生物工程技术在现代生活中的应用

生物工程技术在现代生活中的应用
生物工程技术在现代生活中的应用

生物工程技术在现代生活中的应用

摘要:生物工程,也称生物技术,是当代新技术革命的三大支柱之一。由于其用途非常广泛,已成为解决当今世界面临的许多重大课题的关键。近年来,人们已在生物技术领域取得了许多突破性进展,这些成果不但标志着人类能够从微观上支配和改造生物,而且它的应用将给人类社会和生活带来巨大变革。21世纪将是“生物世纪”。各国政府和科技界都意识到“谁抓住了生物”谁将成为下一个世纪的“霸主”。

关键词:生物技术、农业、天然药物、废水生物处理、食品、应用

一、生物工程技术在农业生产中的应用

1、良种选育,品质改良

随着生物技术的发展,人们已经可以把一个品种、品系的理想遗传性状转入另一品种、品系,以提高植物的价值、产量和质量。Calgene公司的科学家分离到一种控制植物纤维素形成的酶的基因,将其转入特定的树种可培育出纤维素含量高的对造纸业更有利的植物。在番茄中导入编码EFE酶的反义基因,可以限制乙烯的生成,酶活性降至正常的5%以下,果实生理成熟后长期保持坚硬,仓贮1个月以上不软化、不腐烂,很大程度上提高了番茄的耐贮藏性能和经济效益。

2、提高植物的抗性

(1)、抗虫

全世界粮食产量因虫害所造成的损失占14%左右。长期以来人们普遍采用化学杀虫剂来控制害虫,全世界每年用于化学杀虫剂的总金额在200亿美元以上。但化学杀虫剂的长期使用造成农药的残留、害虫的耐受性、环境污染等严重的问题,而利用基因工程的手段培育抗虫植物新品种除可以克服以上缺点外,还具有成本低、保护全、特异性强等优点,从而倍受关注,成为当前研究的热点。目前人们已获得多种抗虫基因,其中有蛋白酶抑制剂基因,淀粉酶抑制剂基因、植物凝集素基因、昆虫特异性神经毒素基因、几丁质酶基因等,它们已被导入烟草、棉花、油菜、水稻、玉米、马铃薯等多种农作物,在抗虫方面得到了广泛的应用,有的已进入了商品化生产。

(2)、抗病毒

传统的抗病毒作物,是将植物天生的抗病毒基因从一个植物品种转移到另一个植物品种,然而抗病植株常会转变为感病植株,而且作用范围较窄。最近,研究人员采用基因工程的技术培育有别于传统方法的转基因抗病毒植物,目前最有效的是将病毒外壳蛋白基因导入植株获得抗病毒的工程植物。

(3)、抗寒

低温对细胞造成损伤的主要原因是造成细胞内膜结构中的脂质双层流动性降低,导致膜结构损伤,影响植物正常的生长。生物膜中双层脂分子保持流动性,主要依靠其中不饱和脂肪酸的含量,不饱和脂肪酸多则抗冻。通过分离能催化形成高不饱和脂肪酸的甘油-3-磷脂酰转移酶的基因,并将其转入植物而获得具有抗寒能力的转基因作物,这方面的工作已见报道。同时人们从一些生活在高寒水域的鱼类分离出一些特殊的血清蛋白,即鱼抗冻蛋白及其基因,可以降低在低温下细胞内冰晶的形成速度,从而保护细胞免受低温损伤。

(4)、抗除草剂

除草剂全世界目前约有2000多个品种,在农药市场占有最大的份额。然而除草剂的使用有着自身难以克服的局限性,如很多除草剂无法区别庄稼和杂草,有些除草剂必须在野草长起来以前就施用,而且由于抗性草类群落的出现导致使用量增大对环境的危害也日益严重。制造抗除草剂的转基因作物是克服这些缺点的理想途径。采用将靶酶基因导入作物细胞,1987年美国科学家成功从矮牵牛中克隆出EPSP合酶基因转入油菜细胞的叶绿体中,使油菜能有效地抵抗草甘膦的毒杀作用。另外,有人把降解除草剂的蛋白质编码基因导入宿主植物,从而保证宿主植物免受其害,该方法已成功地用于选育抗磷酸麦黄酮的工程植物。

3、抗重金属

由于人类活动、矿山的开采,工业化进程的加剧,空气、土壤、水体面临着越来越严重的重金污染,不但严重影响作物的产量和品质,更重要的是通过植物食物链危害人类的健康。土壤中的重金属主要有Cd、Cr、Cu、Hg、Ni、Pb、Zn、As等。20世纪80年代,提出植物修复、超富集植物。但由于自然界中已发现的绝大多数重金属富集或超富集植物往往生长周期长、生物量低、植株矮小,因而限制了其对污染土壤重金属的移除效率。通过基因工程技术改良植物对重金属的抗性,增加或减少重金属在植物体内的累积量被认为是进行污染土壤的生态恢复以及减少食物链重金属污染的一条切实可行的有效途径。富集重金属的相关基因不断克隆,应用转基因技术提高植物对重金属的耐性已取得一些重要进展,一些转基因植

物地上部分表现了较高的重金属离子富集量,并在污染土壤的生态恢复中进行了初步应用。

4、现代生物农药

随着人们对化学农药危害性、局限性的逐步认识,生物农药在植物生产中地位逐渐突现出来,成为绿色农业的重要组成部分,受到各国政府的高度重视,有了较为广泛的应用。微生物农药具有对人畜安全、不破坏生态平衡、害虫不易产生抗性等优点,但也存在着药效速度慢、专一性强、受自然条件影响大的缺点。而利用基因工程改造微生物菌种,创造出自然界不存在的新型菌种就可以克服这些缺点。

二、生物工程技术在天然药物中的应用

1.生物工程技术在动物药研究中的应用

动物药是我国医药宝库的重要组成部分,是中药三大来源之一,其传统研究思路以中医理论为指导,重点研究临床应用等相关方面,主要包括:本草考证、资源调查、基源鉴定、动物药化学、加工炮制、药效研究、品质评价等。动物药研究起步较晚,动物药的系统研究整理工作始于20世纪60年代,基础薄弱,存在较多空白,加之传统动物药研究理论不完善,符合动物药研究特色的方法学尚未建立,如何合理有效的借鉴现代技术手段也不明确。随着生物领域技术的发展,现代生物技术已逐渐广泛应用于动物药研究领域,并取得了可喜进展。

2.生物工程技术在植物药中的应用

由于人类对自然界的持续性破坏,野生药材资源日益减少。传统栽作中存在着有效成分含量不稳定;农药、重金属含量超标;栽培品系的品质日渐退化以及产量远远不及工业化大生产的要求等一系列问题,严重阻碍了中药的现代化进程。引进生物技术,可以对中药材品质进行多方面的改进。

3、生物工程技术在海洋药物研究中的应用

自80年代以来,现代生物技术已广泛应用于生物医学研究的各个领域,在海洋生物资源研究与开发中的应用已发展成为一个新兴的研究领域———海洋生物技术,即“利用海洋生物或其组成部分生产有用的生物产品以及定向改良海洋生物遗传特性”的一门综合性科学技术

三、生物工程技术在食品加工中的应用

1、酶技术的应用

酶是细胞原生质合成的一类具有高度催化活性的特殊蛋白质,是生物催化剂。酶普遍存在于动、植物和微生物中,将酶从生物组织或细胞以及发酵液中提取出来,加工成具有一定纯度标准的生化制品,称为酶制剂。

酶在食品工业中的应用范围很广,酶技术在果蔬加工中的应用也很广泛。近年来在果蔬加工上,还开发出酶浸渍法处理果蔬以改变表面及内部组织的特性,增加风味及其它感官香味及口感。现在此技术已广泛应用于柑桔的去皮、去苦及保持桃子的硬度等,所生产的产品有更好的新鲜度和组织外观。目前欧美各地的食品厂已使用此技术制造罐头类食品、玻璃瓶装制品及新鲜冷藏水果。

2 、基因工程技术的应用

基因工程技术可以说是现代化生物技术的核心内容,主要包括重组DNA、基因缺失、基因加倍、导入外源基因及改变基因位置等分子生物学技术手段,为定向改变生物性状提供了理论和技术基础。

目前基因工程产品在食品工业中占据了日益重要的地位,使传统农业、传统食品工业发生了根本性的变革。特别是转基因食品,作为现代生物技术的一种高科技产物,在短短的十几年里取得了重大的进步,产生了显著的社会与经济效益,不仅能够生产出口味更佳的食物,而且能够抗病虫害、抵御旱涝灾害、便于储运,大大降低了产品成本,提高了人类的食物产量,这在人口众多的发展中国家,具有重要的现实意义,将是人类解决因人口增加而产生的食物短缺问题和从根本上解决食品营养品质问题的有力手段。

3、细胞工程在食品工业中的应用

细胞工程技术应用于食品工业是随着细胞培养和细胞融合技术的发展而发展起来的。在细胞培养方面最典型的例子是人参细胞培养成功,还有香料与色素的生产。日本利用培养草莓细胞生产红色素的技术已成功应用于葡萄酒及食品加工之中。利用香草细胞培养技术可大量生产香草香精。当今,白酒、果酒、酱类等食品发酵行业以使用酵母为主,曲菌也适于酒

类和酱油生产。这些行业的微生物育种目标是培养出耐乙醇酵母、耐盐酵母、耐高糖酵母、无泡酵母、耐温酵母及谷酰胺酶与蛋白质分解酶活性高的曲菌。具有重要意义的成就是嗜杀其它菌类活性的嗜杀酵母新菌株的培育成功,日本协和发酵公司已完全使用嗜杀性葡萄酒酵母酿制新酒,目前,正研究运用细胞融合技术取得其它菌株,应用于食品发酵工业之中。

4、微生物发酵技术的应用

应用微生物发酵方法生产的发酵产品,有传统的酿制品、还有酒精、有机酸、氨基酸、单细胞蛋白等。发酵工程是利用微生物的特殊功能生产有用的物质,或直接将微生物应用于工业生产的一种技术体系。这项现代技术包括菌种选育、菌种生产、代谢产物的发酵、以及微生物的利用技术。利用发酵工程技术所取得的成就涉及到新食品配料,食品加工的催化剂,饮料稳定剂,D-氨基酸及其衍生物制造,以及废弃物利用和食品品质的检测等。

5 、生物传感器和生物反应器的应用

生物传感器是利用生命物质如酶、抗体等作敏感材料,与电子技术相结合,通过换能器件构成自动化分析系统,用以从多种化合物的复杂样品中选样地测定某一特定成分。其特点是精确、快速、灵敏。其方法包括核酸探针、聚合酶链反应、免疫分析等,在食品上应用于成分分析、病菌毒素检测、残留农药检测等品质管理。

模拟生命过程的生物反应器在生产酶制剂和发酵产品中应用广泛。生物反应器如同一根能进行生物体内反应的大试管,将生物细胞或酶等加入其中,设置一定的环境条件,使之发生某些生化反应而大量产生我们所需的产物。生物反应器较之发酵器有着生化反应简单明确,可控程度高,生物性材料可重复使用的特点。

四、生物工程技术在水污染治理中的应用

1、水污染的生物治理技术

(1)、好氧活性污泥法

好氧活性污泥法是利用含有大量需氧型微生物的活性污泥,在强力通风条件下使污水净化的生物技术。传统的好氧活性污泥法的缺点是废水中污染物浓度变化,特别是一些有抑制

作用的污染物对细菌活性有明显的抑制作用。使用驯化后的活性污泥可以抗拒高浓度污染物的抑制作用,如用驯化后的混合菌课连续降解有毒有机氯化物。

(2)、生物膜法

以生物膜为净化主体的生物处理技术。比活性污泥法具有生物浓度大、动力消耗小等优点,但处理水质不如活性污泥法好,所以常将二者结合使用。具有代表的是旋转式接触生物膜反应器,用它处理2-氯化酚、2,4-二氯化酚、2,4,6-三氯化酚、无氯化酚等有毒有机物时,去除率分别为68.2%,88。7%,85.6%,COD去除率为87.7%。可见其净化难降解有机物的效果显著。

(3)、厌氧处理法

此法是在缺氧条件下,利用厌氧性微生物(包括兼性)分解污水中有机质的方法。该处理技术中,可通过改良菌株和改进生物处理各主要流程来提高污染物去除效率。90年代以来开发了新型混合膨胀床颗粒活性炭反应器,用它处理含抑制生物降解有机物的废水比传统颗粒活性炭反应器有较高的生物去除效率。此外,还有氧化塘法、土地处理法及酶处理技术等污水的生物处理技术。

2、环境生物制剂废水处理

环境生物制剂包括新型微生物菌剂、生物吸附剂、微生物絮凝剂、生物催化剂、生物破乳剂、特种环境微生物菌种等用微生物强化处理的微生物菌剂及材料或通过微生物转化制备用于改善环境的产品,这是目前废水生物处理技术最具有发展潜力的方面。

(1)、新型微生物菌剂

采用独特的发酵工艺把好氧性微生物和厌氧性微生物按一定的比例加以混合,培养出多种多样的微生物群落形成有效的微生物生态系统。在对污水净化中,取得良好的社会效益和经济效益;

(2)、微生物絮凝剂

通过细菌、放线菌、真菌等微生物的发酵培养、浸取、精制而得到含蛋白子或多糖类生物聚合物等的微生物制剂;

(3)、生物破乳剂

主要用于处理乳液状含油废水,对石油废水进行生物破乳预处理后有利于气浮,课去除以乳状形式存在的难降解有机污染物。目前在国外已成为研究开发热点;

(4)、环境生物吸附剂

近年来废水生物处理的一个崭新的发展方向,主要有两大类:一类是高比表生长的厌氧或兼性微生物的代谢作用处理废物,其主要降解产物是甲烷和二氧化碳等,一般需要保证温度、无氧或低溶解氧浓度。

(5)、准好氧处理

准好氧处理填埋场的蛀牙设计与运行思想是使渗滤液集水沟水位低于渗滤液集水干管管底高程,使大气可以通过集水干管上部空间和排气通道,使填埋场具有某种好氧条件。准好氧处理靠垃圾分解产生的发酵热造成内外温差,使空气流自然通过填埋体,促进垃圾的分解和稳定。准好氧填埋有如下优点:一,它不需要强制通风,节省能量;二,渗滤液产生后被迅速收集,减少了对地下水的污染;三,相对于厌氧处理,垃圾稳定得更快,危险气体,如甲醛等的产量降低。

结语

生命科学与生物技术,作为“对全社会最为重要并可能改变未来工业和经济格局的技术”,一直吸引着人们的眼球。生命科学的新发现、不断出现的新生物技术无不展示着其在改善人类医疗卫生、农业、人口和食品状况方面的显著地位。生物技术的发展对化学、数学、物理、材料、信息工程等学科提出了许多新问题、新思路和新挑战,促使这些学科不断开拓新的研

究领域。生物技术产业的发展对于改善人们的生活环境、提高人们的生活质量具有重要意义,特别是对于我国这样一个人口众多、人均资源少的国家,发展生物技术产业更具有重要的战

略意义。

参考文献:

[1] 邓明鲁. 中国动物药资源[M] . 北京: 中国中医药出版社, 2007:341-345.

[2] 李建平, 林吉吉, 邓明鲁. 中国动物药概况[J] . 中药研究与信息,2003,

5( 8) : 24-27.

[3] 柴容明.生物技术在未来农业中的角色〔J〕.世界农业,2000,(4);29-30.

[4] 陆国权.植物基因工程技术的应用与问题〔J〕.世界农业,2000,(7):36-

38

[5] 刘虎城<食品科技>2000,1,43-44

[6] 熊瑜<食品科技>2000,1,32-34

[7] 陈坚主编,环境生物技术,中国轻工业出版社

[8] 金晓红,任华炜,环境生物技术用于环境保护的新进展

生物技术和人类生活的关系01

一、当代生命科学与生物技术发展的现状和前景 无论是科技界还是产业界,都基本认同这样一个重要判断:在新的世纪里,生命科学的新发现,生物技术的新突破,生物技术产业的新发展将极大地改变人类及其社会发展的进程。日益成熟的转基因技术、克隆技术以及正在加速发展的基因组学技术和蛋白质组技术、生物信息技术、生物芯片技术、干细胞组织工程等关键技术,正在推动生物技术产业成为新世纪最重要的产业之一,深刻地改变人类的医疗卫生、农业、人口和食品状况。尽管世界各国对高科技领域范围的界定不完全相同,但几乎无一例外地将生命科学和生物技术放在重要位置。特别是近二十年来,生命科学与生物技术获得了飞速发展,为世界各国医疗业、制药业、农业、环保业等行业开辟了广阔发展前景。 作为“对全社会最为重要并可能改变未来工业和经济格局的技术”,生命科学与生物技术日益受到世界各国的普遍关注和重视。进入新千年后,生物技术产业显示出强劲发展势头,成为当今高技术产业发展最快的领域之一。2001年美国生物科技投资占到风险投资总额的11%,2002年美国在生物技术领域投入研究开发资金已高达157亿美元。日本政府2002年已明确提出生物技术立国战略,强调把“科研重点转向生命科学和生物技术”,并计划五年内将政府在生命科学和生物技术的研究预算增加一倍,达到8800亿日元,力争使日本生物技术达到世界领先水平。欧盟已成立生物技术委员会,继在第四个研究开发框架计划对生物技术研究大量投资后,又在第五个研究开发框架计划中专门制定了“生命科学计划”,进一步加强在这一领域的努力。在软件领域成就斐然的印度,早在1995就提出“人类基因组——印度起点”研究计划,明确提出通过发展生物产业实现经济结构的多元化。这些都表明,世界上许多国家已把发展生命科学、生物技术及其产业作为赢得未来竞争的战略选择。 目前,生命科学的研究热点仍然集中在基因组学、蛋白质学等领域。继2000年人类基因组计划完成之后,水稻、疟原虫、蚊子和老鼠的全部DNA序列测定也在2002年完成,这些研究成果都直接与粮食生产和人类健康有关。老鼠和河豚鱼基因序列的测定,将可能为人类提供关于脊椎动物进化的重要线索。特别是科学家们已经把目光投入到功能基因组学(Functional Genomics)和蛋白质组学(Proteomics)这两个极富挑战性的领域,这将带来更多与人类自身发展密切关联的重大研究成果。 生物技术方面的进展则更为迅速,基因工程、细胞工程、酶与发酵工程、组织工程、蛋白质工程、抗体工程、干细胞研究、克隆技术、转基因技术、纳米生物技术、高通量筛选技术等等,将大大加快基因工程药物和疫苗的研制,以及推进对重大疾病新疗法的研究进程。总体来看,生物技术目前仍主要应用于医药和农业,但在食品、环保、化工、能源等行业也有广阔的应用前景。据统计,全球生物药品市场规模1997年为150亿美元,2000年为300亿美元,预计2003年将达到600亿美元。在转基因技术方面,尽管人们对基因改造生物的讨论和疑虑仍然存在,但2002年全球转基因作物的种植面积仍然比上年增加了600万公顷,达5867万公顷。据有关资料分析,转基因食品市场的销售额2010年将达到250亿美元。随着人类基因组图谱的破译,将有力地促进生物药物的研究与开发。到2020年,利用生物技术研制的新药可能将达到3000种左右。这将对提高人类的医疗水平和健康水平产生极为重要的影响。 摘要:现代生物学和分子生物学的发展,对基因工程、细胞工程、酶工程、发酵工程等现代生物技术工程产生重要影响, 其在食品发酵生产中的应用越来越广。本文阐述了基因工程、细胞工程、酶工程等现代生物技术在食品发酵业的应用。

2019高考:《现代生物科技专题》高考试题汇编

《现代生物科技专题》高考试题汇编 1、(2011海南卷)【生物——选修3:现代生物科技专题】(15分) 回答有关基因工程的问题: (1).构建基因工程表达载体时,用不同类型的限制酶切割DNA后,可能产生粘性末端,也可能产生末端。若要在限制酶切割目的基因和质粒后使其直接进行连接,则应选择能使二者产生(相同,不同)粘性末端的限制酶。 (2).利用大肠杆菌生产人胰岛素时,构建的表达载体含有人胰岛素基因及其启动子等,其中启动子的作用是提供。在用表达载体转化大肠杆菌时,常用处理大肠杆菌,以利于表达载体进入。为了检测胰岛素基因是否转录出了mRNA,可用标记的胰岛素基因片段作探针与mRNA杂交,该杂交技术称为。为了检测胰岛素基因转录的mRNA 是否翻译成,常用抗原-抗体杂交技术。 (3).如果要将某目的基因通过农杆菌转化法导入植物细胞,先要将目的基因插入农杆菌Ti质 粒的中,然后用该农杆菌感染植物细胞,通过DNA重组将目的基因插入植物细胞的上。 2、(2011全囯Ⅰ卷)【生物——选修3:现代生物科技专题】(15分) 现有一生活污水净化处理系统,处理流程为“厌氧沉淀池→曝光池→兼氧池→植物池”,其中植物池中生活着水生植物、昆虫、鱼类、蛙类等生物。污水经净化处理后,可用于浇灌绿地。回答问题: (1).污水流经厌氧沉淀池、曝气池和兼氧池后得到初步净化。在这个过程中,微生物通过呼吸将有机物分解。 (2).植物池中,水生植物、昆虫、鱼类、蛙类和底泥中的微生物共同组成了(生态系统、群落、种群)。在植物池的食物网中,植物位于第营养级。植物池中所有蛙类获得的能量最终来源于所固定的。 (3).生态工程所遵循的基本原理有整体性、协调与平衡、和等原理。(4).一般来说,生态工程的主要任务是对进行修复,对造成环境污染和破坏的生产方式进行改善,并提高生态系统的生产力。 3、(2012海南卷)【生物——选修3:现代生物科技专题】(15分) 已知甲种农作物因受到乙种昆虫危害而减产,乙种昆虫食用某种原核生物分泌的丙种蛋白质后死亡。因此,可将丙种蛋白质基因转入到甲种农作物体内,使甲种农作物获得抗乙种昆虫危害的能力。回答下列问题: (1).为了获得丙种蛋白质的基因,在已知丙种蛋白质氨基酸序列的基础上,推测出丙种蛋白质的序列,据此可利用方法合成目的基因。获得丙中蛋白质的基因还可用、方法。 (2).在利用上述丙中蛋白质基因和质粒载体构建重组质粒的过程中,常需使用酶和酶。 (3).将含有重组质粒的农杆菌与甲种农作物的愈伤组织共培养,筛选出含有丙种蛋白质的愈伤组织,由该愈伤组织培养成的再生植株可抵抗的危害。 (4).若用含有重组质粒的农杆菌直接感染甲种农作物植株叶片伤口,则该植株的种子 (填“含有”或“不含”)丙种蛋白质基因。 4、(2012全囯Ⅰ卷)【生物——选修3:现代生物科技专题】(15分) 根据基因工程的有关知识,回答下列问题:· (1).限制性内切酶切割DNA分子后产生的片段,其末端类型有和。(2).质粒运载体用EcoRⅠ切割后产生的片段如下: 为使运载体与目的基因相连,含有目的基因的DNA除可用EcoRⅠ切割外,还可用另一种限制性内切酶切割,该酶必须具有的特点是 。 (3).按其来源不同,基因工程中所使用的DNA连接酶有两类,即DNA连接酶和DNA连接酶。 (4).反转录作用的模板是,产物是。若要在体外获得大量反转录产物,常采用技术。 (5).基因工程中除质粒外,和也可作为运载体。(6).若用重组质粒转化大肠杆菌,一般情况下,不能直接用未处理的大肠杆菌作为受体细胞,原因是。

现代生物学与健康论文

现代生物学与健康 ——人体肥胖与饮食营养健康摘要:现如今随着社会经济的发展,人们生活水平的提高,每天的饮食也有了很大的改善,肥胖也已成为困扰大众的几大主要病症之一。人们在饮食方面也不太注重,只顾自己吃的是否合胃口或者是吃的是否“开心”,满足自己的时间观,而不去注重是否健康,是否对身体有好处,这很有可能导致肥胖。众所周知,肥胖对于人有百害而无一利,肥胖能引起人的许多疾病,而许多人的肥胖是由于饮食不科学或者食物中的营养摄入不合理造成的。鉴于学习了现代生物学与健康这门十分有意义的课程,我将浅谈一下人体肥胖与饮食营养健康的问题。 关键词:健康、营养、肥胖、膳食减肥 日常生活中,我们在吃着各种各样的食物。俗话说“病从口入”,也是说人们在饮食上如果不注意科学,吃错了也会导致疾病。“民以食为天”,而健康则是身体的最大本钱,这些无疑都牵动着我们的神经。所以,我们首先需要了解什么是“健康”;吃的营养才健康,那什么又是“营养”。 1.健康与营养的概述 1.1健康是指一个人在身体、精神和社会等方面都处于良好的状态。传统的健康观是“无病即健康”,现代人的健康观是整体健康,健康内容包括:躯体健康、心理健康、心灵健康、社会健康、智力健康、道德健康、环境健康等。健康是人的基本权利,是人生最宝贵的财富之一;健康是生活质量的基础;健康是人类自我觉醒的重要方面;健康是生命存在的最佳状态,有着丰富深刻的内涵。 据WHO(联合国世界卫生组织)1989年的定义是:在生理健康,心理健康,道德健康和社会适应良好四个方面健全。WHO制订的身体健康的初测十项标准:精力充沛,生活工作不疲劳;乐观积极,承担责任不挑剔;善于休闲,睡眠良好;适应各种环境,应变能力强;能抵御一般的感冒和传染病;体重适中,体型比例协调;视力良好,反应灵敏,眼睑不发炎;牙齿清洁,齿龈正常不出血;毛发有光泽,无头屑;皮肤,肌肉有弹性,步履轻松有力。 1.2营养素是健康之本,是健康的物质基础。营养学家对营养所作的解释是:食物中的营养素和其他物质间的相互作用与平衡对健康和疾病的关系,以及机体摄食、消化、吸收、转运、利用和排泄物质的过程。

现代生物技术与应用

染色体工程技术 在小麦品质改良中的应用及社会意义 摘要:本文报告了染色体工程在小麦品质改良中的方法,在理论研究与育种实践上的应用。论述了染色体工程在小麦品质改良和生产实践中所体现出来的社会意义。 关键词:染色体工程,小麦,类型变化,实践 正文: 染色体操作(chromosome manipulation)是按设计有计划削减、添加和代换同种或异种染色体的方法和技术。也称为染色体操作。染色体工程一词,虽然在20世纪70年代初才提出。其实早在30年代,美国西尔斯(E.R.Sears)及其学生就已开始研究,但当时局限于小麦,定义为:在小麦中利用缺体或单体材料,对个别染色体或染色体片断进行替代或转移的工程谓之“染色体工程”。 植物染色体工程从50年代的兴起迄今约30余年的历史,但运用这一技术在改造 植物的遗传性方面却显示了它强大的力量,表现在创造崭新的遗传资源,培育突破性新 品种和合成新物种等方面取得的重大进展。 目前对基因操作的主要方法有:有性杂交、染色体代换、易位、添加、染色体显微切割和微克隆、PCR扩增等。 现代小麦育种十分注意栽培品种的类型变化,期望它们优质、高产、抗病、矮秆。我们知道,在小麦近缘种属中,存在着小麦栽培品种所没有的优质、抗病基因。在常规的杂交程序中,栽培品种与野生种之间,因染色体组不同,在多数情况下染色体不能配对,其基因很难进行重。细胞遗传学家已经研究出一套方法,将异种变异性应用于小麦育种实践。这些方法包括染色体附加、染色体代换、染色体易位等。用这些方法实现了小麦染色体附加、代换、易位和部分同源染色体间的重组。 (一)麦外源染色体的添加 普通小麦附加系的系统研究工作开始于1940年,07mara把3个不同的黑麦染色体分别附加到小麦中。1960年Evans~Jenkins得到了所有7个黑麦染色体的双体附加系。之后,Sears把小伞山羊草的染色体附加到小麦中;Joppa等(1978)用一种新方法得到了具有15对染色俸的硬粒小麦双单体(3D,4D,5D)附加系;Islam(1978)把6个大麦染色体分烈跗加到小麦中。有人还把顶芒山羊草和冰草的一些种的染色体附加到小麦中。

选修3现代生物科技专题重点知识点(填空)

选修3《现代生物科技专题》知识点总结 专题1 基因工程 一、基因工程的基本工具 1.“分子手术刀”—— (1)来源:主要是从生物中分离纯化出来的。 (2)功能:能够识别 DNA分子的某种的核苷酸序列,并且使每一条链中部位的两个核苷酸之间的断开,因此具有性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式: 和。 2.“分子缝合针”—— (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合键。 ②区别:E·coliDNA连接酶来源于,只能将双链DNA片段互补的 之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合,但连接平 末端的之间的效率较。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将加到已有的核苷酸片段的末端, 形成磷酸二酯键。DNA连接酶是连接的末端,形成磷酸二酯键。 3.“分子运输车”—— (1)运载体具备的条件: ①。 ②。 ③具有,供。 (2)最常用的运载体是,它是一种裸露的、结构简单的、独立于 ,并具有的双链。 二、基因工程的基本操作程序 第一步:目的基因的获取 1.目的基主要是指:,也可以是一些具有的因子。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有 法和法。 3.PCR技术扩增目的基因 (1)PCR的含义:是一项在生物体外复制特定DNA片段的核酸合成技术。 (2)目的:获取大量的目的基因 (3)原理: (4)过程:第一步:加热至90~95℃,DNA解链为; 第二步:冷却到55~60℃,与两条单链DNA结合; 第三步:加热至70~75℃,从引物起始进行的合成。 第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中,并且可以, 使目的基因能够。 2.组成:++++ (1)启动子:是一段有特殊结构的,位于基因的,是 识别和结合的部位,能驱动基因,最终获得所需的。 (2)终止子:也是一段有特殊结构的,位于基因的。 (3)标记基因的作用:是为了鉴定受体细胞中,从而将 筛选出来。常用的标记基因是。

生物学和人类的关系

生物学和人类的关系 [摘要]生物学是研究生命的科学,它既研究各种生命活动的现象及其本质,又研究生命与环境之间的相互关系。近30多年来,生物学的理论成就给自然科学的发展作出了巨大贡献,并最大限度地造福了人类。生物技术又为人类利用、改造和保护自然,造福人类提供了实践方法。生命科学要为人类造福转化为生产力,必然与技术相结合,才能在生产上发挥巨大作用。然而。事物的两面性又提醒我们,科学对文明的发展既有正面的推动作用,又可能引起不利于人类生存的副作用。那么,我们只有把握生命科学在人类社会中的各方面作用,才能把人类文明推进到更高的阶段。 [关键字]生物学生命科学生物技术人类文明 1引言 20世纪是生物科学发展史上最为辉煌的时代,特别是20世纪50年代以来,随着数理科学的广泛而深刻地渗入到生物科学领域以及一些先进的仪器设备和研究技术的问世,生物科学已进入从分子水平研究生命活动过程及其规律,以及生命体与环境相互作用规律的生命科学的新时代。由于应

用先进技术,生命科学在微观和宏观两方面都取得了丰硕的成果:特别是生命科学的理论成就为自然科学的发展作出了巨大的贡献。遗传物质DNA双螺旋结构的阐明被认为是20 世纪自然科学的重大突破之一。由于生命科学的进步向数学、物理学、化学以及技术科学提出了许多新问题、新概念和新的研究领域,生命科学已成为21世纪的主流科学之一。 进入21世纪,人类面临着人口、食品、健康、环境、 资源等与生命科学有关的重大问题,“人类基因组计划”的 实施和深入发展,将有可能从更深层次上了解人体生长、发育、正常生理活动以及各种疾病的病因和发病机理,并为医学提供防治策略、途径和方法。“水稻基因组计划”的顺利 开展,对21世纪农业的发展,解决粮食问题,将产生巨大 的影响。 由此看出,当今发展科学的目的在于认识世界,而发展技术的目的在于利用、改造和保护自然,造福人类。生命科学要为人类造福转化为生产力,必然与技术相结合,才能在生产上发挥巨大作用。于是在20世纪70年代,随着生命科学理论的不断发展,与工程技术相结合,开辟了生物技术(也叫生物工程)新领域。例如,通过基因重组技术,PCR技术、DNA和蛋白质序列分析技术、分子杂交技术、细胞和组织培养技术、细胞融合技术、核移植技术等等,促进了基因工程、蛋白质工程、细胞工程、发酵工程、酶工程、染色体工程、

高中生物现代生物科技专题2020年高考题汇总附答案

现代生物科技专题2020年高考题 1.(2020北京卷)番茄根尖经过植物组织培养过程可以获得完整的番茄植株,有关此过程的叙述错误的是( ) A.此过程中发生了细胞的脱分化、再分化 B.植物激素在此过程中起调节作用 C.此过程中若发生杂菌污染则难以获得目的植株 D.根尖细胞最终发育为无叶绿体的植株 2. (2020北京卷)下列关于单克隆抗体制备过程的叙述,错误的是( ) A.获得B细胞之前需给动物注射特定的抗原 B.分离出的B细胞应与骨髓瘤细胞融合 C.需要从融合的细胞中筛选出杂交瘤细胞 D.得到的所有杂交瘤细胞产生的抗体均相同 3. (2020江苏卷,多选)小鼠胚胎干细胞经定向诱导可获得多种功能细胞,制备流程如下图所示。下列叙述错误的是( ) A.为获得更多的囊胚,采用激素注射促进雄鼠产生更多的精子 B.细胞a和细胞b内含有的核基因不同,所以全能性高低不同 C.用胰蛋白酶将细胞a的膜蛋白消化后可获得分散的胚胎干细胞 D.胚胎干细胞和诱导出的各种细胞都需在CO2培养箱中进行培养 4.(2020天津卷)在克隆哺乳动物过程中,通常作为核移植受体细胞的是去核的( ) A.卵原细胞 B.初级卵母细胞 C.次级卵母细胞 D.卵细胞 5.(2020浙江卷)下列关于基因工程的叙述,正确的是() A.若受体大肠杆菌含有构建重组质粒时用到的限制性核酸内切酶,则一定有利于该重组质粒进入受体并保持结构稳定

B.抗除草剂基因转入某抗盐植物获得2个稳定遗传转基因品系,抗性鉴定为抗除草剂抗盐和抗除草剂不抗盐。表明一定是抗盐性的改变与抗除草剂基因的转入无关 C.抗除草剂基因转入某植物获得转基因植株,其DNA检测均含目的基因,抗性鉴定为抗除草剂和不抗除草剂。表明一定是前者表达了抗性蛋白而后者只表达抗性基因RNA D.已知不同分子量DNA可分开成不同条带,相同分子量的为一条带。用某种限制性核酸内切酶完全酶切环状质粒后,出现3条带。表明该质粒上一定至少有3个被该酶切开的位置6.(2020山东卷)两种远缘植物的细胞融合后会导致一方的染色体被排出。若其中一个细胞的染色体在融合前由于某种原因断裂,形成的染色体片段在细胞融合后可能不会被全部排出,未排出的染色体片段可以整合到另一个细胞的染色体上而留存在杂种细胞中。依据该原理,将普通小麦与耐盐性强的中间偃麦草进行体细胞杂交获得了耐盐小麦新品种,过程如下图所示。下列说法错误的是( ) A.过程①需使用纤维素酶和果胶酶处理细胞 B.过程②的目的是使中间偃麦草的染色体断裂 C.过程③中常用灭活的病毒诱导原生质体融合 D.耐盐小麦的染色体上整合了中间偃麦草的染色体片段 7.(2020山东卷)经遗传改造的小鼠胚胎干细胞注入囊胚,通过胚胎工程的相关技术可以获得具有不同遗传特性的实验小鼠。下列说法错误的是( ) A.用促性腺激素处理雌鼠可以获得更多的卵子 B.体外受精前要对小鼠的精子进行获能处理 C.胚胎移植前要检查胚胎质量并在囊胚或原肠胚阶段移植 D.遗传改造的小鼠胚胎干细胞可以通过转基因等技术获得 8.(2020山东卷)新型冠状病毒的检测方法目前主要有核酸检测法和抗体检测法。下列说法错误的是( ) A.抗体检测法利用了抗原与抗体特异性结合的原理 B.感染早期,会出现能检测出核酸而检测不出抗体的情况 C.患者康复后,会出现能检测出抗体而检测不出核酸的情况 D.感染该病毒但无症状者,因其体内不能产生抗体不适用抗体检测法检测

现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考 题答案 1 染色体具有哪些作为遗传物质的特征? 1 分子结构相对稳定 2 能够自我复制,使亲子代之间保持连续性 3 能够指导蛋白质的合成,从而控制整个生命过程 4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。 由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。 核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。 核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程 除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。 4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征 DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征? 1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。 2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。 3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义 DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

高中生物选修三《现代生物科技专题》经典知识点

高中生物 记忆材料 《现代生物科技专题》 经典知识点 班级: 姓名: 诸城繁华中学

★考点1、(Ⅰ)基因工程的诞生——基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 ★考点2、(Ⅱ)基因工程的原理及技术 原理:基因重组 技术:(一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,供外源DNA片段插入。③具有标记基因,供重组DNA 的鉴定和选择。(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞所提供的DNA(外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫、抗病毒的基因都可以用上述方法获得。用“鸟枪法”获取目的基因的缺点是工作量大,具有一定的盲目性。 人工合成目的基因的常用方法有反转录法(以目的基因转录成的信使RNA为模板,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因)和化学合成法(根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对原则,推测出它的结构基因的核苷酸序列,再通过化学的方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因、胰岛素基因等就可以通过人工合成基因的方法获得) 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA 聚合酶从引物起始互补链的合成。 第二步:基因表达载体的构建——是基因工程的核心

现代生物技术的应用与展望

现代生物技术的应用与展望 姓名:班级:学号: 摘要:参阅大量文献资料对近年来生物技术在农业、医药业、社会科学等中的应用进展进行了综述。从改革传统农业结构,解决食品短缺问题的应用、深入基因研究,解决健康长寿问题、运用现代生物技术,解决环境污染问题等内容出发,指明了生物技术现代科学发展中的应用前景。 关键词:生物技术基因医学健康农业 Abstract: a large number of literature on recent biotechnology in agriculture, medicine and industry, social science and application were reviewed in this paper. From the reform of traditional agriculture structure, to solve food shortage problem, in-depth application of genetic research, solve the longevity and health problems, use of modern biological technology, solve the problem of environmental pollution and other content, pointed out the biological technology of modern science and application prospects. 现代生物技术也可称之为生物工程,是以重组DNA技术和细胞融合技术为基础,利用生物体(或者生物组织、细胞及其组分)的特性和功能,设计构建具有预期性状的新物种或新品系,以及与工程原理相结合进行加工生产,为社会提供商品和服务的—个综合性技术体系。其内容包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程。现代生物技术的诞生以2O世纪7O年代初DNA重组技术和淋巴细胞杂交瘤技术的发明和应用为标志,迄今已走过了30多年的发展历程。实践证明现代生物技术对解决人类面临的粮食、健康、环境和能源等重大问题方面开辟了无限广阔的前景,受到了各国政府和企业界的广泛关注,与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,是2l世纪高新技术产业的先导。可以预测,生物技术的应用与发展将导致生产体系与经济结构的飞跃变化,甚至可能引发一次新的工业革命,对人类社会的生产、生活各方面必将产生全面而深刻的影响。 1 改革传统农业结构,解决食品短缺问题 现代生物技术在农业中最突出的应用是利用转基因技术,将目的基因导入动、植物体内,对家畜、家禽及农作物进行品种改良,从而获得高产、优质、抗病虫害的转基因动植物新品种,达到充分提高资源利用效率,降低生产成本的目的。经过长期不断的努力,现代农业生物技术已取得重大突破,不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命,并将在解决目前人类所面临的粮食危机、环境恶化、资源匮乏、效益衰减等方面发挥巨大作用。 1.1 提高农产品的产量与质量农作物病虫害是造成农业产量下降的主要原因之一,因而利用转基因技术把抗病、抗虫基因导入农作物中,使之可避免或减少病虫害。近年来,抗黄杆菌的水稻、抗除草剂的大豆、抗病毒病的甜椒、抗腐能力强与耐贮性高的番茄等转基因植物开始进入市场,提高了产量,增加了效益;根据人类的需要,还可把特定基因导入植物体,可达到改良农产品品质的目的,如高含量必需氨基酸的马铃薯,高蛋白质含量的大豆等;此外还可利用生物技术破坏水果细胞壁纤维酶,保证猕猴桃、桃、西红柿等水果成熟但不变软而提高水果的保鲜度,便于水果的运输。从1996年到2o02年,转基因农作物在全球的种植面积从170万ha扩大到5810万ha,即增加35倍,显示了现代农业生物技术强大的生命

生命科学对我们日常生活的影响

生命科学对我们日常生活的影响 摘要:现代科学技术发展极大地推进了人类社会的进步,尤其生命科学领域的进展给我们的生活带来了翻天覆地的变化,生命科学可以说已经成为当今世界最为活跃的科技领域之一。而这一领域的研究成果也正广泛应用于人类社会,在人类的衣食住行方面以及减少人类疾病和动植物病害、改善人类的营养状况,减少环境公害、保护自然资源等方面都产生了巨大的效益。 关键字:生命科学人类生活 一、引言 随着人类社会的迅猛发展,能源、资源、人口、粮食、疾病等社会问题也变得越来越严峻,然而用常规的物理化学方法又很难完全解决这些问题,但生命科学却能帮助我们很好的解决这些问题。21世纪可以说是生命科学的世纪,因为生命科学在人类生活的方方面面都产生重要的影响。我们的一举一动、一言一行都离不开生命科学;我们的吃穿住行也离不开生命科学;可以说在人类的生活中生命科学无处不在。 二、生命科学的涵义 简单的说,生命科学就是研究生命现象及其规律的科学。它既研究各种生命活动的现象和本质,又研究生物与生物之间、生物与环境之间的相互关系,以及生命科学原理和技术在人类经济、社会活动中的应用。生命科学是一门很高深的学科,包括了很多的领域,它的历史悠久,发展意义重大。 三、生命科学的发展 自古以来,人类就没有停止过对神秘的生命现象孜孜不倦的探索。17世纪前,由于科学技术水平的限制,人类对生命科学的认知也仅仅停留在好奇和崇拜的阶段,直到18世纪40年代,英国的虎克首次用自制的显微镜观察到了细胞,不久,荷兰的 Leeuwenhoek便清晰的观察了活动的细胞,并证实了细胞是所有生命的结构基础;随后18世纪60年代中期,“现代遗传学之父”---奥地利的传教士孟德尔通过豌豆实验阐明了生物遗传的两个最基本最经典的规律——分离规律和自由组合定律,开创了遗传学研究的新纪元。在19世纪50年代中期,watson 和crick共同发明了DNA的双螺旋结构,并因此获得了诺贝尔奖,DNA双螺旋结构的阐明也标志着现在分子生物学的诞生。20世纪四十至五十年代前后,生物学家们开始积极吸收数学、物理、化学等其他科学最新的研究成果及技术,对生命科学展开了分子层面的研究。进入二十世纪八十年代,生命科学更势不可挡,成为影响当代人生活的四大科学之首。目前,生命科学可以说已经成为21世纪当之无愧的第一科学。国际知名核心期刊与生命科学相关的论文占着越来越多的比例,世界优秀科技成果评选总不会离开生物科学的最新成果,无论从这些还是从对人类生活及思想的影响来看,生命科学都是当今世界科学研究的核心,最为炙手可热的领域。 四、生命科学在人类生活中

论生物技术与人类生活的关系

论生物技术与人类生活的关系 近代的生物技术、尤其是70年代初重组DNA技术建立以来,发展非常迅速,已经或者即将在医药、农林、轻工、环境保护等等方面起到重要的作用。不少人认为生物技术将是未来10年高新技术发展的十大重点技术之一,更有人认为生物技术是解决21世纪不断膨胀的人口,特别是发展中国家人民的粮食问题的关键技术。 生物技术又称生物工程,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由信使RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技

术,就被称为“基因工程”,或者称之为“遗传工程”。 现在基因工程已经大范围地在为人类生活服务。以转基因作物为例,根据资料介绍,从1996~1999年全球已有12个国家种植了转基因作物(其中包括有中国在内的4个发展中国家),种植面积由1996年的170万公顷发展到1999年的3990万公顷。转基因作物主要有大豆、玉米、棉花、油菜、马铃薯、西葫芦、番木瓜等等,转基因作物的性状主要有耐除草剂、抗虫性(Bt)、Bt/耐除草剂、抗病毒等等。这里值得提出的是瑞士科学家不久前开发出可加快维生素A合成的转基因水稻,尽管尚未批准为商品化种植,但因其在解决营养不良问题上非常关键而普遍看好。转基因作物种植面积最大的首推美国,占世界种植面积的72%。农业转基因技术是当今世界最为热门的研究领域之一,由于它与人类生活密切相关,因而深受世人关注。中国科学院院士、华中农业大学教授张启发在接受新华社记者采访时强调指出:“农业转基因技术可保障农业的可持续发展,是解决世界温饱问题的根本途径。”专家认为,当今人类面临的难题之一就是要利用有限的资源生产出尽可能多的高质量食品,但目前人类、资源和环境之间的矛盾日益尖锐,资源和环境遭到了极大的破坏。因此,应用农业转基因技术非常必要,它能大幅度地减少农业占用的自然资源和对生态环境的破坏。我国在转基因技术的研究方面已取得了显著成果。抗虫转基因棉花已进入产业化,抗病小麦、抗虫玉米等一批转基因作物正等候投放市场;分子育种、作物遗传资源研究、转基因动物技术以及基因工程等方面的基础研究进展良好,为保障我国农业的可持续发

现代生物技术在土木工程专业的应用

现代生物技术在土木工程专业的应用 从古自今,生物技术都有着极其广泛的应用,誉满天下的洛阳桥又名万安桥,位于洛阳江入海处。距泉州市区10公里。明代诗人凌登名称赞"洛阳之桥天下奇,飞虹千丈横江垂。"而今虽时历千载,而那种镇波涛、锁蛟螭、跨江接海、势若飞虹的雄姿,依然不减当年。这座梁式右石桥,始建于北宋皇佑五年。全桥长约千米,宽约五米。有桥墩40座,桥栏500个。建在江海汇合处,采用著名的"筏型基础"与"种蛎固基法"。所谓"筏型基础",就是先抛置大量石块形成石提,作为基础,然后在堤上造筏型桥墩,以分水势。桥墩至今犹存。远远望去,就像一排排小船乘风破浪并肩托起大桥。 为了巩固桥堤,又在桥下大量种植附着力强、繁殖迅速的牡蛎,创造了把生物学应用于桥梁工程建筑的先例 在科学技术飞速发展的今天,生物技术更是有着不可替代的应用。 几十年来,科学家们一直试图找到或制造出这样一种材料,既能像塑料一样具有良好的可塑性和较低的加工成本,又能像钢一样具有很好的强度和耐久性。这并非不切实际的幻想,据美国物理学家组织网3月2日报道,日前美国耶鲁大学的科学家们已实现了这一目标,耶鲁大学材料学家简·施洛尔斯领导的一个研究小组证明,由他们制成的一种块体非晶合金(BMGs)材料能够像制作玻璃或塑料制品一样吹膜成型,且不会牺牲其原有的强度和耐久性。相关论文已在线发表在国际材料学著名期刊《今日材料》杂志上。据介绍,这种材料由包括锆、镍、钛和铜在内的多种金属构成。其材料成本与高端钢材大致相同,但加工成本却和塑料一样便宜。吹塑过程在低温低压下进行,此时这种非晶合金会逐渐软化,并能像融化的塑料一样流动,但又不会像普通的金属一样出现结晶现象,由此为后续的吹塑工作带来了前所未有的便捷。为了达到并保持理想的精度和温度,吹塑过程能在真空或液体中进行。施洛尔斯说,目前金属材料加工中面临的关键问题就是如何避免不必要的摩擦,而对于这种合金材料来说则完全不存在这个问题,借助吹塑工艺就可以制造出任意复杂形状的物体,最小可到纳米级。到目前为止,该团队已经用该材料制造出了无缝金属瓶、表壳等外形较为简单的物品和用于微机电系统(MEMS)的微型谐振器以及生物医学植入物等结构较为复杂的设备。这些材料的加工过程不到一分钟,但强度可以达到普通钢材的两倍

现代分子生物学思考题答案(朱玉贤_第三版)

第一章绪论 1.简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。 答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)3.试述“有其父必有其子”的生物学本质。 答:其生物学本质是基因遗传。子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。 4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S 株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR 株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 5.请定义DNA重组技术和基因工程技术。 答:DNA重组技术:目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 基因工程技术:是除了包含DNA重组技术外还包括其他可能是生物细胞基因结构得到改造的体系,基因工程是指技术重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技

现代生物技术在环境保护方面的应用

现代生物技术在环境保护方面的应用 地质学院勘查技术与工程申玉龙201101171223 摘要:应用现代生物技术进行环境保护拥有许多优点,人们已意识到,现代生物技术的发展,为从根本上解决环境问题提供了希望。 正文:现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20 世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。 目前生物技术应用于环境保护中主要是利用微生物,少部分利用植物作为环境污染控制的生物。生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、有毒有害物质的降解、清洁可再生能源的开发、废物资源化、环境监测、污染环境的修复和污染严重的工业企业的清洁生产等环境保护的各个方面,发挥着极为重要的作用。应用环境生物技术处理污染物时,最终产物大都是无毒无害的、稳定的物质,如二氧化碳、水和氮气。利用生物方法处理污染物通常能一步到位,避免了污染物的多次转移,因此它是一种消除污染安全而彻底的方法。特别是现代生物技术的发展,尤其是基因工程、细胞工程和酶工程等生物高技术的飞速发展和应用,大大强化了上述环境生物处理过程,使生物处理具有更高的效率,更低的成本和更好的专一性,为生物技术在环境保护中的应用展示了更为广阔的前景。 与传统方法比较,生物治理方法具有许多优点。1 .生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。 2. 利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。. 3.生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。 所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。 污染土壤的生物修复 重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。 白色污染的消除 废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采

相关文档
最新文档