隧洞设计实例

隧洞设计实例
隧洞设计实例

隧洞设计实例

一、隧洞的基本任务和基本数据

1、隧洞的基本任务

泄水隧洞的进口全部淹没在水下,进口高程接近河床高程,其担负的任务如下:

(1) 预泄库水,增大水库的调蓄能力。

(2) 放空水库以便检修。

(3)排放泥沙,减小水库淤积。

(4) 施工导流。

(5) 配合溢洪道渲泄洪水。

2、设计基本数据

(1) 洞壁糙率泄洪洞采用钢筋砼衬砌,n=~,考虑到本隧洞施工质量较好,故取较小值n=。

(2) 水利计算成果见表1。

表1

二、隧洞的工程布置

1、洞型选择

由于段村坝址为石英砂岩,地质条件较好,所以采用圆形有压隧洞,圆形断面的水流

条件和受力条件比较好,并且可以充分利用围岩的弹性抗力,从而减小衬砌的工程量,降低施工的难度和造价。同时有压隧洞水流较平顺、稳定,不易产生不利流态。

2、洞线位置

洞轴线布置在右岸,这样出口水流对段村无影响,进口山势较陡,进流条件好,洞线为直线,较短,工程量小又利于泄洪。

3、工程布置

泄洪隧洞由进口段、洞身段、出口段三部分组成。 (1) 进口型式

由于进口部位山体岩石条件较好,故采用竖井式进口,在岩体中开挖竖井,将闸门放在竖井底部,在井的顶部布置启闭机及操作室、检修平台,竖井式进口结构简单,不受风浪影响,地震影响也较小,比较安全。

(2) 进口段 包括进口喇叭口段、闸室段、通气孔、渐变段等。

1) 进口喇叭口段 为了与孔口的水流型态相适应,使水流平顺,避免产生不利的负压和空蚀破坏,同时尽量减少局部水头损失,提高泄流能力,在隧洞进口首部,其形状应与孔口锐缘出流流线相吻合,一般顺水流方向做成三向收缩的矩形断面喇叭口形,其收缩曲线为1/4椭图曲线,顶面椭圆方程为:

1)5.33.0(5.32

222

=?+y x ,用下列坐标绘制顶面曲线,见表1。 表1

侧面曲线方程为:1)5.32.0(5.32

2=?+

,用下列坐标绘制侧面曲线,见表2。 表2

2) 进口闸室段 闸孔尺寸为×3.5m ,闸室段长度参照工程经验取6.0m ,在闸门上端设

置操作室,后设工作桥与坝面相连,桥面高程为365.81m ,与坝顶路面高程一致,在操作室与闸室之间设置检修平台,平台高程在正常高水位360.52m 以上,取361.50m 。

闸门用×4.0m 的平面钢闸门,闸门槽宽度为1.0m ,深度为75cm ,由于高速水流通过平面闸门闸孔时,水流在门槽边界突变,容易发生空化水流,致使门槽及附近的边墙或底板发生空蚀。为此,将门槽的下游壁削去尖角,用半径为R=10cm 的圆弧代替,并做成1:12的斜坡,错距采用8cm 。

3) 通气孔 在闸室右部设置通气孔,其作用是在关闭检修门,打开工作门放水时,向孔中充气,使洞中水流顺利排出;检修完毕后,关闭工作门,向检修闸门和工作闸门之间充水时,排出洞中空气,使洞中充满水。通气孔的断面积一般取泄水孔断面积的%~1%,此泄水

孔的断面积为9.62m 2

)4

5.314.3(

2

?,所以通气孔取×0.25m ,通气孔的进口必须与闸门启闭机室相分离,以免在充、排气时影响工作人员的安全。

4)渐变段 为使水流平顺过渡,防止产生负压和空蚀,设置渐变段,由于渐变段施工复杂,故不宜太长,但是为使水流过渡平顺,又不能太短,一般用洞身直径的2~3倍,取渐变段长度为8.0m 。

根据本隧洞的任务,其进口高程应设置得低一些,河床的平均高程为340m ,这样既便于施工期导流,降低围墙高程,又可在运用期泄水,力争一洞多用,以求隧洞施工方便,运用安全,造价低廉。

(3) 洞身段 考虑到所选洞线的地形、地质情况,并运用情况,洞线长为230m ,洞身段长198.5m ,为了便于施工时出碴和检修时排除积水,坡降i =1/500,顺坡。

初拟洞径:按管流公式计算,公式为 02gH w Q μ=; 式中 μ—流量系数,μ=~ ,这里取; w —出口断面面积(m 2

);

H 0—作用于隧洞的有效水头;H 0=库水位一出口顶部高程。

分别列表(3)计算设计及校核洪水位时所需的洞径:

表3

比较以上数据,考虑一定的安全储备,洞径选3.5m 。 (4) 出口段 包括出口渐变段、闸室段。

1) 出口渐变段 有压隧洞的出口都布置有工作闸门,故出口断面也要做成矩形。因此在出口段也须做一渐变段。出口断面积根据工程经验一般为洞身面积的70%~85%,由于在出口水流由压力流突然变为无压流,引起出口附近压力降低,容易在洞顶产生负压,所以出口末端洞顶应设置压坡段,出口断面取为3×2.5m ,渐变段长度根据工程经验定为8.0m 。

2) 出口闸室段 在出口渐变段后设置工作闸门室。本隧洞工作门采用平面钢闸门,尺寸为×4.0m ,闸室长度参照已建工程经验,定为 6.0m ,在闸室上部设置操作室。采用矩形收缩形门槽。

(5) 消能工及尾水渠布置 在出口之后设置消能工,使下泄水流消能后再泄入下游河道,从而减小下泄水流对河床的冲刷,由于隧洞出口处地质条件较好,下游河道水位也较低,故采用挑流式消能,消能工后设尾水渠,渠底宽为15.0m ,采用1/100的顺坡,断面形式也为梯形,开挖边坡为1:。

三、水力计算 1、过流能力校核

因下游水位335.8m ,低于隧洞出口高程341.54m ,故隧洞为自由出流。 (1) 校核洪水位时过流能力校核

在校核洪水位时,洞前水深H’==21.6m >=5.25 m ,∴洞中水流按有压流计算。

有压隧洞自由出流公式为:02Q gH C ??=ωμ 式中:ω—隧洞出面面积 , ω=3×=7.5m 2

H 0—作用在隧洞上的有效水头,因隧洞上游为水库,故行近流速V 0≈0,则

H 0=19.08m 。

μc —流量系数,按下式计算,

223/4)()(

/00384.011

i

i i i i c R L ωωζωωμ∑+∑+=

式中:系数按下列方法求得:2gn 2

=2××=。 首先确定各局部水头损失系数ζi 。

1) 拦污栅 358.080sin 364.0sin 901=??==?αξζ; 2) 进口喇叭口段 ζ2=;

3) 进口闸门槽 对于平板闸门, ζ3=;

4) 进口渐变段 由矩形变为圆形,参考同类工程 ζ4=; 5) 出口渐变段 由圆形变为矩形,参考同类工程 ζ5=; 6) 出口闸门槽 同ζ3, ζ6=。 列表计算见表1。 表1

∴流量系数74.0237

.0599.011

=++=

c μ

则在设计洪水位时,隧洞泄量为:

/s

90m /3.10708.196.195.774.02Q 3

3

>=???==s m gH C ωμ

∴隧洞泄量满足要求

(2) 在校核洪水位时过流能力校核 流

μ

c

、过水断面面积ω保持不变,

H 0=20.27m s m gH C /6.11027.206.195.774.02Q 30=???==ωμ110m 3隧洞泄量满足要求

综上所述,所拟洞径及各部分尺寸可以满足泄流要求。

2、绘制库水位—泄量关系曲线(图1)

(1) 有压流状况

保证隧洞为有压流的最小洞前水深为=×=5.25m。则保证隧洞为有压流的最低库水位为:

+进口洞底高程=+342=347.25m 。 有

H 0≈H ),

54.34457.246.195.774.02Q 0-=??==库水位H gH C ωμ

在库水位347.25m 以上设一系列库水位,计算相应的洪量Q ,计算成果列于下表(2)。 表2 水位(m) 350 水头(m) 泄量(m 3

/s)

图1库水位—泄量关系曲线

(2) 无压流状态

当洞前水深小于()m 时,洞中水流为无压流,泄量的计算按宽顶堰情况处理,计算公式为:2/302Q H g mB ε=;

式中:ε—侧收缩系数,按公式62.02.010

=-=εε计算,这里取经验系数B

H K

; m —流量系数,其数值在~之间,对八字形进口m=,此处也近似取m=; B —堰宽(m), B =; H 0—洞前水头(m),H 0≈H ;

∴泄量2/302

/3036.36.195.362.035.0H H Q =???=

计算对应的泄量列于下表3。

表3

3、水库放空时间计算

为了达到人防和检修水库的目的,必须在一定的时间内将库水位由正常水位降至死水位。一般要求中小型水库的放空时间小于10~15天。

根据库水位 ~ 泄量关系曲线以及已知资料中的库水位 ~ 库容关系曲线查出泄量进行计算。

计算结果见下表4。

表4

∴水库放空时间为:t=159633/86400=天 故水库的放空时间满足要求。

4、绘制总水头线和测压管水头线

绘制测压管水头线的目的在于保证隧洞在运用过程中洞内始终有一定正压力,避免产生空蚀,并为衬砌设计提供依据。

按隧洞通过设计流量107.3m 3

/s 来计算各段的流速水头和水头损失,其中沿程水头损失

g v R Li h i

i

fi 200384.02

3/4?

=;局部水头损失g v h i i ji 22ζ=。 计算成果列于下表5。

表5

计算成果核算:

)(33.1963.23.64.1022

m h h g

V H fi ji =++=∑+∑+?=

计算的H 与隧洞通过设计流量时的水头较接近,计算结果基本正确。按上表绘出隧洞总水头线及测压管水头线(略)。

5、消能计算

(1) 消能工的布置

前已述基本隧洞的消能工采用挑流式消能,其布置情况如下:在隧洞出口设宽为2.5m 的出流平台,平台长6.0m ,高程341.54m 。接着为斜坡扩散段,坡度为1/40,扩散角为7°,长度为36.0m ,扩散段末端为挑流鼻坎,其挑角θ=25°,坎高P=0.8m ,则挑坎圆弧半径m P R 54.825cos 18

.0cos 1=?

-=-=

θ,圆弧段水平投影长度a 为:a=Rsin θ=×sin25°=3.6m。

从平台末端到鼻坎末端共长40m ,鼻坎宽B 为:B=+2×tg7°=12.3m。 圆弧底部高程为:×1/40=340.64m 。 挑坎顶部高程为:+=341.44m 。 (2) 计算坎上水深h 0及流速v 0: 由洞口到挑坎分两段推算水面曲线: 1)平台段

以平台为基准线,列能量方程如下:

12

2

221122hw g

v h g v h +?+=?+

在校核洪水位时,h 1=3.0m , v 1=14.75m/s ,用试算法求h 2及v 2..

设h 2=3.04m,

m

R m X m m h R C L v h s m bh Q v w 884.054.8/55.754.802.325.255.702.35.202.3)04.30.3(2

1

//55.1404.35.2/6.110/2

2

2

221===?+==?==+=

==?==ω

查《中小型水库设计》,表得9.69=C (n=)

s m h b Q v /65.1402.35.2/6.110/=?==

30.0844.09.39/665.14221=??=∴w h

将已知各值代入平衡方程,则左、右两端基本相等,故认为平台末端水深为3.04m ,流速为14.55m/s 是正确的。

2) 从平台末端到圆弧段末长度为40.0m ,以高程340.64m 为基线,列能量方程,利用同样的方法,经试算得:坎上水深h 0=0.61m ,流速v 0=14.74m/s

(3) 下游尾水深的确定

尾水渠在岩体中开挖,不作衬砌,糙率为。

尾水深t 的计算,可近似按明渠均匀流公式。公式为:Ri C Q ω=。 式中:ω—过水断面面积(m 2

)

C —谢才系数, 6/16

/1401R R n

C ==

; R —水力半径, (m); i —渠底坡降, i=1/100;

用试算法:假设t=1.42m

s

m s m Q m

X R m m h B X m t tm B /6.110/5.11001.021.13.4132.2421.112.20/32.24/12.205.1142.12151232.2442.1)5.142.115()(33222

≈=???=====+??+=++==??+=+=ωω

即此时的流量与校核流量大致相等,故认为下游尾水深t=1.42m 正确。 (4) 计算冲坑中心到挑坎的距离L

已知v 0=14.74m/s ,h 0=0.61m ,t =1.42m ,s t =0.52m ,θ=25°,sin 25°=, cos 25°=,

g

h t s g V v v L t )cos 2

(2sin cos cos sin 0

220020θθθθθ++++=

m

87.208

.9)2906

.061.042.152.0(6.19423.074.14906.074.14384.074.14222=?++?+??+?=

(5) 估算冲坑深度d

用公式t 0=Kq 1/2

H 01/4

,求解t 0。 式中:K —经验系数K =;

q —坝上单宽流量, )./(99.83

.126

.1103m s m q ==

; g

v H H 22

0?+=;

H —坝顶水位与下游水位高程差(m); H=++(+)=1.13m m H 22.126

.1974.1413.120=+

=

将以上数据代入上式则:

m t 0.722.1299.825.14/12/10=??= ∴冲坑深度d=t 0-t ==5.58m

结论分析: i ==,许可的最大临界后坡i c =3

1

~41,由于本隧洞的尾部岩石条件较好,认为冲坑不会危及消能工的安全。

四、隧洞的衬坝设计

1、衬砌的类型选择

由于本隧洞内水压力较大,故采用双筋砼衬砌。 材料的物理力学指标如下:

Ⅰ级钢筋:MPa GPa Eg MPa Rg g 150][;21;2400===σ

C 20砼:GPa E MPa MPa R m KN n h a h 26,2.2][,11;/25167.03=====σγμ;

岩石:GPa E cm kg K f m KN 10;/100;7;/253

03====γ

按Ⅲ级建筑物查规范,在正常情况下,安全系数为;检修情况下安全系数为。

2、计算断面的选择

在实际工程中,为了达到经济、安全的目的,在不同段,一般采用不同的衬砌形式,且用分缝相结合,故在不同段要分别取断面进行衬砌计算,本次设计只取洞身进口断面进行计算,其它断面的衬砌按已建工程拟定。

3、拟定衬砌厚度

采用式(4-10),式中:m i 75.12

5

.3==

γ;[σh ]=; [σh ]—砼允许拉应力(MPa); P —均匀内水压力(kPa);

H —高出衬砌内壁顶点的内水压力水头(m);从绘制的水头线查得

P =;

MPa h 11.0=ωγ

A —弹性特征系数,按下式计算。

)21)(1(01.0)1(01.0K Eh K Eh A μμμ-+++-=

=

cm h 0.2111

.02.211

.02.2927.075.1=--+?

?=∴

按构造要求,衬砌厚度一般不小于30cm ,所以只能按构造要求取衬砌厚度h =30cm ,则衬砌外半径205cm ,平均半径r =190cm 。

4、计算各种荷载产生的内力

(1) 山岩压力:

∵岩石的坚固性系数f =7>2,可不计水平山岩压力,只计算垂直山岩压力。 1) 不考虑外水压力时:岩石重度25KN/m 3

。 岩石压力拱高h 为:m f

H h 29.07

05

.2==

=

γ; 重直山岩压力强度q 为:q =γh =25×=m;

由山岩压力产生的M 和N 采用公式(4-14):∴M =(0.921A +B +26.43C ),N =+E +26.43F ) 系数A 、B 、C 、D 、E 、F 由表查得,M 、N 计算结果如下表1。 表1

2) 考虑外水压力,岩石重度γ=16KN/m 3

。 垂直山岩压力强度q =γh =m

计算公式与上同,其它量不变,则M =(0.921A +B +26.43C ),N =(0.921A +B +26.43C )

M 、N 计算结果如表2。

表2

(2) 衬砌自重产生的弯矩和轴向力采用式 4-15,得M =(A 1+,N =(C 1+

系数A 1、B 1、C 1、D 1由表查得,M 、N 计算结果如下表3。 表3

(3)内水压力产生的弯矩和轴向力 1) 均匀内水压力:

已知洞轴线的内水压力水头H =12.8m ,隧洞半径Υi =1.75m 则均匀内水压力水头

H 1=11.05m ,强度为21/5.110m KN H P ==ωγ

由于均匀内水压力产生的弯矩很小,只考虑轴向力。 砼的平均应力σ为:

∴N =-

σbh=-519××=(拉)

2) 不均匀内水压力产生的弯矩和轴向力采用公式(4-16),得M = (A 2+,N = (C 2+,系数

A 2、

B 2、

C 2、

D 2由表查出,M 、N 计算结果如下表4。

表4

(4)外水压力产生的弯矩和轴向力

1) 均匀外水压力:已知洞身计算断面的均匀外水压力水头h w =14.29m ,产生的轴向力由下式计算。KN b h N H 9.2922

==ωωγγ。

2) 在不均匀外水压力作用下,当)(22qr qre r r e ππ+≥时,不考虑弹性抗力的作用,则

M =49.8A 6,N =42.025C 7+。系数A 6、C 7、由表查出,M 、N 计算结果如下表5。

表5

5、荷载组合

隧洞衬砌的设计,荷载组合既要考虑不利条件,又要考虑可能性,为保证安全,应按最不利荷载组合计算,对中小型水库隧洞直径较小时,按以下两种情况组合计算:

1) 正常情况:山岩压力+衬砌自重+设计洪水时内水压力。 2) 检修情况:山岩压力+衬砌自重+外水压力 第一种情况组合见表6,7

22222/5195.110927

.0)75.1/05.2(927.0)9.1/05.2()/()/(m

KN P A A i e i e =?-+=-+=γγγγσ

表6 弯矩表()

表7 轴向力表(10KN )

第二种情况组合见表8,9

表8 弯矩表()

表9 轴向力表(10KN )

6、配筋计算

在两种组合中各选一种做配筋计算,取保护层a=a’=7cm。 第一种情况:N =(拉) M = 纵向破坏力至断面形心轴的距离为: cm a h

m N M e 82

0004.00=-<==

属于小偏心受拉

;96.720m e a h e =--=

m a h

e e 04.8'2

'0=-+= 受拉筋面积:2077.6)

(g '

cm a h KNe Ag =-=σ

受压筋面积:2070.6)

('

'cm a h g KNe Ag =-=

σ

第二种情况:N =(压) M = 纵向破坏力至断面形心轴的距离为: cm h cm N

M

e 9.63.087.100=<==

∴属于小偏心受拉

;87.971587.120cm a h e e =-+=-+

= cm a e h

e 13.6787.115'2

'0=--=--= 受拉筋面积:0)'(5.0'02

0<--=a h R bh KNe Ag g a

σ

受压筋面积:0)

(5.0'02

0<--=a h R bh KNe Ag g a

σ

∴第二种情况不需要配筋,按第一种情况配筋。 受拉筋计算面积6.77cm 2

,采用7.70cm 2

,520@14φ。 受拉筋计算面积6.70cm 2

,采用7.70cm 2

,520@14φ。

则受拉筋的配筋率%2.0%26.0%100301007

.7min =>=??==μμbh Ag 受压筋的配筋率%2.0%26.0%10030

1007

.7''min =>=??==μμbh Ag

∴配筋率满足要求

7、抗裂计算

(1) 校核砼应力:

按正常运用情况计算: N =(拉) M = Ag =Ag ’=7.70cm 2

对偏心受拉构件,砼衬砌中应力按下式计算:

][)(σσ≤--=

np

np T A mN

J x h M

式中:m —折算系数,取

X T —折算断面形心到受压边缘的距离(cm), cm h

X T 152

=≈

; J np —对折算断面形心的惯性矩(cm 4);

Eh

Eg

a X Ag X h Ag X h

b bX J T T T T np ]

)(')([)(3131212033-+-+-+= =22983.36cm 4

A np —折算断面面积(cm 2);A np =bh+nAg+nAg’=3125cm 2

∴2/584)(m KN A mN

J X h M np

np T =+-=

σ

,故][16682

.11300

54.1][σσσ?=?==

T K mRp ∴砼满足抗裂要求 (2) 校核钢筋应力

假设砼出现裂缝,不承担荷载,在验算钢筋应力时,仅考虑主要荷载,即均匀内水压力的作用,其产生的应力按照钢筋与围岩共同承担。

Eg

K g A Ag P

i H i i 01.0)(01.00

γγγγσ+'+=

2/19720m KN =

][/1333308

.1240000][2σσσ<∴===

m KN K Rg ∴钢筋强度满足要求

8、计算断面配筋图,如图1所示。

图1 断面配筋图

五、细部构造

1、缝的布置与构造

在衬砌中设置工作缝和永久性的横向变形缝。缝的构造见图1、2所示。

图1 温度缝剖面图

图2 施工缝剖视图

2、灌浆孔的布置

为保证衬砌与岩石的密切结合,共同工作,在洞顶布置回填灌浆孔,孔间夹角为30°,排距为2.5m。

为提高围岩的整体性,防止地下水渗漏,沿洞身每隔2.5米布置一排固结灌浆孔,孔深2.0m,见图2。

3、排水

为了降低作用在衬砌上的外水压力,要采取排水铺成措施,在衬砌底部设置纵向排水暗管,暗管由无砂砼做成,并沿洞轴线每隔8m设一道由砾石构成的环向排水,将收集到的渗水由纵向排水管排向下游。排水的布置见图3。

图3 洞身排水布置图

发电引水隧洞设计计算书

编号:SG-隧洞-01 工程名称:xxx电站工程 设计阶段:施工图设计 发电引水隧洞设计计算书 签名日期 审查: 校核: 计算: 目录

1 引言 (3) 2 设计依据文件和规 (3) 2.1有关本工程的文件 (3) 2.2主要设计规 (4) 2.3主要参考资料 (4) 3 设计基本资料 (4) 3.1工程等别与建筑物级别 (4) 3.2洪水标准 (5) 3.3地震烈度 (5) 3.4工程地质及水文地质资料 (5) 3.5取水口水位流量及泥沙含量 (5) 3.6风速、风向 (5) 4 隧洞线路布置设计 (5) 4.1洞线平面布置 (5) 4.2洞线纵、横剖面布置 (6) 5 隧洞水力学计算 (9) 5.1洞身段过流能力 (9) 5.2正常运用情况隧洞水面线计算 (9) 5.3设计洪水情况隧洞水力学计算 (16) 5.4非常运用情况(校核洪水)隧洞水力学计算 (20) 6 结构计算 (23) 6.1计算程序与方法 (23) 6.2有关的计算系数 (23) 6.3计算工况和荷载组合 (23) 6.4桩号0+000~0+060段结构与配筋计算成果 (24) 7 工程量计算 (37) 7.1桩号0+000~0+060段 (37) 7.2桩号0+060~0+070段 (38) 7.3桩号0+070~0+120段 (38) 7.4桩号0+120~0+450段 (39) 7.5工程量汇总 (39) 8 本次设计方案与XXX方案工程量、投资、发电量比较 (40) 8.1 XXX方案正常运行情况水面线计算 (40) 8.2工程量及投资比较表 (40) 8.3发电量比较 (41) 9 隧洞取水口与出口压力前池设计方案的初步考虑 (43) 9.1隧洞取水口 (43) 9.2压力前池 (43)

隧道爆破专项施工方案[001]

1.工程概况 本标段有隧道2座即竹坑山隧道和西洋隧道。两座隧道均为分离式隧道,竹坑山隧道平均长1214米,西洋隧道平均长1553米。 竹坑山隧道洞体围岩以Ⅲ、Ⅳ级为主,近洞口和断裂发育处为Ⅴ级。隧址区围岩为软质岩区,洞身所经围岩埋深较小,应力低,不会发生岩爆。岩层为细砂、粉砂岩、炭质粉砂岩类,岩石颗粒细小易产生粉尘污染,施工中应做好通风等工作。未发现活动性断层,未见滑坡、坍塌和地下采空区等不良地质现象。 西洋隧道洞体围岩以Ⅱ、Ⅲ级为主,近洞口和断裂发育处为Ⅳ、Ⅴ级。隧址区进口段为花岗,出口段围岩为砂岩偶夹炭质砂岩,但未见有煤层,施工中应缩短围岩暴露面积,做好通风。 隧道主要围岩类别列表如下: 隧道主要围岩类别表

2.爆破设计原则 爆破开挖设计依据施工规范、招标文件范本、设计文件与《爆破安全规程》(GB6722)的有关要求,遵循“管超前、严注浆、短进尺、强支护、勤量测、早封闭”的隧道施工原则,并在确保施工安全的前题下,充分兼顾本标段工程的施工工期要求。钻孔采用手风钻,炸药使用具有防水性能的2#岩石乳化炸药,起爆采用非电毫秒雷管,周边眼采用光面或预裂爆破。喷射混凝土、锚杆与钢架支护施工与爆破开挖密切配合。根据监测结果,及时进行二次衬砌。 Ⅱ、Ⅲ级围岩采用全断面开挖,Ⅱ级围每循环进尺控制为3.5m,Ⅲ级围岩每循环进尺控制为3m,周边眼采用光面爆破爆破。 Ⅳ级围岩根据围岩条件分别采用上下台阶开挖,上下台阶采用微台阶,间距5m。台阶高度考虑便于操作确定在拱顶下4.5m左右。围岩条件较差时,采用上下台阶开挖,上台阶采用手风钻钻孔爆破,上下台阶一

次爆破,初期支护紧跟,每循环进尺2.5m 。周边眼采用光面爆破。 Ⅴ级围岩采用中隔壁法开挖、微震爆破。V级土质宜采用人工或机械开挖,必要时采用小炮微振爆破。严禁大开挖,防止滑坡及坍塌。浅埋地段每循环进尺1.0m,深埋地段每循环进尺1.5m。 3.爆破设计方案 3.1. 洞口路堑开挖爆破设计方案 洞口路堑岩石开挖采用减弱松动爆破,爆破时预留50cm 厚的边坡保护层,利用挖掘机进行刷坡。路堑减弱松动爆破的主要技术参数为:爆破单耗0.3kg/m3,孔径42mm,梅花形布孔,孔间距1~1.5m,孔排距1~1.5m,堵塞长度不小于1.2m 或2/3 倍孔深,多排爆破时采用微差爆破。 3.2. 主洞爆破设计方案 3.2.1.Ⅱ级围岩爆破设计 ⑴开挖方式:采用全断面爆破开挖,爆破循环进尺3.5m,周边眼采用光面爆破。预留变形量不计,施工中根据实际情况进行调整。 ⑵掏槽方式:掏槽采用掏槽爆破时振动较小且比较方便于手风钻操作控制的的楔形掏槽方式。 ⑶周边眼爆破:采用光面爆破,炮眼间距0.45m。 ⑷起爆方式:采用非电导爆管雷管毫秒微差起爆,掏槽眼与扩槽眼的起爆时差不小于100ms,周边眼同段起爆,底板眼最后起爆。

隧道爆破设计方法

隧道爆破设计方案 (台阶法) 一、工程概述 本合同段有四座隧道。隧道区域处于构造剥蚀丘陵—低山地貌区,主要出第四系全新统残坡积碎石土、中元古武当山群片岩和上元古界震旦系上统灯组片岩。本段内短隧道为Ⅳ、Ⅴ级围岩,中长隧道为Ⅲ、Ⅳ、Ⅴ级围岩,其中Ⅳ级围岩采用台阶法爆破开挖(Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破)、锚、喷、格栅、网、初期支护,全断面复合式衬砌。爆破方法采用光面爆破。 二、光面爆破的特点 光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低的成本,加快了施工进度。根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,我标段的四座隧道中的Ⅲ、Ⅳ级围岩决定采用光面爆破施 工。 三、光面爆破方案的确定 目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法。 根据施工现场的实际条件及围岩情况,本段隧道采用全断面一次性开挖法。 四、台阶法(Ⅳ级围岩)光面爆破设计方案(结合前文内容) 1.光面爆破不偶合系数、装药直径 公式: /k i D d d == 式中 D 一不偶合系数; dk —炮眼直径,mm; di —炸药直径,mm; a —爆生气体分子余容系数; P —爆生气体初始压力;

—岩石的三轴抗压强度; c r—绝热指数,; 在实际操作过程中,对于周边眼的药卷,我们采取将标准φ32mm的2号岩石乳化炸药沿轴线 对半切(相当于φ20mm)。这个数值与理论计算值相近,则实际周边眼不偶合系数 D=dk/di =42/20=,符合规范中软岩装药不耦合系数D=的要求。 式中: dk炸药—炸药直径; di炮眼—炮眼直径。 2.确定周边眼间距(E)、最小抵抗线(W)和相对距系数(K)最小抵抗线与开挖的隧道断面大小有关。在断面跨度大,光爆眼所受到的夹制作用小,岩石 比较容易崩落,最小抵抗线可以大些,断面小,光爆眼所受到的夹制作用大,最小抵抗线可以小 些,最小抵抗线与岩石的性质和地质构造也有关,坚硬岩石最小抵抗线可小些,松软破碎的岩石 最小抵抗线可大些。我标段四座隧道岩质主要为软岩,故确定最小抵抗线(V)为~。 相对距系数是周边眼间距(E)与最小抵抗线(V)的比值,是影响爆破效果的重要因素。 K= E/V 式中, E为周边炮眼间距,cm;V为最小抵抗线,cm; K值总是小于1,当d=38~46mm,E=30~50cm, V=40~60cm时,K=~。 考虑到权爆区岩石节理较发育,并参照规范周边眼间距取值范围30cm-50cm, 对周边眼间距 取45cm,最小抵抗线值取60cm,K=E/V=。 3、炮眼装药系数 周边眼的装药集中度采用规范取值范围~0.15kg.m-1,取0.14kg/m,其它炮眼的填充系数选 用见下表: 4、循环Array进尺 综合考虑 各项因 素,取L=1.5m

隧洞设计实例讲解学习

隧洞设计实例

隧洞设计实例 一、隧洞的基本任务和基本数据 1、隧洞的基本任务 泄水隧洞的进口全部淹没在水下,进口高程接近河床高程,其担负的任务如下: (1) 预泄库水,增大水库的调蓄能力。 (2) 放空水库以便检修。 (3)排放泥沙,减小水库淤积。 (4) 施工导流。 (5) 配合溢洪道渲泄洪水。 2、设计基本数据 (1) 洞壁糙率泄洪洞采用钢筋砼衬砌,n=0.014~0.017,考虑到本隧洞施工质量较好,故取较小值n=0.014。 (2) 水利计算成果见表1。 表1 二、隧洞的工程布置 1、洞型选择

由于段村坝址为石英砂岩,地质条件较好,所以采用圆形有压隧洞,圆形断面的水流条件和受力条件比较好,并且可以充分利用围岩的弹性抗力,从而减小衬砌的工程量,降低施工的难度和造价。同时有压隧洞水流较平顺、稳定,不易产生不利流态。 2、洞线位置 洞轴线布置在右岸,这样出口水流对段村无影响,进口山势较陡,进流条件好,洞线为直线,较短,工程量小又利于泄洪。 3、工程布置 泄洪隧洞由进口段、洞身段、出口段三部分组成。 (1) 进口型式 由于进口部位山体岩石条件较好,故采用竖井式进口,在岩体中开挖竖井,将闸门放在竖井底部,在井的顶部布置启闭机及操作室、检修平台,竖井式进口结构简单,不受风浪影响,地震影响也较小,比较安全。 (2) 进口段 包括进口喇叭口段、闸室段、通气孔、渐变段等。 1) 进口喇叭口段 为了与孔口的水流型态相适应,使水流平顺,避免产生不利的负压和空蚀破坏,同时尽量减少局部水头损失,提高泄流能力,在隧洞进口首部,其形状应与孔口锐缘出流流线相吻合,一般顺水流方向做成三向收缩的矩形断面喇叭口形,其收缩曲线为1/4椭图曲线,顶面椭圆方程为: 1)5.33.0(5.32 222 =?+y x ,用下列坐标绘制顶面曲线,见表1。 表1 侧面曲线方程为:1)5.32.0(5.32 2=?+ ,用下列坐标绘制侧面曲线,见表2。 表2

引水隧洞工程施工方案37632

1.工程概述及说明 1.1.工程概况 曹河水电站工程导流隧洞工程位于晋城市。本枢纽工程以发电为主,兼顾航运、养殖等综合效益。本工程规模属大(2)型,工程等别为二等。主要由进水口进水塔、导流隧洞、出口段调压室、管理设施等建筑物组成。大坝为一级建筑物,溢洪道、引水系统和电站厂房均为二级建筑物。 导流隧洞长1800m。隧洞进出口段、进口段采用全断面钢筋混凝土衬砌,其余洞段对底板和侧墙采用钢筋混凝土薄衬。放空洞利用导流隧洞采用可爆堵头技术改造而成。 1.2工程地质 隧洞岩体强度较高,属Ⅲ类围岩,进口、出口段为Ⅳ类围岩坚固系数f ≈6~8。总的看成洞条件一般,进口段地质条件较差,施工难度较大,加强施工地质工作,发现不稳定岩块,及时支护或喷锚支护,以保施工安全。洞室围岩透水性强,地下水位低,隧洞采用钢筋混凝土衬砌。 1.3交通条件 工程对外交通目前以公路运输为主,届时可为本工程对外交通提供方便。 1.4施工供电条件 由发包人引10 kV线路至施工现场,导流隧洞进出口附近各设置1变压器,变压器容量能满足施工用电要求。 1.5 合同项目和工程范围 1.5.1 工程施工的区域范围 承包人主要在施工征地范围内完成导流隧洞(堵头段和封堵闸门除外)、进水塔和调压室工程施工。 1.5.2实施、完成和维护的工程项目 ⑴导流隧洞工程,包括土石方明挖、隧洞洞挖、混凝土浇筑、埋件施工、砌体工程和部分土石方回填等; ⑵放空洞工程,包括土石方明挖、混凝土衬砌施工等; ⑶临时工程:承包人为完成承建的工程项目,负责修建与维护施工道路、贮运设施、停放场地、辅助企业、施工风水电系统、混凝土拌和系统,还包括施工导流、场地排水、办公与生活营地营造、场地平整、场内道路

隧洞爆破方案设计

XX 隧洞钻爆施工爆破设计实例 一、工程概况 XX 引水隧洞全长280m,断面形状为直墙半园拱形,隧洞宽度2.4m,墙高1.6m ,拱半径1.2m ,C20混凝土永久衬砌,隧洞围岩为白云质炭岩,围岩类别Ⅰ~Ⅱ类,岩石坚固系数f=9。 二、开挖方案 隧洞开挖采用钻爆法施工,全断面一次开挖法,人工装车,机动翻斗车运输,T40推土机平碴。遇节理、裂隙发育,坍塌等软弱地段采用“钢支撑、锚网喷”等临时支护措施,整个开挖方案应遵行“弱爆破、强支撑、短进尺、勤监测、快砌衬”的原则。 三、开挖方法 (一)钻孔 采用YT-28气腿式风动凿岩机钻孔,用φ48钢管搭设活动式简易操作平台。 (二)爆破参数设计 1、炮眼直径:Φ42mm; 2、炮眼深度:2m,炮眼利用率90%,掘进循环进尺=2*0.9=1.8m; 3、炮眼总数N =2.3*6.72/0.7*0.78=29 式中: q —炸药单耗量,取=2.3 kg/m 3;查表5-6 s —开挖面积,s=6.72m 2; αγ qS N =

γ—每米长度炸药的药量,2号岩石硝铵炸药r=0.78kg/m;查表5-4 α—炮眼装药系数(加权平均值),取α=0.7,查表5-3 经计算,N=29个,根据施工经验,取29个孔眼较合适。 4、装药量的计算及分配

=2.3*6.72*1.8=27.8kg (三)、炮眼布置 1、掏槽眼 采用直眼螺旋掏槽,掏槽眼 应布置在开挖面中央偏下部位 置,其深度比其它眼深15~20cm 为爆出平整的开挖面,除掏槽眼外,所有炮眼的眼底应落在同一平面上。底部炮眼深度一般与掏槽眼相同。 2、辅助眼 辅助眼的布置主要是解决炮眼间距和最小抵抗线的问题,这可以由施工经验决定,一般W 约为炮眼间距的0.6~0.8,并在整个断面上均匀排列。当采用2号岩石铵梯炸药时,W 一般取0.6~0.8米。 W=0.6~0.8,K=0.8,E=0.48~0.64 3、周边眼 周边眼应严格按照设计位置布置。断面拐角处应布置炮眼。为满足机械钻眼需要和减少超欠挖,周边眼设 计位置应考虑 qSl qV Q ==D c )0.4~0.3(=图5-4 螺旋形掏槽 D b )5.2~2.1(=D a )5.1~0.1(=D d )0.5~0.4(=

隧洞抽排水方案

v1.0 可编辑可修改隧洞抽排水施工方案 批准: 审定: 校核: 编写:

目录 1. 工程概况 0 概述 0 地质情况 0 2. 编制依据 0 3. 抽排水施工 (1) 排水原则 (1) 排水说明 (1) 洞室施工期经常排水 (1) 经常性排水方案 (1) 地下水处理方案 (2) 地下水处理 (2) 施工区排水方案 (5) 4. 资源配置 (5) 机械设备配置 (5) 人员配置 (6) 5. 质量保证措施 (6) 6. 安全保证措施 (7) 7. 附图 (8)

隧洞抽排水施工方案 1. 工程概况 概述 本标段工程位于总干3#隧洞的总47+~总61+桩号段,设计流量为 m3/s,城门洞形断面,净宽,净高,直墙段高,设计水深,顶拱中心角180°,半径。 除主洞工程外还包含了14#~17#施工支洞,以及相应的临时工程等。 施工支洞为城门洞型,宽,高,且均为斜井,支洞坡比范围为%~%之间。 地质情况 桩号45+~47+地段:洞身穿过的地层为奥陶系中统上马沟组上段,地层岩性为深灰色、灰黑色厚层灰岩夹泥灰岩、粉砂质泥灰岩灰岩。岩溶地下水位位于洞底以下,可能存在层间水。隧洞开挖时有遇到溶洞的可能。 桩号47+~52+地段:洞身穿过的地层为奥陶系中统上马家沟组中段,地层岩性为深灰色、灰黑色厚层次岩、豹皮状灰岩,隧洞围岩为中硬岩。岩溶地下水位位于洞底以下,可能存在层间水。隧洞开挖时有遇到溶洞的可能。 桩号52+~59+地段:洞身穿过的地层为奥陶系中统上马家沟组下段,地层岩性为灰黄色泥灰岩、粉砂质泥灰岩夹薄层灰岩。在断层下盘附近穿过奥陶系中统上马家沟组中段深灰色、灰黑色厚层灰岩、豹皮状灰岩。桩号53+处发育FB1逆断层,断距约55m。岩溶地下水位位于洞底以下,可能存在层间水。 桩号59+~64+地段:洞身穿过的地层为奥陶系中统下马家沟组上段及下段,岩溶地下水位位于洞底以下,可能存在层间水,隧洞开挖时有遇到溶洞的可能。在地应力作用下,泥灰岩可能产生变形。 2. 编制依据 (1)《山西省中部引黄工程施工07标合同文件》(合同编号:SXSZBYHGC-JZ-TJ-024(2012)); (2)支洞及主洞设计图纸。

隧洞开挖爆破设计方案word参考模板

象山供水(白溪水库等引水)工程第十一标 合同编号:XGS/C-11 隧洞开挖 爆破工程设计方案 设计人: 审核人: 重庆葛洲坝易普力化工有限公司

第一章工程综合说明 1.1 工程概述 象山供水(白溪水库等引水)工程为跨行政区域的引水工程,供水对象为象山县中心城区,供水水源为宁海县白溪水库和象山县北部水库。 引水工程地跨宁海、象山两县,始于宁海县梅林街道西北面凤潭附近目前正在建设中的宁波市白溪水库引水工程凫溪左岸输水管道,分岔接支管取白溪水库部分库水,引水线路自分岔口向东途经宁海和象山两县,并在象山县北部境内沿线接入在建的上张水库、已建的平潭水库、隔溪涨水库和仓岙水库,终至正筹建中象山白蟹潭滨海水厂。引水工程自宁海县白溪水库年引水量为1825万m3,象山县北部水库年引水量3275万m3。引水工程起点到平潭水库输水建筑物设计规模10万t/d(1.16 m3/s),平潭水库至水厂输水建筑物设计规模16万t/d(1.85 m3/s)。 1.1.1 工程类别和建筑物级别 引水工程为Ⅲ等工程,主要建筑物输水隧洞、输水管道、泵站为3级,次要建筑物为4级,临时建筑物为5级。输水线路以隧洞为主,干线全长48.673km,隧洞42.129km、管道长6.544km。象山境内水库接入干线输水管道引水支线路全长5.67km,其中隧洞3.14km,管道2.53km。

1.1.2 主要建筑物 本标为象山供水(白溪水库等引水)工程11标段,主要建筑物有:大雷山隧洞工程1#(桩号:40+255.74~41+857.51m段)和鸟尖山隧洞工程2#(桩号:37+683.74~39+867.98m段)洞。为便于隧洞施工,隧洞进出口30m长埋管段土石方明挖进入本标段合同范围。 大雷山隧洞进口位于方家岙水库坝下右侧天打岩下的大雷溪右岸山坡,隧洞终点位于龙溪庵水库下游蔡家岙施工支洞,隧洞长3203.56 km,i=0.0003。隧洞进口中心高程43.1m,洞底高程42.0m,洞顶高程44.2m,水压线高程49.08m;隧洞出口中心高程42.1m,洞底高程41.0m,洞顶高程43.1m,水压线高程48.92m。 本标段大雷山隧洞工程1#为隧洞的进口段,桩号:40+255.74~41+857.51m洞长1601.71m。该段隧洞的终点中心高程42.6m,开挖洞径为2.2ⅹ2.8m马蹄形,钢筋砼衬砌段衬砌厚度30cm,衬后为D2.2m圆形。 鸟尖山隧洞进口起点位于清水亭北侧缘溪右岸,出口位于方家岙水库坝下左岸白岩岛山头下,隧洞长4368.48 km,i=0.0005。隧洞进口中心高程41.1m,洞底高程40.0m,洞顶高程42.2m,水压线高程49.64m;隧洞出口中心高程43.1m,洞底高程42.0m,洞顶高程44.2m,水压线高程49.42m。 本标段鸟尖山隧洞工程2#为隧洞的出口段,桩号:37+659.40~39+843.64m洞长2184.24m。该段隧洞的起始点中心高程

引水隧洞施工方案

九寨沟县汤珠河流域顺和水电站工程 引水隧洞开挖与衬砌 施 工 方 案 重庆黄浦建设(集团)有限公司 汤珠河流域顺和水电站工程项目部 二〇一〇年八月十六日

第一章编制说明 一、编制依据 1、严格按照以下资料进行本工程施工组织文件的编制: (1.1)、现场实际资料; (1.2)、有关本工程施工的国家和行业技术标准及规程规范; (1.3)、设计图纸; 二、编制原则 编制本工程文件及以后后续工作中,我部将在工程质量、安全、进度、环保和水土保持、文明施工等方面,争取创优。 三、执行的技术标准和规程规范 1、除设计文件中特别提出的技术要求外,我部所用的材料、设备,施工工艺和工程质量检验的验收,均严格执行国家和行业颁布的技术标准和规程规范的技术要求进行施工; 2、施工期间,所有标准和规程规范都可能被修订,工程施工中将执行其最新版本; 3、本分部工程施工执行的技术标准和规程规范为: (3.1)、GBJ107 《混凝土强度检验评定标准》 (3.2)、GB/T5123 《水电站基本建设工程验收规程》 (3.3)、GB/T5144 《水工混凝土施工规范》 (3.4)、DL/T5135-2001《水电水利工程爆破施工技术规范》 (3.5)、GBJ201-83 《土方与爆破工程施工及验收规范》 (3.6)、JGJ63 《混凝土拌和用水标准》 (3.7)、JGJ46-88 《施工现场临时用电安全技术规范》 (3.8)、JGJ59-99 《建筑施工安全检查标准》 (3.9)、SL279-2002 《水工隧洞设计规范》 (3.10)、DL5077-1997 《水工建筑物荷载设计规范》 (3.11)、SL62-94 《水工建筑物水泥灌浆施工技术规范》

隧道施工组织设计方案

隧道施工方案 1.工程概况 本合同段内有1座隧道(铁锁关隧道),为带中墙的整体式双连拱结构隧道。隧道全长257 m,隧道净空(宽×高):2×9.75×5m,隧道位于半径R=3435.91m的圆曲线内,该隧道为泥质粉砂岩夹砂质泥岩,围岩类别为Ⅱ类。隧道的地下水主要来源于大气降水,补给量受地形、地貌、岩性、构造和降水方式的控制。隧道区内地下水补给条件较差,地下水贫乏。隧道涌水量不大,但分布不均匀,一般呈渗水滴水状态,局部可能形成富水地段,如断层破碎带,裂隙发育地带等,会出现淋水或股流状态。 本隧道为Ⅱ类围岩,地质条件较差,施工中以“弱爆破、少扰动、强支护、早封闭、适时衬砌”为原则,并根据围岩监测结果及时调整施工方案,确保施工安全,保证工程质量。 2.施工组织及主要施工方法 隧道由有经验的专业化施工队伍负责施工,根据洞内不同工序,隧道施工队分为:测量班、掘进班、锚喷班、衬砌班等工班,分别负责各工序的施工。本隧道是本合同段控制工期的主要工程,拟配备性能良好的机械设备,主要机械设备有:电动压风机、装载机、自卸汽车、砼喷射机、水平钻机、钻孔(衬砌)台车等。详见拟投入本合同工程的主要施工机械表(表3)。 隧道按新奥法施工,出碴采用无轨运输方式,自制简易钻爆台车配

合7655型风动凿岩机钻孔,实施掘进(钻、爆)、出碴(装、运)、锚喷(拌、运、锚、喷)和衬砌(拌、运、灌、捣)等四条机械化作业线。 3.施工进度安排 根据现场调查和招标文件工期要求,拟采用单口掘进的施工方法,从隧道进口开始掘进。隧道路面为2%的纵向上坡,从进口端掘进也有利于洞内排水。根据隧道的结构特点及地质情况采用三导坑半断面,先墙后拱法施工(隧道开挖采用中导洞+侧壁导洞+上下导坑开挖法)。本工程拟2001年1月10日开工,2002年2月10日完工,施工时间为13个月。 4 .临时工程 4.1施工便道 施工便道按7m宽、0.2 m厚泥结碎石路面新建和整修。施工便道主要利用原有乡间道路,对旧路进行调直,加宽整修,以保证施工运输的需要。 4.2施工用电 隧道进口端安装一台500KVA电力变压器,保证生活及生产用电,同时配备一台250KW的柴油发电机以备电网停电时使用。 4.3施工用水 隧道进口紧邻玉带河,安装二组变频恒压供水装置,利用河水,供施工使用。 4.4高压供风 隧道进口建压风站一座,安装2台20m3/min电动空压机,供应进口施工用风。

隧道爆破设计方案

隧道爆破设计方案 一、编制说明 1、编制依据 (1)根据洛栾高速公路洛嵩段No.9标段施工图、设计文件。 (2)根据河南省交通规划勘察设计院《招标文件》、《初步工程地质勘察报告》、《施工图设计资料》。 (3)根据国家现行的有关公路工程的施工规范、标准等: (4)通过现场踏勘所掌握的有关情况和资料及本企业的施工技术管理水平和已完工的类似工程成功的施工经验。 2、编制原则 (1)本方案遵守招标文件、合同条款及业主的各项规定,严格按照公路路基施工技术规范、验收标准中各项规定和设计文件、施工图的各项要求进行编制。 (2)从我项目部现有的技术设备水平和能力出发,积极引进、采用新技术、新工艺、新材料、新设备,采用科学合理的施工工艺、方案,规范化施工,程序化作业。 二、工程简介 玉皇庙公路隧道采用上下行分离设置的隧道,为小净距隧道+独立双洞隧道,小净距段设计线最小间距为15.2m。右线隧道长809m (K59+970~ K60+779),其中Ⅳ级围岩段长121m,Ⅲ级围岩段长688m,沿线路方向设计纵坡为-2.5%/350m、-3.0%/459m;左线隧道长815m (F2K59+968~F2K60+783),其中Ⅳ级围岩段长112m,Ⅲ级围岩段长

703m,设计纵坡为-2.7%/347.42m、-3.0%/467.58m。 三、围岩级别 隧道所在山体顶部被第四系地层所覆盖,两侧沟边及半坡有基岩裸露,岩体完整性好,局部破碎,以坚硬岩为主,山体围岩级别为Ⅲ级,局部破碎带为Ⅳ级。沿线路方向表层为褐红色粉质粘土,无基岩出露。进口:0-3.5m为红褐色夹灰褐色安山岩,强风化;3.5-20m为红褐色夹灰褐色安山岩,中风化;出口:0-1.0m耕植土,黄褐色,夹风化岩屑,1-4.5m为红褐色夹灰褐色安山岩,强风化,4.5-20m为红褐色夹灰褐色安山岩,中风化。隧道围岩分级见下表: 围岩级别分类表 四、施工组织机构 为保证玉皇庙隧道爆破施工的顺利进行,保证工程的安全和质量,项目部成立“隧道爆破施工领导小组”,技术、施工、材料、机械、质检全面配合,统一协调,坚决保证爆破的顺利进行,领导小组对内指挥生产,对外负责履行合同。小组成员及分工如下:组长:魏跃东负责隧道的整体计划、协调; 副组长:唐定提供技术方案,负责全面技术问题; 副组长:虞文中负责现场施工组织安排及机械调配;

引水隧洞排水设计方案

引水隧洞排水设计方案 引水隧洞由于地质条件差,一直是大发DCIII标的关键线路,目前已完成164m石方洞挖施工。原合同(施工组织设计)中未设专门的排水系统,只是在隧洞洞内设置排水沟进行洞内集水排输。根据目前所揭示的情况,引水隧洞内渗水量较大,5#支洞上游侧是顺坡,可以通过排水沟将水引至5#支洞的集水井内,再由支洞已布置好的排水系统将水排出(根据渗水情况可以增加排水设备)。但5#支洞下游侧是反坡,水一直跟着开挖作业面,随着洞挖长度的增加和渗水量的增大,目前已影响到掌子面的钻孔和出渣作业,为了解决引水隧洞下游侧的排水,改善洞内作业环境,加快洞挖施工进度。结合现场实际情况和引水隧洞洞挖施工方案,制定了引水隧洞排水系统设计方案。 1 引水隧洞5#支洞下游工作面 1.1 集水坑的设置 由于受5#支洞地质条件的限制,5#支洞与主洞相交处的集水坑无法再增大,该集水坑只能满足5#支洞和引水隧洞5#支洞上游工作面的渗水排出,为了解决引水隧洞5#支洞下游侧的渗水排出问题,并结合现场实际地质情况,拟定在引8+950m左右处设置一个大的集水坑(防止引水隧洞5#支洞上游侧渗水太大时而5#支洞内现有的集水坑无法满足要求时可以备用),集水坑尺寸为:长×宽×深=250×200×150cm。 引水隧洞5#支洞下游侧沿引水隧洞右侧(靠山体内侧)采用风镐开挖一条排水沟,并采用M7.5浆砌石(或砖砌)而成,排水沟过水断面尺寸为50×30cm(高×宽),排水沟高出洞底板20cm。每隔50m设一个较小的集水坑,集水坑尺寸为:长×宽×深=150×100×150cm,共设7个集水坑。集水坑内均采用φ16的钢筋按@15cm焊接一个钢筋笼子,防止杂物等将水泵堵塞。 1.2 排水设备及管路布置 在引8+951m处的集水坑处设置二台45KW水泵(备用一台,根据渗水情况可以增加水泵数量),水泵型号为IS150-125-400,主要性能参数为:扬程50m,流量200m3/h,口径为150mm,电机功率45KW,沿隧洞布置一趟排水管至5#支洞外泥石流沟内,排水管采用φ150mm钢管,钢管长度为550m(排水管根据渗水情况可以随着水泵增加而增加排水钢管)。 引水隧洞5#支洞下游侧小集水坑内根据实际渗水情况设置一台7.5KW潜水泵将水排至引8+950m处的大集水坑内,水泵型号:100WQ-100-15-7.5,主要性能参数为:扬程15m,流量为100m3/h,口径为100mm,电机动率7.5KW。再通过45KW水泵将水抽

隧道爆破专项设计方案(最终版本)

赣龙铁路GL-5标段隧道工程 联络线项目部新龙门隧道 新龙门隧道 爆破专项方案 编制: 李欢芳 复核: 钮刚 审核: 吴智 中铁五局赣龙铁路工程指挥部联络线项目部 二零一三年十一月

目录 1.设计说明 (4) 1.1 设计依据 (4) 1.2 工程要求和目的 (4) 1.3 爆破设计原则 (5) 2.工程概况 (5) 2.1爆破周围环境状况 (6) 2.2爆破方案的确定 (6) 3.隧道爆破方案 (6) 3.1明挖方案 (6) 3.2洞身掘进方案 (6) 4.隧道爆破设计 (7) 4.1根据安全允许距离计算炸药总量(瞬发爆破最大装药量) (7) 4.1隧道明挖部分施工 (9) 4.2 隧道洞身Ⅲ级围岩施工方案 (9) 4.3隧道洞身Ⅳ、Ⅴ级围岩施工方案 (14) 4.3隧道爆破效果验证 (14) 4.4工期安排及主要设备情况 (15) 6.爆破安全控制措施 (19) 6.1 爆破警戒布置 (20) 6.2 爆破安全防护措施 (21) 6.3隧道爆破施工安全保障措施 (22) 6.4 爆破作业特殊处理措施 (24) 7爆破施工安全及管理 (25) 7.1房屋调查及危房防护 (25) 7.2爆破震动测试 (25)

7.3设备安全防护 (25) 7.4安全警戒及讯号标志 (25) 7.5起爆信号 (25) 7.6事故预防措施 (26) 8.爆破指挥部组织机构 (26) 8.1 爆破工作人员具备条件 (27) 8.2 爆破领导人的职责 (27) 8.3 爆破工程技术人员的职责 (28) 8.5 爆破班长的职责 (28) 8.6 爆破员的职责 (28) 9.爆破作业中可能出现的危险性预测和应急救援预案 (29) 9.1 爆破作业中可能出现的危险性预测 (29) 9.2爆炸应急预案 (29) 9.3飞石伤人应急救援预案 (30)

隧洞的开挖方法

隧洞的开挖方法 不良地质条件下 隧洞的开挖支护方法 摘要:在隧洞施工过程中通过鉴定实际围岩情况和特性,对施工方案进行调整,以达 到较好的开挖效果,保证施工安全、质量、进度。 主题词:不良地质隧洞开挖支护 意义:隧洞开挖的效果直接影响到掘进的速度,开挖的效果好可减少支护的时间,可 减少喷砼的数量和时间,可减少超挖的回填量,降低工程成本。 地下工程在实际施工过程中,地质情况往往和设计有很大的差别,这样如果再按原设 计方案进行施工一般不会达到预想的效果,施工安全、质量和进度也得不到保证。这时就 要根据实际地质情况,对施工方案进行调整,以满足各方面的需要。下面以我局施工的昆 明掌鸠河引水工程隧洞为例说明。 工程概况:昆明市掌鸠河引水供水工程是我局重点工程项目,其中Ⅲ标段麦地冲隧洞 地处于云南省昆明市禄劝县翠华乡境内。隧洞全长1286.106米,海拔高度2000米以上, 出口段埋深10-30m,属浅埋隧洞。根据图纸提供原设计Ⅴ类围岩长度165米,在实际开挖过程中,全部为全风化的板泥岩,节理发育并切割成碎石,节理缝有土填充,从其石质分 析尚不够Ⅴ类围岩的标准,属于不良地质地段。 设计施工方案:根据图纸设计Ⅴ类围岩的开挖无超前预支护,光面爆破,开挖后支护 采用2米锚杆间距1.5m梅花形布置、拱部挂φ6钢筋网、喷C25砼厚8cm,边墙素喷C25 砼8 cm。 调整后施工方案:我们经详细考查,认为此种支护方案不能满足实际施工需要。经过 认真分析研究,确定采用“短进尺、弱爆破、强支护”的原则进行开挖,开挖后在围岩没 有失去自稳前及时支护。 开挖方案:开挖前在开挖轮廓线上打超前管棚预支护。 (1)超前注浆小导管采用Φ42无缝钢管,每根长3.5—4米, 前端制成尖状。钢管前部3米范围内钻φ6mm小孔,间距30cm呈梅花型错开布置。 (2)钢管环向间距30cm,外插角大于3o—7o,施做位置为设计开挖轮廓线外放25cm。 (3)注浆浆液采用1:0.8水泥浆,注浆压力不大于0.3Mpa,注浆压力达到0.3Mpa关闭注奖器阀门,停止注浆。 (4)小导管尾端于钢支撑采用电焊焊牢固。

引水隧洞混凝土施工方案设计

引水隧洞永久支护及砼衬砌施工方案 1 工程概况 引水隧洞合同段全长841m(引2+171~引1+330m),新增段长260m(引1+330~引1+070m),合同段和新增段共长1101m。其中Ⅲ类围岩段长831m,Ⅳ类围岩段长225m,Ⅴ类围岩段长45m。引水隧洞Ⅲ类围岩开挖断面为5.5×5.55m 城门型和4.54×6.2m马蹄型,边顶拱永久支护采用锚杆+挂网+喷砼的形式,底板浇筑C20砼20cm厚;Ⅳ类、Ⅴ类围岩开挖断面为6.2×6.2m城门型和4.54×6.2m马蹄型,砼衬砌断面为Φ2.6m的圆型,全断面衬砌,混凝土厚度为50~178cm,混凝土标号为C25。钢筋混凝土保护层厚度为5cm。 主要工程量:喷C20混凝土:1535m3,Φ22锚杆:6326根,底板C20混凝土856m3,C25混凝土:3500m3,钢筋制安240t,橡胶止水带500m,聚氨酯硬质泡沫板240m2,沥青油毛毡130m2。 2 Ⅲ类围岩永久锚喷支护施工方案 2.1 Ⅲ类围岩永久支护形式 (1)Ⅲ类围岩城门洞型(开挖断面:5.5×5.55m):边顶拱采用系统锚杆Φ=22mm,L=3.0m,排距 1.5m,梅花型布置,边顶拱挂钢筋网ф=6.5mm,@=20×20cm,边顶拱喷C20混凝土12cm厚,底板浇筑20cm厚的C20素混凝土。 (2)Ⅲ类围岩马蹄型(开挖断面为4.54×6.2m):边顶拱采用系统锚杆Φ=22mm,L=3.0m,排距 1.5m,梅花型布置,边顶拱挂钢筋网ф=6.5mm,@=20×20cm,边顶拱喷C20混凝土15cm厚,底板浇筑20cm厚的C20素混凝土。 2.2 Ⅲ类围岩永久支护施工方法 2.2.1锚杆 锚杆为水泥砂浆锚杆,规格为Ф22,L=3.0m。 (1)“先注浆后插锚杆”施工主要适用于边墙施工。 “先注浆后插锚杆”砂浆锚杆施工工艺流程。

引水隧洞工爆破施工方案

重庆市石柱县万胜坝水电站引水隧洞工程 转角坝隧洞 梨子坪隧洞 爆 破 施 工 方 案 编制: 审核: 批准: 四川建设(集团)有限责任公司 二00六年月日

目录 一、爆破作业范围及特点 (1) 二、爆破方案设计 (1) (一)、洞外明挖 1、爆破设计原则 (1) 2、爆破作业施工机具的选择 (2) 3、施工方案 (3) (二)、洞挖 1、爆破设计原则 (4) 2、爆破作业施工机具的选择 (4) 3、施工方案 (4) 三、爆破危害控制 (6) 1、爆破震动危害控制 (6) 2、爆破飞石控制 (8) 四、爆破安全措施 (9) 1、爆破安全措施 (9) 2、爆破器材的储存 (9) 3、爆破器材的使用 (10) 4、剩余爆破器材的处理 (12) 五、爆破图表 (13) 六、涉爆工作人员 (14)

重庆石柱县万胜坝水利工程(一期) 转角坝隧洞、梨子坪隧洞爆破施工方案重庆市石柱县万胜坝水利工程(一期)主要包括拦水大坝、排洪道、引水隧洞工程等,前两项已先期开工,我公司施工转角坝隧洞全长及部分花椒坪隧洞,施工中洞口明槽(明渠)需爆破作业,隧洞开挖采取钻爆施工,为保证爆破作业安全,编制此爆破作业方案。 一、爆破作业范围及特点 1、转角坝隧洞进口端明渠部分10m长,开挖深度大于2m,采取全宽机械后退式开挖,由于覆盖层主要为砂岩,采取钻爆施工,自卸式汽车运输.施工点外约100m处有民宅聚集,爆破施工中应重点控制爆破震动及爆破飞石危害. 2、转角坝隧洞出口明渠段23m,覆盖层为砂岩,采取钻爆施工,人力装渣运输。明渠位于山坡中,属山堑半挖半填开挖,坡下有小发电站蓄水池,上游方向有电站值班房,爆破时应重点控制爆渣抛掷距离,减少飞石。 3、隧洞穿越岩层主要为长石石英岩采取钻爆破作业,光面爆破。 二、爆破方案设计 (一)、洞外明渠开挖 1、爆破设计原则 主要为削坡浅挖,采取加强松动爆破,分段微差起爆;为保证边(仰)坡成型质量,减小爆破扰动,确保边坡稳定,靠近边(仰)坡位置采取光面爆破。

小断面隧洞爆破方案

引用标准: 《爆破安全规程》GB6722—2003和《土石与爆破工程施工及验收规范》GB201—83《中华人民共和国民用爆炸物品管理条例》。 1工程概况 李家峡水库灌溉工程南干渠第一标工程包含4座隧洞,全长3062.09m,期中: 1#隧洞桩号为1+060.81~2+777.05,长1716.24m; 2#隧洞桩号为2+802.18~3+363.21,长561.03m; 3#隧洞桩号为3+774.43~3+888.89,长114.46m; 4#隧洞桩号为4+107.47~4+777.83,长670.36m。 1#、2#、3#隧洞为直线隧洞,洞形呈城门洞型;4#隧洞为折线隧洞,洞形呈马蹄形。本标段隧洞工程围岩情况为Ⅲ、Ⅳ、Ⅴ类围岩。 2隧洞开挖方法 采用钻爆法全断面掘进施工,利用自制简易式钻孔平台,人工手持风钻成孔,人工装药,电雷管起爆非电毫秒雷管,乳化炸药小药量爆破,周边实施光面爆破。 2.1 开挖准备 人员、凿岩机、钻爆台架就位,启动空压机供风,开启水泵供水,电源开启提供照明。 2.2 测量和布孔 在钻孔前用全站仪和水准仪准确测量出中线、轮廓线和水准高程,标出中心线和腰线及主要炮孔位置(周边孔、掏槽孔、底孔)。 2.3 钻爆作业 ㈠Ⅲ类围岩隧洞钻爆作业 采用钻孔平台手持式螺旋钻或TY-28手风钻钻孔,孔径φ42mm,按照光面爆破钻爆设计图进行钻孔。 除楔形掏槽孔外,其余炮孔均应与洞轴线平行;周边孔间距控制在55~60cm之间;周边孔采用间隔装药,导爆索联结,装药量为炮孔深度的35%;爆破孔间距为60~70cm;掏槽孔和底孔装药量为炮孔深度的80%。 开挖进尺为2~2.2m,炮孔利用率为90%以上,炮孔深度2.0m,掏槽孔为1.05~2.3m。炸药为φ32mm乳化药卷,单耗控制在2.0~2.2kg/m3,电雷管接非电毫秒雷管微差起爆,周边孔

隧洞设计实例

隧洞设计实例 一、隧洞的基本任务和基本数据 1、隧洞的基本任务 泄水隧洞的进口全部淹没在水下,进口高程接近河床高程,其担负的任务如下: (1) 预泄库水,增大水库的调蓄能力。 (2) 放空水库以便检修。 (3)排放泥沙,减小水库淤积。 (4) 施工导流。 (5) 配合溢洪道渲泄洪水。 2、设计基本数据 (1) 洞壁糙率泄洪洞采用钢筋砼衬砌,n=0.014~0.017,考虑到本隧洞施工质量较好,故取较小值n=0.014。 (2) 水利计算成果见表1。 二、隧洞的工程布置 1、洞型选择 由于段村坝址为石英砂岩,地质条件较好,所以采用圆形有压隧洞,圆形断面的水流条件和受力条件比较好,并且可以充分利用围岩的弹性抗力,从而减小衬砌的工程量,降低施工的难度和造价。同时有压隧洞水流较平顺、稳定,不易产生不利流态。 2、洞线位置 洞轴线布置在右岸,这样出口水流对段村无影响,进口山势较陡,进流条件好,洞线为直线,较短,工程量小又利于泄洪。 3、工程布置 泄洪隧洞由进口段、洞身段、出口段三部分组成。 (1)进口型式 由于进口部位山体岩石条件较好,故采用竖井式进口,在岩体中开挖竖井,将闸门放在竖井底部,在井的顶部布置启闭机及操作室、检修平台,竖井式进口结构简单,不受风浪影

响,地震影响也较小,比较安全。 (2) 进口段 包括进口喇叭口段、闸室段、通气孔、渐变段等。 1) 进口喇叭口段 为了与孔口的水流型态相适应,使水流平顺,避免产生不利的负压和空蚀破坏,同时尽量减少局部水头损失,提高泄流能力,在隧洞进口首部,其形状应与孔口锐缘出流流线相吻合,一般顺水流方向做成三向收缩的矩形断面喇叭口形,其收缩曲线为1/4椭图曲线,顶面椭圆方程为: 1)5.33.0(5.32 222 =?+y x ,用下列坐标绘制顶面曲线,见表1。 表1 侧面曲线方程为:1)5.32.0(5.32 2=?+x ,用下列坐标绘制侧面曲线,见表2。 表2 2) 进口闸室段 闸孔尺寸为3.5×3.5m ,闸室段长度参照工程经验取6.0m ,在闸门上端设置操作室,后设工作桥与坝面相连,桥面高程为365.81m ,与坝顶路面高程一致,在操作室与闸室之间设置检修平台,平台高程在正常高水位360.52m 以上,取361.50m 。 闸门用5.0×4.0m 的平面钢闸门,闸门槽宽度为1.0m ,深度为75cm ,由于高速水流通过平面闸门闸孔时,水流在门槽边界突变,容易发生空化水流,致使门槽及附近的边墙或底板发生空蚀。为此,将门槽的下游壁削去尖角,用半径为R=10cm 的圆弧代替,并做成1:12的斜坡,错距采用8cm 。 3) 通气孔 在闸室右部设置通气孔,其作用是在关闭检修门,打开工作门放水时,向孔中充气,使洞中水流顺利排出;检修完毕后,关闭工作门,向检修闸门和工作闸门之间充水时,排出洞中空气,使洞中充满水。通气孔的断面积一般取泄水孔断面积的0.5%~1%,此 泄水孔的断面积为9.62m 2 )4 5.314.3(2 ?,所以通气孔取0.25×0.25m ,通气孔的进口必须与闸门启闭机室相分离,以免在充、排气时影响工作人员的安全。 4)渐变段 为使水流平顺过渡,防止产生负压和空蚀,设置渐变段,由于渐变段施工复杂,故不宜太长,但是为使水流过渡平顺,又不能太短,一般用洞身直径的2~3倍,取渐变段长度为8.0m 。 根据本隧洞的任务,其进口高程应设置得低一些,河床的平均高程为340m ,这样既便于施工期导流,降低围墙高程,又可在运用期泄水,力争一洞多用,以求隧洞施工方便,运用安全,造价低廉。 (3) 洞身段 考虑到所选洞线的地形、地质情况,并运用情况,洞线长为230m ,洞身段长198.5m ,为了便于施工时出碴和检修时排除积水,坡降i =1/500,顺坡。 初拟洞径:按管流公式计算,公式为 02gH w Q μ=; 式中 μ—流量系数,μ=0.74~0.77 ,这里取0.74; w —出口断面面积(m 2 ); H 0—作用于隧洞的有效水头;H 0=库水位一出口顶部高程。 分别列表(3)计算设计及校核洪水位时所需的洞径:

引水隧洞钻爆设计

北盘江善泥坡水电站 引水隧洞开挖钻爆设计 一:工程概况 1:工程简介 1.1 隧道特性 善泥坡水电站引水发电系统布置于北盘江右岸山体内,由进水口、引水隧洞及压力管道组成。引水隧洞全长2344.123m.分上平段、上弯及竖井段及下弯段。其上平段(含渐变段)起点桩号为YK0+000.00m,终点桩号为YK2+314.123m,洞挖轴线总长2314.123m,进口渐变段(桩号YK0+000.00m~YK0+010.00m)断面由b×h=8.6m×9.6m的正方形渐变为半径4.5m的圆形。 引水隧洞上平段开挖半径分4.4m、4.5m、4.6m、4.8m、四种断面形式。 引水隧洞上弯段、竖井段及下弯段的起止桩号为YK2+314.123m~YK2+344.123m,下 弯段开挖半径由4.5m渐变3.85m. 隧道主要施工特性见表1,主要工程量见表2。 表1 引水隧洞施工特性表

1.2 工程地质 引水隧洞主要出露地层为:石炭系上统马平群(C3m),二叠系—石炭系过渡层(C3-P1), 二叠系:下统梁山组(P1l),栖霞组第一段(P1q1),栖霞组第二段及茅口组(P1q2+ P1m)及第四系。 引水发电隧洞区断裂构造较发育,从上游至下游沿线主要发育断层有: f1:从Ⅱ号冲沟口通过,产状为N10?~15?W,NE∠80?,逆断层,断层错距5~10m,破碎带宽0.5~1m,影响带宽20~30m,影响带范围内岩体中见挤压褶曲,岩体破碎,岩溶较发育。 f4:位于渡船寨南侧陡壁脚下冲沟中,产状为N30~50?W,SW∠60~80?,逆断层,垂直断距约20m。 f3:位于坝址右岸,产状为N50?W,SW∠80?,性质与f2断层相同,ZK-9钻孔揭露破碎带宽1~2m,为灰岩角砾,垂直断距约20m。 2:开挖工程量及爆破材料消耗 2.1支洞开挖工程量表(表1) 2.2主要爆破材料消耗表(表2) 表1 隧洞开挖主要工程量表

相关文档
最新文档