二次函数动点问题附加(教师版)

二次函数动点问题附加(教师版)
二次函数动点问题附加(教师版)

二次函数的动态问题(附加)

1.如图①,中,,.它的顶点

的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同

时停止运动,设运动的时间为秒. (1)求的度数.(2)当点在

上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一

部分,(如图②),求点的运动速度.

(3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.

(4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,

的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由.

解: (1).(2)点的运动速度为2个单位/秒.

(3)().当时,有最大值为,

此时

(4)当点沿这两边运动时,的点有2个.①当点与点重合时,, 当点P 运动到与点重合时,的长是12单位长度,作交

轴于点M ,作轴于点H ,由得:

,所以,从而.所以当点在

边上运动时,的点有1个.

②同理当点在边上运动时,可算得.而构成直角时交轴于,,所以,从而的点也有1个.所以当点沿这两边运动时,的点有2个. 2.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1)求抛物线的解析式.

(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;

(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

(1)解法一:设抛物线的解析式为y = a (x +3 )(x - 4)因为B (0,4)在抛物线上,所以4 = a ( 0 + 3 ) ( 0 - 4 )解得a= -1/3所以抛物线解

Rt ABC △90B ∠=30CAB ∠=A (100),B (553),

10AB =P A A B C →→Q (02)D ,y P C t BAO ∠P AB OPQ △S t P S t S P P Q ,P AB OPQ ∠t BC OPQ ∠t P 90OPQ ∠=P 60BAO =∠P (103)P t t -,05t ≤≤1(22)(10)2S t t =+-2

912124t ??=--+ ???∴92t =S 121411932P ?? ? ???

,P 90OPQ =∠P P A 90OPQ <∠B OQ 90OPM =∠y PH y ⊥OPH OPM △∽△203

11.5OM =

=OQ OM >90OPQ >∠P AB 90

OPQ =∠P P BC 1031217.83OQ =+=y 35303?? ? ???,353

20.217.83

=>90OCQ <∠90OPQ =∠P P 90OPQ =∠P (第1题图①)

A

C

B

Q

D

O P

x y

30

10

O 5

t S (第1题图②)

第1题图

y Q M H D O A x C B ()P

析式为

解法二:设抛物线的解析式为,

依题意得:c=4且解得所以所求的抛物线的解析式为

(2)连接DQ ,在Rt △AOB 中,所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 – 5 = 2

因为BD 垂直平分PQ ,所以PD=QD ,PQ ⊥BD ,所以∠PDB=∠QDB 因为AD=AB ,所以∠ABD=∠ADB ,∠ABD=∠QDB ,所以DQ ∥AB 所以∠CQD=∠CBA 。∠CDQ=∠CAB ,所以△CDQ ∽△CAB

即所以AP=AD – DP = AD – DQ=5 –=,所以t 的值是25/7。 (3)答对称轴上存在一点M ,使MQ+MC 的值最小理由:因为抛物线的对称轴为所以A (- 3,0),C (4,0)两点关于

直线对称连接AQ 交直线于点M ,则MQ+MC 的值最小过点Q 作QE ⊥x 轴,于E ,所以∠QED=∠BOA=900

DQ ∥AB ,∠ BAO=∠QDE ,△DQE ∽△ABO 即所以QE=,DE=,所以OE = OD + DE=2+

=,所以Q (,)设直线AQ 的解析式为

则由此得所以直线AQ 的解析式为联立由此得所以M 则:在对称轴上存在点M ,使MQ+MC 的值最小。

3. 如图9,在平面直角坐标系中,二次函数

的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两

点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =1/3. (1)求这个二次函数的表达式.

(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.

(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.

(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.

(1)方法一:由已知得:C (0,-3),A (-1,0)

将A 、B 、C 三点的坐标代入得解得:所以这个二次函数的表达式为:

方法二:由已知得:C (0,-3),A (-1,0)设该表达式为:将C 点的坐标代入得: 所以这个二次函数的表达式为:

(2)方法一:存在,F 点的坐标为(2,-3)理由:易得D (1,-4),所以直线CD 的解析式为:

∴E 点的坐标为(-3,0)由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形 ∴存在点F ,坐标为(2,-3)

2111(3)(4)4333

y x x x x =-+-=-++2(0)y ax bx c a =++≠934016440a b a b -+=??++=?

1313a b ?

=-????=??

211

433

y x x =-+

+5AB DQ CD AB CA

=

210,577DQ DQ ==10

72572525177t =÷=122

b x a =-=12

x =12x =QE DQ DE BO AB AO ==10

7453QE DE ==876767207

20787(0)

y kx m k =+≠2087730k m k m ?+=???-+=?

8412441

k m ?=????=??

8244141y x =+128244141

x y x ?=????=+??

128

(,)241

128(,)241

)0(2>++=a c bx ax y ?????-==++=+-30390c c b a c b a ?????

-=-==32

1c b a 322--=x x y )3)(1(-+=x x a y 1=a 322--=x x y 3--=x

y

方法二:易得D (1,-4)所以直线CD 解析式为:∴E 点坐标为(-3,0)∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3)

(3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ), 代入抛物线的表达式,解得

②当直线MN 在x 轴下方时,设圆的半径为r (r>0),则N (r+1,-r ),代入抛物线的表达式,解得∴圆的半径为或.

(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为. 设P (x ,),则Q (x ,-x -1),PQ .

当时,△APG 的面积最大

此时P 点的坐标为,. 4.已知:如图14,抛物线与轴交于点A ,点B ,与直线相交于点B ,点C ,直线与y 轴交于

点E .

(1)写出直线BC 的解析式.(2)求的面积.

(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A,B 重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为秒,请写出的面积S 与的函数关系式,并求出点M 运动多少时间时,的面积最大,最大面积是多少?

解:(1)在中,令

,又点在上

的解析式为

2分

(2)由,得,,

(3)过点N 作

于点P

由直线可得:在中,,,则,

此抛物线开口向下,当时,当点M 运动2秒时,的面积达到最大,最大值12/5。

3--=x y 2

171+=R 2171+-=r 2171+2

171+-1--=x y 322--x x 22++-=x x 3

)2(2

12?++-=+=???x x S S S GPQ APQ APG 21=x ??

? ??-415,21827的最大值为APG S ?2334y x =-+x 34y x b =-+34y x b =-+ABC △t MNB △t MNB △2334

y x =-+0y

=23304

x ∴-+=12x ∴=22x =-(20)A ∴-,(20)B ,

B 34y x b =-+302

b ∴=-+32b =BC ∴334

2

y x =-+23

343342

y x y x ?

=-+???

?=-+??11194

x y =-??

?=??22

20x y =

??=?914C

??∴- ???,(20)

B ,4AB ∴=94

CD =1994242

ABC S ∴=??=△NP MB ⊥EO MB ⊥NP EO ∴∥BNP BEO ∴

△∽△BN NP BE

EO

∴=

3342y x =-+302E ?? ???,∴BEO △2BO =32EO =52BE =253

22

t NP ∴=65NP t ∴=16(4)25S t t ∴=-2312(04)55S t t t =-+<<2312

(2)55

S t =--+∴2t =125

S

=

最大

∴MNB △

专题:二次函数中的动点问题

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2; 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断 图象的位置,要数形结合; ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 共同点:

二次函数动点问题解答方法技巧分析

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求与已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标、 ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式与一元二次方程之间的内在联系: 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)与点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上就是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 ①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式; ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。 二次函数的动态问题(动点)

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

初中数学二次函数动点问题

函数性问题专题—动点问题 函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题) 一、因动点而产生的面积问题 例1:如图10,已知抛物线P :y =ax 2 +bx +c (a ≠0 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上,与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下: (1 求A 、B 、C 三点的坐标; (2 若点D 的坐标为(m ,0 ,矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围; (3 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围. 若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2、(3小题换为下列问题解答(已知条件及第(1小题与上相同,完全正确解答只能得到5分: (2 若点D 的坐标为(1,0 ,求矩形DEFG 的面积 . 例2:如图1,已知直线

12 y x =-与抛物线2 164 y x =- +交于A B ,两点. (1)求A B ,两点的坐标; (2)求线段A B 的垂直平分线的解析式; (3)如图2,取与线段A B 端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 动点P 将与A B ,构成无数个三角形,这些三角求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.图2 图1 图10 第-2-页共4页 例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边 AB=4,BC=4

中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案) 1.如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方 向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止 运动,设运动的时间为秒. (1)求正方形的边长. (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分 (如图②所示),求两点的运动速度. (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4)若点ABCD保持(2)中的速度不变,则点ABCD沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小.当点ABCD沿着这两边运动时,使ABCD的点ABCD有个. (抛物线ABCD的顶点坐标是. [解] (1)作轴于. , . . (2)由图②可知,点从点运动到点用了10秒. 又. 两点的运动速度均为每秒1个单位. (3)方法一:作ABCD轴于ABCD,则ABCD. ABCD ,即 ABCD . ABCD .ABCD .ABCD,

ABCD . 即 ABCD . ABCD ,且 ABCD , ABCD当 ABCD 时,ABCD有最大值. 此时 ABCD , ABCD点ABCD的坐标为 ABCD .(8分) 方法二:当ABCD时, ABCD . 设所求函数关系式为. 抛物线过点, . ,且, 当时,有最大值. 此时, 点的坐标为. (4). [点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。 . 2. 如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒. (1)求的度数. (2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度. (3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标. (4)如果点ABCD保持(2)中的速度不变,那么点ABCD沿ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小,当点ABCD沿这两边运动时,使ABCD的点ABCD有几个?请说明理由. 解: (1)ABCD.

初三二次函数动点问题(教师版)

二次函数动点问题 1、如图,已知二次函数y=42 3 412++- x x 的图象与y 轴交于点A ,与x 轴交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC . (1)点A 的坐标为_______ ,点C 的坐标为_______ ; (2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由; (3)点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,若所得△PAC 的面积为S ,则S 取何值时,相应的点P 有且只有2个? 2、已知抛物线 )0(2≠++=a c bx ax y 经过点B (2,0)和点C (0,8),且它的对称轴是直线2-=x 。 (1)求抛物线与x 轴的另一交点A 坐标; (2)求此抛物线的解析式; (3)连结AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B )不重合,过点E 作EF ∥AC 交BC 于点F ,连结CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式; (4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的 坐标,判断此时△BCE 的形状;若不存在,请说明理由。 3、如图,四边形ABCD 是平行四边形,AB=4,OB =2,抛物线过A 、B 、C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止. (1)求抛物线的解析式; (2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形? (3)当t 为何值时,以P 、B 、O 为顶点的三角形与以点Q 、B 、O 为顶点的三角形相似? 4、如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式; (2)将矩形ABCD 以每秒1个单位长度的速度从 图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示).① 当t= 时,判断点P 是否在直线ME 上,并说明理由; ② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 2 5

中考数学压轴题二次函数动点问题一

二次函数压轴题 1.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小若存在,请求出点M 的坐标;若不存在,请说明理由。 2.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0), OB =OC ,tan∠ACO=3 1. (1)求这个二次函数的表达式. (2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形若存在,请求出点F 的坐标;若不存在,请说明理由. (3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大求出此时P 点的坐标和△APG 的最大面积. 3.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点, 与y 轴交于点C (0,3)。

⑴求抛物线的解析式; ⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC 是等腰三角形若存在,求出符合条件的点P的坐标;若不存在,请说明理由; ⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。 4.已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB

(完整版)九年级--二次函数中的动点问题

第九讲——二次函数动点问题的学习归纳 模式1:平行四边形 例题1:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标. 练习:如图,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧), 与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF//DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

例题2:如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2. (1)求二次函数y=ax2+bx+c的解析式; (2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标. 练习:如图1,直线 4 3 4 + - =x y 和x轴、y轴的交点分别为B、C,点A的坐标是(-2, 0). (1)试说明△ABC是等腰三角形; (2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S. ①求S与t的函数关系式; ②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由; ③在运动过程中,当△MON为直角三角形时,求t的值.

【经典】二次函数的动点问题(各类题型含答案解析)

【精编版】二次函数的动态问题 1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,, (20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形 MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围; (3)当t 为何值时,四边形MDNA 的面积S 有最大值, 并求出此最大值; (4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,, (08)F -,. 设抛物线2C 的解析式是 2(0)y ax bx c a =++≠, 则16404208a b c a b c c ++=?? ++=??=-? ,,. 解得168a b c =-?? =??=-? ,,. 所以所求抛物线的解析式是2 68y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H . 当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2-=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

专题:二次函数中的动点问题.doc

二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2+bx+c 的图像和性质 a >0 a <0 y 图象x O 开口 对称轴 顶点坐标 最值当 x=时, y 有最值是当 x=时, y 有最值是增在对称轴左侧y 随 x 的增大而y 随 x 的增大而 减 在对称轴右侧y 随 x 的增大而y 随 x 的增大而 性 2、平行四边形模型探究 如图 1,点A x1, y1、B x2, y2、C x3, y3是坐标平面内不在同一直线上的三点。平面直角坐标 系中 是否存在点D,使得以A、 B、C、D四点为顶点的四边形为平行四边形,如果存在,请求出点 D 的坐标。 图1图2 如图 2,过A、B、C分别作 BC、AC、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线 l 2: 当 l 1 ∥l 2 时 k = k ; 当 l 1 ⊥l 时 k ·k = -1 1 2 2 1 2 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类( 2)再画图( 3)后计算

二、精讲精练 2 1、已知抛物线y=ax +bx+c 与 x 轴相交于A、B 两点( A、B 分别在原点的左右两侧),与y轴正半轴相交于 C 点,且 OA: OB: OC=1: 3: 3,△ ABC的面积为6,(如图 1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C 为顶点四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图 2,在直线 BC上方的抛物线上是否存在一动点 P,△ BCP面积最大?如果存在,求出最大面积,并指 出此时 P 点的坐标;如果不存在,请简要说明理由. 2、(2013?黔西南州)如图,已知抛物线经过A(﹣ 2, 0),B(﹣ 3,3)及原点 O,顶点为 C (1)求抛物线的函数解析式; (2)设点 D 在抛物线上,点 E 在抛物线的对称轴上,且以 AO为边的四边形 AODE是平行四边形,求点 D的 坐标。

二次函数与四边形的动点问题(含答案)

二次函数与四边形 一.二次函数与四边形的形状 例 1.(浙江义乌市 ) 如图,抛物线y x22x 3 与x轴交A、B两点(A点在B点左侧),直线 l 与抛物线交于A、C两点,其中C点的横坐标为2. ( 1)求 A、 B 两点的坐标及直线AC 的函数表达式; ( 2)P 是线段 AC 上的一个动点,过 P 点作 y 轴的平 行线交抛物线于 E 点,求线段 PE 长度的最大值;A ( 3)点 G 是抛物线上的动点,在x 轴上是否存在点 F,使 A 、C、 F、 G 这样的四 个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不 存在,请说明理由. 练习 1.(河南省实验区) 23.如图,对称轴为直线x 7 的抛物线经过点 A(6,0)和B( 0, 4).2y7 x ( 1)求抛物线解析式及顶点坐标;2 ( 2)设点 E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF 是以 OA 为对角线的平行四边形.求平行四边形OEAF 的面积 S 与x之间的函数B(0,4) 关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24 时,请判断平行四边形OEAF 是否F 为菱形? ②是否存在点 E,使平行四边形OEAF 为正方形?若存在,求出点 E A(6,0)x 的坐标;若不存在,请说明理由. O E

练习 2. (四川省德阳市)25. 如图,已知与x 轴交于点A(1,0) 和 B(5,0) 的抛物线l1的顶点为C (3,4) ,抛物线l2与l1关于x轴对称,顶点为 C . ( 1)求抛物线l2的函数关系式; ( 2)已知原点O,定点D (0,4),l2上的点P与l1上的点P始终关于x轴对称,则当点P 运动到何处时,以点 D, O, P, P 为顶点的四边形是平行四边形? ( 3)在l2上是否存在点M,使△ABM是以AB为斜边且一个角为30的直角三角形?若存, 求出点 M 的坐标;若不存在,说明理由. y l2 5 E 4 3 2 1A B 1 O 1 2 345 x 1 2 3 4C 5l 1 练习 3.(山西卷)如图,已知抛物线C1与坐标轴的交点依次是A( 4,0) , B( 2,0) , E(0,8) .(1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于 C, D 两点(点 C 在点 D 的左侧),顶点为 N ,四边形 MDNA 的面 积为 S .若点 A ,点 D 同时以每秒1个单位的速度沿水平方向分别向右、 向左运动;与此同时,点 M ,点 N 同时以每秒2个单位 的速度沿坚直方向分别向下、向上运动,直到点A与点 D 重合为 止.求出四边形 MDNA 的面积 S 与运动时间t之间的关系式,并写出 自变量 t 的取值范围; (3)当t为何值时,四边形MDNA的面积S有最大值,并求出此 最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出 此时 t 的值;若不能,请说明理由.

二次函数动点问题典型例题

二次函数动点问题典型例题 等腰三角形问题 1. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=,且经过点A(2,1), 点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB 交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E. (1)求抛物线的解析式; (2)填空: ①用含m的式子表示点C,D的坐标: C(,),D(,); ②当m=时,△ACD的周长最小; (3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标. 面积最大 1. 如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴 交x轴于点D,已知A(﹣1,0),C(0,2). (1)求抛物线的表达式; (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由; (3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

2.已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形. (1)求过A、B、C三点的抛物线的解析式; (2)若直线CD∥AB交抛物线于D点,求D点的坐标; (3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由. 3. (2015?黔西南州)(第26题)如图,在平面直角坐标系中,平行四边形ABOC如图放置, 将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点 A、C、A′三点. (1)求A、A′、C三点的坐标; (2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积; (3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.

动点问题解析(二次函数与动点1)

动点问题解析(二次函数与动点) 1 2 一 1.如图,已知抛物线y x 2 bx C 与y 轴相交于 C 与x 轴相交于A 、B ,点A 的坐标为(2, 0), 2 点C 的坐标为(0,— 1) . (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点 E 作DE 丄x 轴于点D ,连结。。,当厶DCE 的面积最大时,求点 D 的坐标;(3)在直线BC 上是否存在一点P ,使 . 26题图 1 2?如图,抛物线y = x 2 + bx — 2与x 轴交于A ,B 两点,与y 轴交于C 点,且A(— 1,0). 2 (1) 求抛物线的解析式及顶点 D 的坐标;(2)判断△ ABC 的形状,证明你的结 论; (3)点M(m , 0)是x 轴上的一个动点,当 MC + MD 的值最小时,求 m 的值. 2 3如图,抛物线y ax 2 bx c 交x 轴于点A( 3,0),点B(1,0),交y 轴于点E(0, 3) ?点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线|过点F 且与y 轴平行.直线y x m 过 点C ,交y 轴于点D . (1) 求抛物线的函数表达式;(2)点K 为线段AB 上一动点,过点 K 作x 轴的垂线与直线 CD 交于点 H ,与抛物线交于点 G,求线段HG 长度的最大值;(3)在直线|上取点M ,在抛物线上取点 N ,使以点 A ,C ,M ,N 为顶点的四边是平行四边形,求点 N 的坐标 . △ ACP 为等腰三角形,若存在,求 点

4.抛物线y=ax 2+bx+c 与x 轴的交点为 A ( m - 4,0)和 B (m,0),与直线y=—x+p 相交于点 A 和点 C (2m —4,m -6).(1)求抛物线的解析式;(2)若点P 在抛物线上,且以点 P 和A,C 以及另一点Q 为顶点的平 行四边形ACQP 面积为12,求点P,Q 的坐标; (3)在(2)条件下,若点 M 是x 轴下方抛物线上的动点,当/ PQM 的面积最大时,请求出/ PQM 的最大面积及点M 的坐标。 5?如图.平面直角坐标系 xOy 中,点B 的坐标为(一2,2),点B 的坐标为(6,6),抛物线经过A 、0、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标;(2)求抛物线的函数解析式;(3)点F 为线段OB 上的 一个动点(不与 O 、B 重合),直线EF 与抛物线交与 M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当 点F 在线段OB 上运动时,求 BON 的面积的最大值,并求出此时点 N 的坐标;(4)连结AN ,当 BON 的面积的最大时,在坐标平面内使得 BOP 与 OAN 相似(点B 、O 、N 对应)的点P 的坐标. 5 2 17 6.如图,抛物线y X X 1与y 轴交于点A ,过点A 的直线与抛物线交于另一点 B ,过点B 作 4 4 BC 丄x 轴,垂足为点C ( 3,0) . (1)求直线AB 的函数关系式; (2) 动点P 在线段OC 上,从原点O 出发以每钞一个单位的速度向 C 移动,过点P 作丄x 轴,交直线 AB 于点M ,抛物线于点N ,设点P 移动的时间为t 秒,MN 的长为s 个单位,求s 与t 的函数关系式, 并写岀t 的取值范围; (3) 设(2)的条件下(不考虑点 P 与点O ,点G 重合的情况),连接CM ,BN ,当t 为何值时,四边 形BCMN 为平等四边形?问对于所求的 t 的值,平行四边形 BCMN 是否为菱形?说明理由 .

二次函数动点问题(提高篇)(最新整理)

数学压轴题 二次函数动点问题 1.如图,抛物线y =ax 2 +bx +c (a ≠0)与x 轴交于A (-3,0)、B 两点,与y 轴相交于点 C (0,).当x =-4和x =2时,二次函数y =ax 2+bx +c (a ≠0)的函数值y 相等,连结AC 、3BC . (1)求实数a ,b ,c 的值; (2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标; (3)在(2)的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)由题意得 ?? ? ??++=+-==+-c b a c b a c c b a 2441630 39 解得a =- ,b =-,c =.333 323(2)由(1)知y =-x 2-x +,令y =0,得-x 2-x +=0.333323333 3 23解得x 1=-3,x 2=1. ∵A (-3,0),∴B (1,0).又∵C (0,),∴OA =3,OB =1,OC =, 33∴AB =4,BC =2.∴tan ∠ACO = =,∴∠ACO =60°,∴∠CAO =30°.OC OA 3同理,可求得∠CBO =60°,∠BCO =30°,∴∠ACB =90°.∴△ABC 是直角三角形. 又∵BM =BN =t ,∴△BMN 是等边三角形. ∴∠BNM =60°,∴∠PNM =60°,∴∠PNC =60°.

二次函数压轴题---动点问题解答方法技巧总结 (含例解答案)

二次函数压轴题---动点问题解答方法技巧总结 ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

相关文档
最新文档