其中的几相。共补的控制器。每三相电容用一路输出点就可以了,一路输出投切三相电容。

共补与分补,简单说,是指补偿装置中,投切的是三相电容器还是单相电容器。传统的接触器,是三相一起动作的,就是说,吸合时,三相都吸合,断开时,三相都断开。这样投切的电容器是三相电容器,对三相电路同时做补偿,我们称之为:“共补”,或者“合补”。由于电网中常常有一些特别的设备,他们工作时会造成三相不平衡。比如用380V的单相电焊机,它用两个线电压来工作,另外一相就没有用到,这样就造成三相不平衡了。这时如果要补偿,只能补两相,否则又会造成无功也不平衡。为了解决这个问题,一些新的投切开关,比

如:复合开关、可控硅模块,等等,就可以对A、B、C相各自独立地工作,哪相需要投切,就投切哪相。这种对单相做作补偿的,就叫“分补”。共补的优点:控制简单,价格低廉,可靠性好,检修维护方便。对补偿控制器要求低。共补的不足:在三相不平衡的场合,无法补偿,或者越补越不平衡。分补的优点:能对付不平衡的场合,补偿精度高。分补的不足:价格贵,控制复杂,线路复杂。检修维护难度大。对补偿控制器要求高。分补每一组ABC电容,需要三条控制线。共补每一组电容,只需要一条控制线。共补与分补的路数分配,要按照实际需要来做。根据以往的经验,如果用电的平衡度比较好,不平衡度最大的不超过15%,基本没有必要用分补。原因是供电局考核的是平均功率因数,15%以内的不平衡度,共补平均以后很容易达标。不平衡度:是在三相中,电流最大一相的电流,减去电流最小的一相的电流,除该相最小的电流。如果不平衡度较高,就要采用分补了。分补容量的确定:通常采用不平衡度来确定分补的容量。比如总容量是420Kvar,最大不平衡度为20%,那么分补的容量应该接近20%左右。即:420×20%=84KVar 分补的路数确定:分补路数不宜多,因为补偿器的输出路数是有限的。按上例:可以这样:共补:每相35Kvar,35×10路=350Kvar分补:每相2路×11Kvar,分补共6路。总的就是16路。总共补偿量:350+6×11=416Kva,约等于420Kvar。

1) 补偿原理

实际工程中大多数为感性负载,其功率因数都比较低,感性负载并联电容器是提高功率因数的主要方法之一。

感性负载的电流超前于电源电压,而容性负载的电流滞后于电源电压,所以超前电流与滞后电流的可以互补,从电容并联点之前的电源(或电网)吸收的无功功率减

少了,也就是电容性负荷的无功功率补偿了电感性负荷的无功功率。当电网容量一定时,使无功功率减少,从而可大大提高功率因数。

2) 补偿与控制方式

常用补偿的方法:一种是集中补偿(补偿电容集中安装于变电所或配电室,便于集中管理);一种是集中与分散补偿相结合(补偿电容一部分安装于变电所,另一部分安装于感性负载较大的部门或车间。这种方法灵活机动,便于调节,且可降低企业内供、配电线路的损耗。

补偿常用控制方式:

根据用电设备负载的情况,测算出补偿电容容量,选用合适的无功补偿装置,并利用交流接触器进行分级手动投切电容。这种控制方式显然不能满足自动化工业控制的要求。

由分立元件组装的自动控制设备,这种产品元件繁多,设备笨重庞大,线路复杂,可靠性差,出现故障时维修难度大。有的使用单位由于设备无法修复,只好人工手动来进行控制,在科学技术迅速发展,集成电路、微电子技术已经普及的今天,这种状况已远远不能适应现代化生产的要求。

以单片机为主控单元的电压无功控制系统得到很大发展,但单片机抗干扰能力较差,在中、高压无功补偿领域的可靠性不易保证。另一方面电压等级越高的变电站其辐射范围也越大,故障的波及面也大,因此系统对它的控制能力、通信能力要求也更高。

无功补偿的基本原理

电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电

网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流滞后于电压90°.而电流在电容元件中作功时,电流超前电压90°.在同一电路中,电感电流与电容电流方向相反,互差180°.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小。

无功补偿的节电原理

电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。

在小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。按照定理:在相与相之间跨接的电感或者电容可以在相间转移有功电流。因此,对于三相电流不平衡的系统,只要恰当地在各相与相之间以及各相与零线之间接入不同容量的电容

器,不但可以将各相的功率因数均补偿至1,而且可以使各相的有功电流达到平衡状态。

? 具体实现方式

把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

? 无功补偿的意义

⑴补偿无功功率,可以增加电网中有功功率的比例常数。

⑵减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。

⑶降低线损。

? 控制电容器投切的器件

控制电容器投切的器件主要有投切电容器专用接触器、复合开关、同步开关和晶闸管。

? 应用选型需要考虑的因素

1、谐波含量及分布

配电系统可能产生的电流谐波次数与幅值及电压谐波总畸变率,根据谐波含量确认补偿方案。

2、负荷类型

配电系统现行负荷和非线性负荷占总负荷比例,根据比例确定补偿方案。

3、无功需求

配电系统中如果感性负荷比例大则无功需求大,补偿容量应增大。

4、符合变化情况

配电系统中若静态负荷多,则采用静态补偿,若频繁变化负荷多则采用动态跟踪补偿较合适。

5、三相平衡性

配电系统中若三相负荷平衡则采用三相共补,若三相负荷不平衡则采用分相补偿或混合补偿。

5.采用ZRWKG型高压无功补偿控制器自动控制电容器的投切,自动化程度高,测量、显示、控制、通信功能齐全,可根据无功功率投切电容器组,自动补偿负荷无功功率,无需人工干预,功率因数在0.95以上,在外部故障或停电自动退出,送电后自动回复运行

6采用ZRDRQBH微机保护单元对装置进行保护,具有两相电流差动保护和开口三角保护功能,每组电容器故障时微机保护单元切除并闭锁该组电容器,其他电容器组正常运行

TBBW无功补偿装置(简称补偿装置)属于节能型产品,主要由电力电容器组及开关等配套设备组成的,并联连接于工频交流电力系统中用来改善功率因数、降低线路损耗的装置。

一、TBBW无

功补偿装置工作原理和性能

无功补偿装置的主要工作原理就是,以无功补偿控制器为核心控制器件,它根据取样的电压、电流信号计算出电网当前的功率因数值,以及无功功率的大小,再根据得来的数据依据不同的控制方式来控制电容器组的工作和退出。控制方式一般分为功率因数型、无功功率型及功率因数+无功功率复合型三种。三种方式以功率因数+无功功率模式的控制精度最高。相同的负载情况下,功率因数越低,无功功率也越大。无功功率主要来自于像电动机等感性负载,特别是在空载的时候功率因数会非常低,这时候就必须利用并联电容器工作时产生的容性无功功率对线路中存在的感性无功功率进行补偿,以达到提高功率因数、提高变压器负载能力的目的。

无功补偿的精度跟电容器的组数和容量的大小有着非常大的关系,总容量不变的时,组数越多,单台电容容量越小以及采用不同容量的电容组合起来使用的补偿效果最好。当采用无功功率控制模式时,控制器会根据电网中无功功率的大小,来自动选择最合适的电容器组工作,有效避免投切振荡等不良现象的发生。在后面章节里会做详细的举例说明。

本装置过载保护采用DZ47小型断路器和TGR36热继电器作为保

护元件,当线路中电流过载时,断路器会断开切换接触器及电容器组元件的电源,避免引起更大的故障。

二、无功补偿装置的作用

交流异步电机在工业与民用建筑系统中应用广泛。在民用范围中运行机械多为连续运行,不调速,操作不频繁的场合,如风机、水泵、冷冻机多为结构简单,易维护的异步电动机。在工矿企业中,不少电动机负荷率低,经常处于轻载或空载状态,功率因数普遍不高。负荷率低,则功率因数愈低,无功功率相对于有功功率的百分比更大,显著地浪费电能。因此对异步电动机采用无功功率补偿以提高功率因数,节约电能,减少运行费用,提高电能质量,符合我国节约能源的国策,同时亦给企业带来经济效益。无功补偿装置属于节能产品,主要作用就是降低供电变压器及输送线路的损耗,提高供电效率和供电环境。

三、无功补偿装置的分类

按取样物理量分为:功率因数型、无功电流型、无功功率型

1、功率因数型指补偿装置在补偿时主要依据设置的功率因数门限来控制电容器组的投切。一般来说按功率因数投切方式会出现投入一路过补,而切除一路又欠补的现旬,过补时容易造成切换接触器或

断路器烧坏现象。

2、无功电流型是根据计算得出的无功电流来投切电容器组,但实际应

用中,无功功率不但与无功电流有关系,还与系统电压有着密不可分的关系,所以无功电流型实际上也会出现补偿精度不高的现象。

3、无功功率型是三种方式中最为合理的一种,它的原理是根据计算得到电网系统中存的无功功率大小,然后补偿装置会根据预先设置好的单组电容器组的容量。当所缺的无功功率大于补偿装置中最小的电容器组容量,补偿装置就会选择其中最合理的电容器组投入工作,直到所缺的无功功率小于单台最小电容器组的容量时,补偿装置就不再投入电容器组,以免造成过补偿。

综合来说,无论采用哪一种方式进行补偿控制,前提就必须是补偿容量和电容器组数设计必须合理,否则都不能达到最理想的补偿精度。

按延时时间分:静态无功补偿和动态无功补偿

1、静态无功补偿:静态补偿又称延时时间投切方式。一种补偿的延时时间较长的补偿方式,一般指投切间隔时间大于5秒,这种方式大多数用在负载变化不是很快的场合。这种投切依靠于传统的专用切换接触器来接通和断开电容器组的电源。

2、动态无功补偿:动态补偿方式又称瞬时投切方式。它的补偿的延时时间很短,一般最长时间不超过5秒,一般在几十毫秒的时间里就可以完成整个投切动作。这种投切主要依靠晶闸管电力器件和数字技术相结合来控制电容器组的投切。动态补偿方式大多数用在负载变化较快的场合,像汽车制造业等有大量点焊机,电焊机负载的场合。此类装置的造价会远远高于静态型。

按相数分为:三相共补和三相分补

1、三相共补:指所使用的电容器组均为三角型接法,在工作时,同时对电网中的三相无功功率补偿。一般用在工厂或者三相负载较为平衡的情况下。不平衡情况下,易造成某相过补而某相欠补现象。

2、三相分补:补偿时所用电容器为星型接法,或者采用单相电容器组,可以分别对电网中的某一相无功具体进行补偿。它的优点就

是适合三相负载不平衡的场合,如一些居民小区或农网和城网的用电系统中。纯粹采用分补方式会增加设备制造成本。

在具体设计时,通常采用三相共补与三相分补相结合的方式进行补偿,同时发挥共补、和分补的优点,既能满足不同场合的补偿精度,又能尽可能降低制造成本。

JKW5B 智能无功功率自动补偿控制器说明

JKW5系列智能无功功率补偿控制器使用说明书简介 新型JKW5系列无功功率自动补偿控制器(包括JKW5C、JKW5B等型号) 运用无功功率计算和目标功率因数设置,双重计算检测方法,为线路所需无功的准确补偿,以及限制线路过补状况的发生而设计的理想产品。采用先进的单片机技术,全自动贴片机焊接工艺,以及先进的检测设备,确保产品具有高精度和高灵敏度,且有抗干拢能力强运行稳定等特点。该系列产品符合DL/T597-996标准,适用于低压配电系统电容器补偿装置的自动调节,使功率因数达到用户预定状态,提高电力变压器的利用效率减少线损,改善供电的电压质量,从而担高了经济效益与社会效益,可广泛适用不同的电网环境。型号命名JK W 5 □- □后一个□:输出回路数前一个□:是C,开孔尺寸113 X 113m,如是B,开孔尺寸162X102m 5---设计序号,特征代号W---控制物理量为无功功率JK---低压无功自动补偿控制器 使用条件 环境温度:-25℃~+55℃ 相对湿度:最大相对湿度为90%(20℃时) 海拔高度:不能超过2500米 环境条件:无腐蚀性气体、无导电尘埃、无易燃易爆的介质存在,安装地点无剧烈震动。 技术数据 额定电压:AC 220/380V,波动不能超过±15% 额定电流:AC 0~5A 频率:50Hz/60Hz 触点容量:AC 220 5A 功率:最大8W 灵敏度:150mA 防护等级:外壳IP40 控制方式:循环投切 按键功能名称符号内容 菜单键递增键+ 递减键 菜单主菜单- 子菜单选择。 注:按住菜单键4秒“设置”灯亮方可进入参数预置菜单;少于0.5秒 则进入“手动”功能 “设置”参数时递加参数值,“ 手动”运行时投入电容器组 “设置”参数时递减参数值,“ 手动”运行时切除电容器组 菜单操作 被设置参数 参数代码含义参数范围出厂设置 代码按住“菜单”键4秒使“设置”指示灯亮 再按“菜单”键PA-1 互感器变比设置5-6000 再按“菜单”键PA-2 回路设置1-12 再按“菜单”键PA-3 电压上限400V-500V ( 230-260V) 再按“菜单”键PA-4 电压下限300V-360V (176-210) 再按“菜单”键PA-5 投入门限1-98Kvar 再按“菜单”键PA-6 `1 切出门限1-50Kvar 再按“菜单”键PA-7 投切延时10-120s 再按“菜单”键PA-8 目标功率左因素0.6-1

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

成套低压电容补偿柜

Yg生于⑦雄封测、将于②〇①①年⑦月①号、离开⑦雄、享年③百余天。记忆曾经的守候……风吹奶罩乳飞扬目录 1、课题内容简介 、实训目的 (2) 、主要内容 (2) 、工作原理 (2) 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 (3) 、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 (4) 、一次电路的工作原理过程 (4) 、元器件的作用分析 (5) 、一次电路的的安装图 (9) 、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 、二次原理图 (16) 、二次电路工作原理的过程 (17) 、二次电路元器件布置图 (17) 、二次电路安装接线图 (18) 、二次电路的安装工艺 (18) 、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 、以500伏绝缘摇表测试法测试绝缘电阻 (20) 、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压 6、心得体会 (22) 7、结束语 (23)

1、课题内容简介 、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

基于智能电容器的无功补偿系统设计

基于智能电容器的无功补偿系统设计 发表时间:2019-11-29T15:45:45.420Z 来源:《中国电业》2019年16期作者:穆海萍 [导读] 适用场合广泛且维护方便,可靠性高等优点,因此具有良好的推广应用前景。 摘要:当前的智能式电容器比较先进,集现代测控、电力电子技术、网络通信协议、自动控制原理以及新型绝缘材料技术等为一体,具有补偿效果好,小型化,功率消耗低,接线方便,适用场合广泛且维护方便,可靠性高等优点,因此具有良好的推广应用前景。 关键词:智能电容器;无功补偿;系统 1智能电容器模块的电气结构与原理 如图1、图2所示,智能电容器模块由智能测控单元、晶闸管复合开关电路、线路保护单元、2台△型(三相补偿)或I台Y型(分相补偿)低压电力电容器构成,它们各自独立工作又互相联系。 (1)智能测控单元。智能测控单元以工业级DSP为核心,同AD转换、CAN-籅US通信、LCD显示、数据存储等构成一个系统,集采样、运算、分析、控制、通信、人机交互、数据存储于一体,与其它部件进行数据交换,从而有效地协调整个智能电容的工作。同时,智能测控单元坯集成了外部通信功能,可以把本机的运行工况和测量数据通过RS-485接口与外部设备通信以及与其它智能电容器、控制器或后台监控系统进行数据交换,真正做到了透明化、智能化和模块化。 (2)煽控硅复合开关电路。晶闸管复合开关电路包含了可控硅.过零检测与触发模块、可控硅保护模块、磁保持继电器驱动模块及开关故障检测模块。电路采用电力电子可控硅与大功率磁保持继电器复合技术,利用可控硅的快速导通和磁保持继电器触点的零压降实现互补,真正做到过零投切和低功耗运行。合闸时,该电路可实时检测可控硅开关两端(即电力电容器与电网)的电压差,当电压差基本为0(相差小于3V)时,触发可控硅导通,无冲击涌流,做到柔性投入;之后,磁保持继电器吸合,短路可控硅的两端电极,通过继电器触点接通主回路 (3)线路保护单元 线路保护单元由空气开关、快速熔断器及电流检测回路组成。此单元旨在保护智能电容器整机,当智能电容器发生过负荷、三相不平衡或内部短路等故障时,线路保护单元实时跳闸,以保护电网不受影响。 (4)电力电容器。电力电容器采用干式自愈式金属化薄膜电容器,使用高温薄膜卷绕、环氧树脂材料灌封,罐内填充氮气或蛙石,设置防爆装置,安全无泄漏;内置温度传感器,把电容器的实时温度信号传送至智能测控单元,用作过温保护判据。 2 无功补偿控制策略与电容器投切方式 2.1 无功补偿控制策略 传统的无功补偿控制策略有无功功率控制、功率因数控制、电压控制、电压无功控制、电压功率控制、电压时间控制等,本文采用的是电压无功控制策略。电压无功控制方法又称之为九区图法,即在含有变压器的情况下,将平面按电压和无功功率的上下限划分为九个区域,不同的区域代表不同的含义,通过投切电容器进行无功补偿的控制。在配有载调压变压器的条件下,通过调节变压器分接头和投切电容器可以改变电网电压和无功补偿容量QC, 进而改变母线电压U和从电力系统吸收的无功功率Q。 2.2 电容器过零投切 电容器的投切控制是配电网运行中的一项重要研究内容,根据选择的控制目标及控制参数的不同,可将控制方式分为单一变量控制和综合控制,单一变量控制方式主要包括无功功率控制方式、功率因数控制方式、电压控制方式等。近些年随着人工智能技术的发展,也出现了基于模糊控制理论的控制方式。无论是何种控制方式都应该尽量做到在不发生过补偿、投切振荡、冲击电流等情况下,最大限度地利用补偿设备快速地提高电网的功率因数。 本文设计的智能电容器所需的投切开关为复合开关。复合开关将磁保持继电器和晶闸管复合并联在一起,兼两者之长。复合开关的工作原理:线路导通时,驱动电路先发出信号使晶闸管导通,再控制继电器导通,当磁保持继电器导通后,电网电流转移到继电器上,此时驱动电路发出信号使得晶闸管断开,系统正常工作;线路断开时,驱动电路先发出信号使晶闸管导通,此时继电器仍处于导通状态,再控制继电器断开,最后驱动电路发出信号,使得晶闸管在电流过零处断开。复合开关的优点有:无涌流,无电弧;能够实现电压过零处投入,电流过零处切除;功率损耗低。现在很多电力电子仪器都对电压要求很高,无功补偿的趋势就是过零投切。过零投切实际上就是电压过零时投入,电流过零时切除。过零投切的原理:电容器的电压不能突变,如果不是在电压过零点处投入,那么电容器的电压和系统中本身的电压叠加,会产生幅值大、频率高的涌流,增加了功率损耗,增加了对电容器及其他设备的冲击次数。 3智能电容无功补偿器的硬件模块设计 3.1 硬件模块 智能电容器的模块及其功能为:电源模块,为DSP控制器、磁保持驱动电路、运放芯片、液晶显示模块等提供所需的电源支持;DSP控制器,采用TMS320F2812芯片,控制整个系统的运行;电网参数采集模块,采集需要的电压电流参数,输送到DSP控制器内进行计算;温度采集模块,通过检测周围的环境温度,实时监控是否满足智能电容器的工作温度;复合开关驱动模块,DSP控制器检测到电网需要进行无功补偿时,复合开关驱动模块发送驱动信号,控制电容器的投切;按键与液晶显示模块,即人机操作界面,可以通过按键与液晶显示屏操作与观察当期智能电容器的运行状态;通信模块,采用RS-485通信协议,负责智能电容器各模块之间的通信。 3.2 电网参数采集模块 本文采用的TMS320F2812芯片自带16路12位的A/D转换器,可以对电压电流信号进行数据采集。ADC模块的模拟电压输入范围是0~3V,而低压配电网络的电压一般为380V,不在ADC模块所采集的信号输入范围之内,并且ADC模块比较敏感,当0V或3V的信号输入到模块端口时,可能会损坏ADC端口而不能正常工作。因此选择电压互感器对电压信号进行降压处理,

成套低压电容补偿柜详解

成套电容补偿柜详解 1、课题内容简介 1.1、实训目的 (2) 1.2、主要内容 (2) 1.3、工作原理 (2) 2、电容器补偿柜的及其作用 2.1、电容器柜功能及其结构 (3) 2.2、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 3.1、电容器柜一次电路原理介绍 (4) 3.2、一次电路的工作原理过程 (4) 3.3、元器件的作用分析 (5) 3.4、一次电路的的安装图 (9) 3.5、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 4.1、二次原理图 (16) 4.2、二次电路工作原理的过程 (17) 4.3、二次电路元器件布置图 (17) 4.4、二次电路安装接线图 (18) 4.5、二次电路的安装工艺 (18) 4.6、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 5.1、以500伏绝缘摇表测试法测试绝缘电阻 (20) 5.2、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压

1、课题内容简介 1.1、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 1.2、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 1.3、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

无功补偿柜

无功补偿控制器 无功补偿控制器是无功补偿装置的核心部件,具有举足轻重的地位,大部分无功补偿装置的生产厂家都是买来控制器然后自行装配整机,具有设计制造控制器能力的厂家不多,能够设计制造出性能优异的控制器的厂家更是凤毛麟角。 现有的低端控制器都是以功率因数为依据进行控制的,这种控制器虽然价格低廉、性能很差,已属于淘汰之列,因此这里不做介绍。 现有的高端控制器都是以无功功率为依据进行控制的,但除此之外,往往将设计重点放在汉字显示以及数据通讯等方面。其实要真正实现完美的无功补偿控制是一件相当复杂的事情,实现完美的无功补偿控制是无功补偿控制器的主要功能,只有在主要功能相当完善的情况下,才能考虑附加功能。下面详细介绍一下对控制器的设计要求以及一些基本的设计方法。 1、对测量精度的要求 要实现精确的无功补偿就必须对无功电流进行准确的测量。 因为电压的变化范围较小,因此对电压的测量精度要求不高,通常有1%的测量精度就足够了。通常的情况下,不测量电压也可以实现很好的无功补偿控制,对电压的测量主要是为了实现过压、欠压、以及缺相等保护功能。 对电流的测量灵敏度要求要高一些。对于使用8位单片机的低档控制器,测量灵敏度要达到1%以上。注意这里强调的是“测量灵敏度”而不是“测量精度”, 1%的电流测量灵敏度即相当于可以区分1%的电流变化,例如电流互感器的一次电流为500A,则意味着可以区分从100A到105A的电流变化,并不要求100A的电流测量值绝对准确。对于使用DSP或32位单片机的高档控制器,测量灵敏度要达到0.1%以上,否则就谈不到高档了。同样的道理,测量的灵敏度要达到0.1%,意味着测量值应该有4位有效数字,但同样并不要求绝对准确。对无功补偿控制器要求0.1%的测量精度是不现实的,也没有实际意义。但是控制器的测量值最好能在现场进行校正。 对功率因数测量的灵敏度最好要达到0.001。准确地说,应该是对相位差的测量要求,因为测量无功功率并不需要使用功率因数值。这里要强调一点,对无功电流的计算应该使用Iq=I×sinφ的公式来进行计算,而sinφ的值应该根据相位差的值直接进行计算,不能使用sinφ=(1-cosφ2)1/2 的公式计算,否则当相位差在0度附近时,cosφ的微小变化会导致sinφ的很大变化,导致sinφ的值误差太大。例如cosφ=0.99时,对应的相位差是8.1度,对应的sinφ值为0.14,意味着0—0.14之间其他sinφ值检测不到。

高压电容器补偿柜安装使用说明书

中煤电气—HXGN15-12 高压电容器就地补偿成套设备安装使用说明书ZM-HXGN.SM0508 北京中煤电气有限公司

1. 概述 北京中煤电气有限公司生产的中煤电气- HXGN15-12金属封闭式高压电容器补偿柜(以下简称设备),系3-10KV三相交流50HZ成套无功补偿装置。主要用于补偿输配电线路的无功功率,减小线路损耗和电压降,提高线路的有效输送容量,改善电网供电质量。本补偿柜满足GB3906、GB3983-2等标准。据有带电压显示及电磁联锁功能,防止误入带电隔室。可配用各种进口和国产电容器。就地补偿是将高压补偿柜装设在需要进行补偿的各个用电设备旁边,这种补偿方式能够补偿安装部位以前的所有高压线路的无功功率,其补偿范围大、效果好。 2. 结构 2.1 图1为本补偿柜的典型结构示意图。框架结构采用德国RITTAL(威图)公司的多褶型材17,按25mm模数化设计。宽度、深度、高度方向可任意扩展,组装方便、快捷。为便于电抗器19及电容器16散热,柜体侧面及后面均采用网状结构14。补偿采用正面操作和维护。门5、盖板20等部件表面静电喷涂处理,防腐美观,柜体结构有足够的强度和刚度,能承受短路时产生的机械应力和电应力,同时保证在吊装和运输等情况下不影响装置的性能。柜底部安装一条保护导体15,安装的电器元件部件的外壳与该保护导体15可靠连接,保证接地的连续性,确保操作安全。 2.2 联锁装置 本设备安装有高电压带电显示装置8,当设备带电时,该装置显示灯亮,同时电压传感器13信号电压给电磁锁3,使电磁锁锁定(电磁锁的操作使用见电磁锁使用说明书),此时门不能打开,防止了误入带电设备内。只有当设备停电,电磁锁解除,方可将门打开。 3. 安装和调试 3.1 基础形式 图2为本补偿柜所带的底托安装图,用户可根据图2的安装尺寸配备基础槽钢。基础槽钢平面一般要求高于地面1-3mm。 3.2 设备的安装 设备单列布置时,柜前走廊以2.5m为宜;双列布置时,柜间操作走廊以3m为宜。设备可用M12的地脚螺栓将设备底托与基础槽钢相连或用电焊点焊牢固。 3.3 设备的接地装置 用预设的接地板将各设备内的接地排15连接在一起,设备内部联接所有需要接地的接地线。 3.4 设备安装后的检查 当设备安装就绪后,清除柜内各电器元件及部件上的灰尘杂物,然后检查所有紧固螺栓有无松动,尤其是电气连接的紧固螺栓绝对不可松动。根据线路图检查二次接线是否正确。 4. 使用与维护 4.1 电容补偿柜在投入运行前,用户应按照有关程序和相关标准,以及各相关元器件的技术参数,对柜内各元器件进行绝缘试验,绝缘水平合格后,方可送电。 4.2 特别注意:电容器和电抗器进行绝缘试验后,要进行充分放电。放电时间不少于5分钟。为确保人身安全,人体在接触电容器、电抗器之前,还应该进行人工放电并验电,确认无电后,人体方可接触电容器、电抗器等元件。 4.3 设备的维护 电容柜在正常运行中,运行人员还应该定期检视其电压、电流和温度等,并检查电容器外部有无漏油、外壳膨胀等现象;有无放电声响和放电痕迹

补偿电容的作用和工作原理

电容补尝柜的作用和工作原理 一.电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二.电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三.电容补偿技术:

在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害: ?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x0.6 = 210KW

无功补偿柜电容器的容量换算问题

在无功补偿领域,我们经常会问的一句话是:电容器容量是多少? 这里的“容量”又指电容器的额定容量,其实是指电容器的功率,单位用kvar(千乏)来表示。 专业知识普及 从下面这个公式可以看出电容器的功率与电压的关系: Q=2πfCU2 Q表示电容器的功率,单位var f表示系统频率,50Hz/60Hz C为电容器容量,单位uF(微法) U表示系统电压,单位kV(千伏) 由上面表达式可以看出,电容器的功率与施加到电容器两端 的电压平方成正比。 每一只电容器都有一个参数叫做额定电压,对应额定电压则有一个额定功率。 例如:选择电压为450V,额定功率为30kvar的电容器。 问1:当额定电压为450V,额定功率为30kvar的电容器,用在400V 系统中,其输出功率为多少呢? 这就是我们经常碰到的问题,电容器的额定电压都是高于系统的额定电压的。

通过上面的公式,我们可以很快算出来: Q400=Q450×(4002/4502) =30×(4002/4502) ≈23.7 kvar 问2:为什么要选择额定电压高于系统电压的电容器呢? 电容器经受过电压危害时将快速损坏。为了保障电容器的运行安全,需要选择额定电压大于系统电压的电容器。 到这个阶段我们知道了,如果无功补偿支路设计为纯电容器的话,无功补偿支路的输出功率要根据电容器的额定电压和系统电压进行折算。这也就是我们常说的安装功率(安装容量)和输出功率(输出容量)。 安装功率常指电容器的额定功率; 输出功率常指电容器在系统电压下的实际输出功率。 参照上面举例,我们可以知道:将额定电压为450V,30kvar的电容器应用于400V无功补偿系统,则此系统安装容量为30kvar,其输出容量为23.7kvar。 问3:当电容器串联电抗后,电容器与电抗器组成的补偿支路功率是多少呢?

电容补偿柜的作用与工作原理

电容补尝柜的作用和工作原理 一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二. 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三. 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容 性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷 所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

电容无功补偿柜

电容无功补偿柜 一. 电容补偿柜之作用 :用以提高功率因数,调整电网电压,降低线路损耗,充分发挥设备效率,改善供电质量。 二.电容柜工作原理:用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三 . 电容补偿技术 :在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压 90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害: ?增长线路电流使线路损耗增大,浪费电能。

?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于 0.7 时,供电局可拒绝供电。 ?对发电机而言,以 310KW 发电机为例。 310KW发电机的额定功率为 280KW ,额定电流为 530A ,当负载功率因数 0.6 时 功率 = 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为 530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到 0.96 ,同样 210KW 的负荷。 电流 =210000/ ( 380x1.732x0.96 ) =332A 补偿后电流降低了近 200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 电容补偿柜工作原理及用途 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

无功补偿电容器运行特性参数选取

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 GB 1274721991《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中

成套低压电容补偿柜详解

成套电容补偿柜详解1、课题内容简介 、实训目的 (2) 、主要内容 (2) 、工作原理 (2) 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 (3) 、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 、电容器柜一次电路原理介绍 (4) 、一次电路的工作原理过程 (4) 、元器件的作用分析 (5) 、一次电路的的安装图 (9) 、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 、二次原理图 (16) 、二次电路工作原理的过程 (17) 、二次电路元器件布置图 (17) 、二次电路安装接线图 (18) 、二次电路的安装工艺 (18) 、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 、以500伏绝缘摇表测试法测试绝缘电阻 (20)

、工频及冲击耐压 (20) 附1图表....... 保护电路有效性绝缘电阻及交流耐压 1、课题内容简介 、实训目的 1 、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5 、学会选用开关元器件,并学会母排、母线、电线规格选择。 、主要内容 1 、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装

4、一次电路元器件安装 5、二次电路元器件安装 、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。 2、电容器补偿柜的及其作用 、电容器柜功能及其结构 外部结构内部结构 、电容器补偿柜的作用 电容补偿柜的作用是提高负载功率因数,降低无功功率,提高供电设备的效率;电容柜是否正常工作可通过功率因数表的读数判断,功率因数表读数如果在左右可视为工作正常。

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

并联电容器无功补偿及其正确使用

并联电容器无功补偿及其正确使用 异步电动机的无功就地补偿技术,近些年来得到推广应用。就地补偿方式的主要优点是:所需设备少,投资少,运行可靠,维护方便,特别对单机容量较大,运行时间长,距离电源较远的电动机更为适用。它对减少企业电能损失,提高电压质量有重大意义。采用并联电容器进行无功补偿,其主要作用是:1、补偿无功功率,提高功率因数;2、提高设备出力;3、降低功率损耗和电能损失;4、改善电压质量。一般工矿企业要求功率因数必须大于0.9,为提高功率因数常采用变电所集中补偿和就地补偿或两者结合使用。无功补偿容量按下式计算:Q=P(tgθ1—tgθ2),其中tgθ1、tgθ2为补偿前后的正切值,在补偿前后,由于有功功率不变,有功功率损耗值也无改变,但是,无功功率发生了变化,由Q降低为Q—Q C,故通过输、变配、用电设备有效电阻R时,有功功率的损耗由降低为ΔP2Q,所以并联电容器补偿的经济当量为K C=ΔP1Q—ΔP2Q=[Q2/U2*10-3—(Q-Q C)2/U2*R*10-3]/ Q C=(2Q- Q C)/ U2Q(2- Q C/Q)=ΔP1Q/Q(2- Q C/Q),可见采取并联电容器补偿的经济当量的大小取决于补偿容量与无功功率的比值。并且还表明,K C与两个因素有关:一是与ΔP1Q/Q成正比,二是与(2- Q C/Q)成正比。由于Q C可大可小,从自身效益和社会效益整体来考虑,多少合适,这是一个值得研究的问题。(1)、当Q C《Q时,2- Q C/Q≈2,这种情况等于没有补偿,谈不上降低有功功率的损耗。(2)、当Q C≈Q 时,2- Q C/Q≈1,这种情况等于全补偿,因负荷的变化,有时会出现

相关文档
最新文档