普通模板及其支架荷载标准值及分项系数

普通模板及其支架荷载标准值及分项系数
普通模板及其支架荷载标准值及分项系数

普通模板及其支架荷载标准值及分项系数

一、计算模板及其支架时的荷载标准值

1.模板及支架自重标准值

模板及其支架的自重标准值应根据模板设计图纸确定。对肋形楼板及无梁楼板模板的自重标准值,可按附表1.1采用。

附表1.1

2.新浇筑混凝土自重标准值

对普通混凝土可采用24KN/m3,对其他混凝土可根据实际重力密度确定。

3.钢筋自重标准值

钢筋自重标准值应根据设计图纸确定。对一般梁板结构每立方米钢筋混凝土的钢筋自重标准值可采用下列数值:

楼板1.1KN;

梁1.5KN。

4.施工人员及设备荷载标准值

(1)计算模板及直接支承模板的小楞时,对均布荷载取2.5KN/m2,另应以集中荷载2.5KN再行验算;比较两者所得的弯矩值,按其中较大者

采用;

(2)计算直接支承小楞结构构件时,均布活荷载取1.5KN/m2;

(3)计算支架立柱及其他支承结构构件时,均布活荷载取1.0KN/m2。

注:①对大型浇筑设备如上料平台、混凝土输送泵等按实际情况计算;

②混凝土堆集料高度超过100mm以上者按实际高度计算;

③模板单块宽度小于150mm时,集中荷载可分布在相邻的两块板上。

5.振捣混凝土时产生的荷载标准值

对水平面模板可采用2.0KN/m2;

对垂直面模板可采用4.0KN/m2(作用范围在新浇筑混凝土侧压力的有效压头高度之内)。

6.新浇筑混凝土对模板侧面的压力标准值

采用内部振捣器时,新浇筑的混凝土作用于模板的最大侧压力,可按下列二式计算,并取二式中的较小值。

F=0.22γct0β1β2V12(附1.1)

F=γcH(附1.2)

式中F——新浇筑混凝土对模板的最大侧压力(KN/m2);

γc——混凝土的重力密度(KN/m3);

t0——新浇混凝土的初凝时间(h),可按实测确定。当缺乏试验资料时,可采用t0=200/(T+15)计算(T为混凝土的温度℃);

V——混凝土的浇筑速度(m/h);

H——混凝土侧压力计算位置处至新浇筑混凝土顶面的总高度(m);

β1——外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2;

β2——混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时,取1.15。

混凝土侧压力的计算分布图形如下图所示:

7.倾倒混凝土时产生的荷载标准值

倾倒混凝土时对垂直面模板产生的水平荷载标准值可按附表1.2采用。

附表1.2

注:作用范围在有效压头高度以内。

二、计算模板及其支架时的荷载分项系数

计算模板及其支架时的荷载设计值,应采用荷载标准值乘以相应的荷载分项系数求得,荷载分项系数应按附表1.3采用。

附表1.3

钢筋强度的标准值和设计值的概念有何区别

钢筋强度的标准值和设计值 钢筋的强度标准值应具有不小于95%的保证率是什么意思 为了结构或构件安全需要满足一定的强度保证率,原材料的强度不可能都是同一的强度,有的可能高点,有的低点,假设设计值是210兆帕的话,在100根钢筋里面,有95跟强度在210之上,只有5根低于210,这就是满足95%保证率的要求。你想想如果这100跟里面只有一半的钢筋达到了210,这批钢材你敢用吗如果要求100%肯定又不太现实成本太大。像其他的混凝土之类的所有材料都是需要满足一定的强度保证率的 受拉钢筋设计时是按屈服强度设计都是以屈服强度为标准定的,屈服强度不分受拉和受压,屈服强度都是一样比如Q235的钢筋,设计值就是235,标准值就是210,Q335的钢筋,设计值是335,标准值就是30标准值主要是计算承载力的,设计值是用来验算结构或构件的挠度和裂缝宽度的。。。 荷载和材料强度的标准值是通过试验取得统计数据后,根据其概率分布,并结合工程经验,取其中的某一分位值(不一定是最大值)确定的。 设计值是在标准值的基础上乘以一个分项系数确定的(在国标《建筑结构可靠度设计统一标准》GB50068-2001中有说明)。 如荷载的设计值等于荷载的标准值乘荷载分项系数。这在荷载规范中已有明确规定,永久荷载的分项系数为或;可变荷载为或; 材料强度的设计值等于材料强度的标准值乘材料强度的分项系数。在现行各结构设计规范中虽没有给出材料强度的分项系数,而是直接给出了材料强度的设计值,但你如果仔细研究是不难发现标准值和设计值之间的系数关系的。材料强度的分项系数一般都小于1。 各种分项系数在某种意义上可以理解为是一种安全系数。 “为什么在承载能力极限状态设计时材料强度与荷载要取用设计值而在进行正常使用极限状态计算时材料强度与荷载要取用标准值”这个问题可以这样简单地理解: 现行建筑结构设计规范编制所遵循遵的原则是:“技术先进、经济合理、安全适用、确保质量”。在承载能力极限状态设计时材料强度与荷载要取用设计值,其安全系数大些,确保了安全;而在进行正常使用极限状态计算时材料强度与荷载要取用标准值,其安全系数虽然小些,但对使用要求也是能够满足的,它更可以体现经济合理。 以上只是个人的一些理解,仅供参考吧。如果你想对这个问题做进一步深入的探讨,建议你看一下《建筑结构可靠度设计统一标准》GB50068-2001和《建筑结构荷载规范》GB50009-2001这两个规范及它们的条文说明。 钢2

800直径圆柱模板计算书

800直径圆柱模板计算书 计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》 GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土柱名称KZ2 柱直径D(mm) 800 新浇混凝土柱高度(mm) 3700 柱箍截面类型钢带 二、柱箍布置

立面图 剖面图三、荷载组合

有效压头高度h =G4k/γc =29.87/24=1.245m 承载能力极限状态设计值 Smax =0.9max[1.2G4k+1.4Q3k ,1.35 G4k+1.4×0.7Q3k]=0.9max[1.2×29.87+1.4×2,1.35×29.87+1.4×0.7×2]=38.056kN/m2 Smin =0.9×1.4Q3k =0.9×1.4×2=2.52kN/m2 正常使用极限状态设计值 S ˊmax =G4k =29.87kN/m2 S ˊmin =0 kN/m2 四、面板验算 面板类型 覆面竹胶合板 面板厚度t 1(mm) 18 面板抗弯强度设计值[f](N/mm 2 ) 37 面板弹性模量E(N/mm 2 ) 10584 梁截面宽度取单位宽度即b =1000mm 。 W =bh2/6=1000×182/6=54000mm3 I =bh3/12=1000×183/12=486000mm4 1、强度验算 验算简图

弯矩图 M max=0.361kN·m σ=M max/W=0.361×106/54000=6.685N/mm2≤[f]=13N/mm2 满足要求! 2、挠度验算 验算简图 变形图

支架制作安装检验批质量验收记录

精品文档 . 支架制作安装检验批质量验收记录 工程名称分部工程名称施工单位项目经理 施工执行规范名称及编号 工业金属规定工程施工质量验收规范GB50184-2011 施工与质量验收规范的规定及允许误差(mm)施工单位检查评定记录监理(建设)单位验收记录 主 控项目1 管道支架的形式、材质、加工尺寸、精度及焊接质量应符合设计文件和有关施工验收规范的要求。 2 管道支架焊缝应进行外观检查,焊缝应均匀完整,外观 成型良好,不得有漏焊,欠焊,裂纹、姣边等缺陷 3 管道安装时,应及时固定和调整支、吊架。支、吊架位 置应准确,安装应平整牢固,与管子接触应紧密 4 管道安装时不宜使用临时支、吊架。当使用临时支、吊 架时,不得与正式支、吊架位置冲突,并应有明显标记 一般项目1 管道支架必须满足管道的稳定和安全,允许管道自由并符合安装高度 2 对有弯曲要求的部件,应先做个磨具,用挤压或滚压法 进行弯曲 3 组装焊接。需要组装焊接的支架,要先划出定位线,组 对时先点焊,经复查合格后再进行满焊,焊接质量必须符合焊接质量标准,焊缝高度必须达到,不得有夹渣、裂纹、未焊透等。 4 支架的焊接应由合格焊工施焊,管道支、吊架焊接后应 进行外观检查,不得有漏焊、欠焊、裂纹、烧穿、咬边等缺陷,焊缝附近的飞溅物应予清理。 5 放样和号料时,应根椐管架的加工工艺要求预留相应的切 割和加工裕量 6 钢板、型钢不宜使用氧乙块焰切割,一般宜机械切断,切断 后应清除毛刺 7 支、吊架应按设计要求制作,其组装尺寸偏差不得大于3mm。 8 导向支架或滑动支架的滑动面应洁净平整,不得有歪斜和卡涩现象。 施工单位检查 评定结果项目专业质量检查员:年月日 监理(建设)单位验收结论专业监理工程师: (建设单位项目专业技术负责人):年月日

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表 材料名称单位标准值分项系数设计值备注 平板的模板KM/m2 0.3 1.2 0.36 包括小楞 梁的模板KN/m2 0.5 1.2 0.6 展开面积 普通混凝土KN/m3 24 1.2 28.8 楼板的钢筋KN 1.1 1.2 1.32 每立方米混 凝土的含量 梁的钢筋KN 1.5 1.2 1.8 模板及支架KN/m2 0.75 1.2 0.9 层高≤4m 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 序号计算构件名 称 荷载类型单位标准值分项系数设计值备注

《城市桥梁设计荷载标准》(CJJ77-98)

目次 1总则 2术语、符号 3城市桥梁设计荷载 4城市桥梁设计可变荷载附录A本标准用词说明附加说明

1总则 1.0.1为改进城市桥梁设计荷载现行方法,采用按车道均布荷载进行加载设计,以达到与国际桥梁荷载标准相接轨的目的,制定本标准。 1.0.2本标准适用于在城市内新建、改建的永久性桥梁和城市高架道路结构以及承受机动车辆荷载的其他结构物的荷载设计。 1.0.3本标准规定的基本可变荷载,适用于桥梁跨径或加载长度不大于150m的城市桥梁结构。 1.0.4本标准的设计活载分为两个等级,即城-A级和城-B级。 1.0.5城市桥梁设计荷载,除应符合本标准外,尚应符合国家现行有关标准的规定。 2术语、符号 2.1术语 2.1.1作用 结构承受各种荷重和变形所引起力效应的通称。 2.1.2荷载 各种车辆、人、雪、风引起的重力,包括永久性、可变性和偶然性三类。 2.1.3永久荷载 在设计有效期内,其值不随时间变化,或其变化与平均值相比可忽略不计的荷载。 2.1.4可变荷载 在设计有效期内,其值随时间变化,且其变化与平均值相比不可忽略的荷载,按其对桥梁结构的影响程度,又可分为基本可变荷载(活载)和其他可变荷载。 2.1.5偶然荷载 在设计有效期内,不一定出现,一旦出现,其值将很大且持续时间很短的荷载。 2.1.6承载能力极限状态设计 结构达到承载能力的极限状态时,引起结构的效应等于材料的抗力时作为设计条件的设计方法。 2.1.7正常使用极限状态设计 结构在正常工作阶段,裂缝、应力与挠度达到最大功能时的设计方法。 2.1.8容许应力设计 按各种材料截面达到容许应力时的设计方法。 2.1.9效应 结构或构件承受内力和变形的大小。 2.1.10抗力 结构或构件材料抵抗外力的能力。 2.1.11桥面铺装 桥梁上部结构面板上铺设的防水层与摩损层。 2.1.12行车道板 承受行车重力的板式结构。

荷载设计值标准值区别

荷载设计值标准值区别 荷载代表值:设计中用以验算极限状态所用的荷载量值,例如标准值、组合值、频遇值、准永久值。 组合值:对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值。 频遇值:对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 准永久值:对可变荷载,在设计基准期内,其超越的总时间约为设计基准期一半的荷载值。 设计值:荷载代表值与荷载分项系数的乘积。 标准值:荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值、或某个分位值)。此概念在建筑地基规范、桩基规范、砼设计规范中经常出现,且以前的国家和地方规范使用中有点混乱,好多人都分不清设计值和标准值的具体使用方法,往往根据自己的意愿取用。我们知道任何荷载都有不同程度的变异性,但在设计中,不可能直接引用反映荷载变异性的各种统计参数,通过复杂的概率运算进行具体的设计,因此在设计时除了采用能便于设计者使用的设计表达式外,对荷载仍应赋予一个规定的量值,即荷载代表值,荷载可根据不同的设计要求规定不同的代表值,以使之能更确切地反映它在设计中的特点。荷载规范中给出4种代表值:标准值、组合值、频遇值、准永久值。对永久荷载应该用标准值作为代表值,

对可变荷载应根据设计要求用标准值、组合值、频遇值、准永久值作为代表值。荷载标准值是荷载的基本代表值,其他代表值都可以在标准值的基础上乘以相应的系数后得出。 由于荷载本身的随机性,因而使用期间的最大荷载亦是随机变量,可以用其统计分布来描述,按照《建筑结构可靠度设计统一标准》(GB50068-2001)的规定,标准值由设计基准期内最大荷载概率分布的某个分位值来确定(但未具体规定分位值,此为数理统计概念,可以简单理解为符合正态分布),设计基准期统一为50年。当对荷载有足够的资料而有可能对其统计分布作出合理的估计时,取分位值作为荷载的代表值,原则上可取分布的特征值。目前并非所有的荷载都能取得充分的的资料,根据工程实践协议一个公称值(Nominal value)作为代表值,以上两种方式确定的代表值统称为荷载标准值。 荷载标准值和设计值的关系: 荷载代表值乘以荷载分项系数后的值,称为荷载设计值。 在设计中,只是在按承载力极限状态计算荷载效应组合设计值的公式中引用了荷载分项系数。因此,只有在按承载力极限状态设计时才需要考虑荷载分项系数和设计值。 在按正常使用极限状态设计中,当考虑荷载标准组合时,恒载和活荷载都用标准值;当考虑荷载频遇组合和准永久组合时,恒载用标准值,活荷载用频遇值和准永久值或只用准永久值。 那么荷载代表值和标准值什么关系呢?

模板及支撑系统的施工荷载计算

模板及支撑系统的施工荷载计算摘要:本文是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合 1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用: 钢筋混凝土和模板及其支架自重标准值和设计值统计表 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 4混凝土楼板的施工荷载计算: 现浇混凝土楼面板的施工荷载主要有新浇混凝土、钢筋、模板和支撑系统的自重,以及

施工活荷载组成,针对验算的具体对象,采用相应的荷载组合方式,现以100mm厚的混凝土楼面板举例,进行施工荷载组合设计值的计算,依此类推得到不同厚度楼板的施工荷载组合设计值,以便查表应用。 100mm楼板施工阶段恒荷载的计算与统计 楼板施工活荷载的计算与统计 100mm楼板的施工荷载组合计算与统计 不同厚度楼板施工荷载组合设计值的统计表

建筑结构荷载规范汇总

建筑结构荷载规范汇 总 1.0.1 为了适应建筑结构设计的需要,以符合安全适用、经济合理的要求,制定本规范。 1.0.2 本规范适用于建筑工程的结构设计。 1.0.3 本规范是根据《建筑结构可靠度设计统一标准》(GB50068-2001)规定的原则制订的。 1.0.4 建筑结构设计中涉及的作用包括直接作用(荷载)和间接作用(如地基变形、混凝土收缩、焊接变形、温度变化或地震等引起的作用)。本规范仅对有关荷载作出规定。 1.0.5 本规范采用的设计基准期为50 年。 1.0.6 建筑结构设计中涉及的作用或荷载,除按本规范执行外,尚应符合现行的其他国家标准的规定。 2.1.1 永久荷载permanent load 在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载。 2.1.2 可变荷载variable load 在结构使用期间,其值随时间变化,且其变化与平均值相比不可以 忽略不计的荷载。 2.1.3 偶然荷载accidental load 在结构使用期间不一定出现,一旦出现,其值很大且持续时间很 短的荷载。 2.1.4 荷载代表值representative values of a load 设计中用以验算极限状态所采用的荷载量值, 例如标准值、组合值、频遇值和准永久值。 2.1.5 设计基准期design reference period 为确定可变荷载代表值而选用的时间参数。 2.1.6 标准值characteristic value/nominal value 荷载的基本代表值,为设计基准期内最大荷载统计分布的特征值(例如均值、众值、中值或某个分位值)。 2.1.7 组合值combination value 对可变荷载,使组合后的荷载效应在设计基准期内的超越概率,能与该荷载单独出现时的相应概率趋于一致的荷载值;或使组合后的结构具有统一规定的可靠指标的荷载值。 2.1.8 频遇值frequent value 对可变荷载,在设计基准期内,其超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。 2.1.9 准永久值quasi-permanent value 对可变荷载,在设计基准期内,其超越的总时间约为设计 基准期一半的荷载值。 2.1.10 荷载设计值design value of a load 荷载代表值与荷载分项系数的乘积。 2.1.11 荷载效应load effect 由荷载引起结构或结构构件的反应,例如内力、变形和裂缝等。 2.1.12 荷载组合load combination 按极限状态设计时,为保证结构的可靠性而对同时出现的各种 荷载设计值的规定。 2.1.13 基本组合fundamental combination 承载能力极限状态计算时,永久作用和可变作用的组 合。 2.1.14 偶然组合accidental combination 承载能力极限状态计算时,永久作用、可变作用和一个偶 然作用的组合。 2.1.15 标准组合characteristic/nominal combination 正常使用极限状态计算时,采用标准值或组 合值为荷载代表值的组合。 2.1.16 频遇组合frequent combinations 正常使用极限状态计算时,对可变荷载采用频遇值或准永 久值为荷载代表值的组合。

模板计算荷载

1.模板及支架自重 模板及支架的自重,可按图纸或实物计算确定,或参考表3-3:表3-3楼板模板自重标准值 2.新浇筑混凝土的自重标准值 普通混凝土用24 kN/m3,其他混凝土根据实际重力密度确定。 3.钢筋自重标准值 根据设计图纸确定。一般梁板结构每立方米混凝土结构的钢筋自重标准值:楼板1.1kN;梁1.5kN。 4.施工人员及设备荷载标准值 计算模板及直接支承模板的小楞时:均布活荷载2.5kN/m2,另以集中荷载2.5kN进行验算,取两者中较大的弯矩值; 计算支承小楞的构件时:均布活荷载1.5kN/m2; 计算支架立柱及其他支承结构构件时:均布活荷载1.0kN/m2。

对大型浇筑设备(上料平台等)、混凝土泵等按实际情况计算。木模板板条宽度小于150mm时,集中荷载可以考虑由相邻两块板共同承受。如混凝土堆积料的高度超过100mm时,则按实际情况计算。 5.振捣混凝土时产生的荷载标准值 水平面模板2.0kN/m2;垂直面模板4.0kN/m2(作用范围在有效压头高度之内)。 6.新浇筑混凝土对模板侧面的压力标准值 影响混凝土侧压力的因素很多,如与混凝土组成有关的骨料种类、配筋数量、水泥用量、外加剂、坍落度等都有影响。此外还有外界影响,如混凝土的浇筑速度、混凝土的温度、振捣方式、模板情况、构件厚度等。 混凝土的浇筑速度是一个重要影响因素,最大侧压力一般与其成正比。但当其达到一定速度后,再提高浇筑速度,则对最大侧压力的影响就不明显。混凝土的温度影响混凝土的凝结速度,温度低、凝结慢,混凝土侧压力的有效压头高,最大侧压力就大;反之,最大侧压力就小。模板情况和构件厚度影响拱作用的发挥,因之对侧压力也有影响。 由于影响混凝土侧压力的因素很多,想用一个计算公式全面加以反映是有一定困难的。国内外研究混凝土侧压力,都是抓住几个主要影响因素,通过典型试验或现场实测取得数据,再用数学方法分析归纳后提出公式。

脚手架检查与验收规范

扣件式脚手架检查与验收 一、扣件式脚手架构造要求 1、纵向水平杆构造纵向水平杆宜设置在立杆内侧,长度不宜小于3跨;纵向水平杆接长宜采用对接扣件连接,也可采用搭接。采用对接扣件应交错布置,两根相邻纵向水平杆的接头不宜设置在同步或同跨内,不同步或不同跨两个相邻接头在水平方向错开的距离不应小于500mm,各接头中心至最近主节点的距离不宜大于纵距的1/3;搭接长度不应小于1m,应等间距设置3个旋转扣件固定,端部扣件盖板边缘至搭接纵向水平杆杆端的距离不应小于100mm,纵向水平杆设置在横向杆上时,应等间距布置,且间距不应大于400mm。 2、横向水平杆的构造 主节点处必须设置一根横向水平杆,用直角扣件扣接且严禁拆除。主节点处两个直角扣件的中心距不应大于150mm。在双排脚手架中,靠墙一端的外伸长度a不应大于0.4l,且不应大于500mm; 3、脚手架必须设置纵、横向扫地杆。 纵向扫地杆应采用直角扣件固定在距底座上皮不大于200mm处的立杆上。横向扫地杆亦应采用直角扣件固定在紧靠纵向扫地杆下方的立杆上。当立杆基础不在同一高度上时,必须将高处的纵向扫地杆向低处延长两跨与立杆固定,高低差不应大于1m。靠边坡上方的立杆轴线到边坡的距离不应小于500mm。 4、立杆接长除顶层顶步外,其余各层各步接头必须采用对接扣件连接。 立杆上的对接扣件应交错布置:两根相邻立杆的接头不应设置在同步内,同步内隔一根立杆的两个相隔接头在高度方向错开的距离不宜小于500mm;各接头中心至主节点的距离不宜大于步距的1/3;搭接长度不应小于1m,应采用不少于2个旋转扣件固定,端部扣件盖板的边缘至杆端距离不应小于100mm。立杆顶端宜高出女儿墙上皮1m,高出檐口上皮1.5m。

CJJ 《城市桥梁设计荷载标准》

目次 1总则 2术语、符号 3城市桥梁设计荷载 4城市桥梁设计可变荷载 附录A本标准用词说明 附加说明 1总则 1.0.1为改进城市桥梁设计荷载现行方法,采用按车道均布荷载进行加载设计,以达到与国际桥梁荷载标准相接轨的目的,制定本标准。 1.0.2本标准适用于在城市内新建、改建的永久性桥梁和城市高架道路结构以及承受机动车辆荷载的其他结构物的荷载设计。 1.0.3本标准规定的基本可变荷载,适用于桥梁跨径或加载长度不大于150m的城市桥梁结构。 1.0.4本标准的设计活载分为两个等级,即城-A级和城-B级。 1.0.5城市桥梁设计荷载,除应符合本标准外,尚应符合国家现行有关标准的规定。

2术语、符号 2.1术语 2.1.1作用 结构承受各种荷重和变形所引起力效应的通称。 2.1.2荷载 各种车辆、人、雪、风引起的重力,包括永久性、可变性和偶然性三类。 2.1.3永久荷载 在设计有效期内,其值不随时间变化,或其变化与平均值相比可忽略不计的荷载。 2.1.4可变荷载 在设计有效期内,其值随时间变化,且其变化与平均值相比不可忽略的荷载,按其对桥梁结构的影响程度,又可分为基本可变荷载(活载)和其他可变荷载。 2.1.5偶然荷载 在设计有效期内,不一定出现,一旦出现,其值将很大且持续时间很短的荷载。 2.1.6承载能力极限状态设计 结构达到承载能力的极限状态时,引起结构的效应等于材料的抗力时作为设计条件的设计方法。

2.1.7正常使用极限状态设计 结构在正常工作阶段,裂缝、应力与挠度达到最大功能时的设计方法。2.1.8容许应力设计 按各种材料截面达到容许应力时的设计方法。 2.1.9效应 结构或构件承受内力和变形的大小。 2.1.10抗力 结构或构件材料抵抗外力的能力。 2.1.11桥面铺装 桥梁上部结构面板上铺设的防水层与摩损层。 2.1.12行车道板 承受行车重力的板式结构。 2.1.13重力密度 物质单位体积的重力。 2.1.14车道横向折减系数 多车道桥面在横向车道上,当不同时出现活载时,结构效应应予折减的系数。

柱模板计算书

柱模板计算书 品茗软件大厦工程;工程建设地点:杭州市文二路教工路口;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 柱模板的计算依据《建筑施工手册》第四版、《建筑施工计算手册》江正荣著、《建筑结构荷载规范》(GB 50009-2001)、《混凝土结构设计规范》GB50010-2002、《钢结构设计规范》(GB 50017-2003)等规范编制。 柱模板的背部支撑由两层(木楞或钢楞)组成,第一层为直接支撑模板的竖楞,用以支撑混凝土对模板的侧压力;第二层为支撑竖楞的柱箍,用以支撑竖楞所受的压力;柱箍之间用对拉螺栓相互拉接,形成一个完整的柱模板支撑体系。 柱模板设计示意图 柱截面宽度B(mm):600.00;柱截面高度H(mm):600.00;柱模板的总计算高度:H = 3.00m; 根据规范,当采用溜槽、串筒或导管时,倾倒混凝土产生的荷载标准值为 2.00kN/m2;

计算简图 一、参数信息 1.基本参数 柱截面宽度B方向对拉螺栓数目:1;柱截面宽度B方向竖楞数目:3;柱截面高度H方向对拉螺栓数目:1;柱截面高度H方向竖楞数目:3;对拉螺栓直径(mm):M12; 2.柱箍信息 柱箍材料:木楞; 宽度(mm):80.00;高度(mm):100.00; 柱箍的间距(mm):450;柱箍合并根数:1; 3.竖楞信息 竖楞材料:木楞;竖楞合并根数:2; 宽度(mm):60.00;高度(mm):80.00; 4.面板参数

光伏支架施工验收规范标准

.\ 光伏大棚钢结构施工验收标准

光伏大棚钢结构施工验收标准 1目的范围 为加强公司项目建设规范化、标准化,健全项目建设管理,保证项目建设质量,制定本标准。 本标准适用于公司所有新建、改建、扩建光伏电站项目钢结构安装工程施工验收。 2规范性引用文件 《钢结构工程施工质量验收规范》GB50205-2001 《紧固件机械性能螺栓、螺钉和螺柱》GB3098 《钢结构防火涂料应用技术规程》CECS24:90 《钢结构高强度螺栓连接的设计施工及验收规程》JGJ82 《建筑钢结构焊接技术规程》JGJ81 《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345 3标准要求 3.1 基本规定 3.1.1钢结构工程施工单位应具备相应施工资质,施工现场应有经项目技术负责人审批的施工组织设计、施工方案、安全技术交底等技术文件。 3.1.2钢结构工程应按下列规定进行施工质量控制。 3.1.2.1采用的原材料及成品应进行进场验收。凡涉及安全、功能的原材料及成品应按规范规定进行复验,并应经监理工程师见证取样、送样。 3.1.2.2各工序应按施工技术标准进行质量控制,每道工序完成后,应进行检查。 3.1.2.3土建基础完工后,应进行交接检验,并经监理工程师(建设单位技术负责人)检查认可。 3.1.2.4钢结构工程施工质量验收应在施工单位自检基础上,按照检验批、分项工程、分部(子分部)工程进行。钢结构分项工程应由一个或若干检验批组成,各分项工程检验批应按规范规定并结合工程实际情况进行划分。 3.2 验收标准及流程 3.2.1项目部应对钢结构图纸进行图纸会审,并形成图纸会审记录。 3.2.2钢结构施工前需编制施工组织设计并报批,施工单位进场前进行资质报验、技术(安全)交底。 3.2.3钢结构材料进场时需进行原材料报验,并形成验收记录。 3.2.4施工质量验收

承载力极限值、标准值、特征值与设计值的区别

单桩极限承载力标准值、承载力设计值、特征值单桩承载力设计值:=单桩极限承载力标准值/ 抗力分项系数(一般1.65左右)单桩承载力特征值:=静载试验确定的单桩极限承载力标准值/ 安全系数2 94桩基规范中单桩承载力有两个:单桩极限承载力标准值和单桩承载力设计值。单桩极限承载力标准值由载荷试验(破坏试验)或按94规范估算(端阻、侧阻均取极限承载力标准值),该值除以抗力分项系数(1.65、1.7,不同桩形系数稍有差别)为单桩承载力设计值,确定桩数时荷载取设计值(荷载效应基本组合),荷载设计值一般为荷载标准值(荷载效应标准组合)的1.25倍,这样荷载放大1.25倍,承载力极限值缩小1.65倍,实际上桩安全度还是2(,为了荷载与设计值对应,引入了单桩承载力设计值,在确保桩基安全度不低于2的前提下,规定桩抗力分项系数取1.65左右。所以,单桩承载力设计值是在当时特定情况下(所有规范荷载均取设计值),人为设定的指标,并没有实际意义。 02规范中地基、桩基承载力均为特征值,该值为承载力极限值的1/2(安全度为2),对应荷载标准值。同一桩基设计,分别执行两本规范,结果应该是一样的。 单桩承载力特征值×1.25=单桩承载力设计值; 单桩承载力特征值×2=单桩承载力极限值; 单桩承载力设计值×1.6=单桩承载力极限值。 “单桩承载力设计值”与“单桩承载力特征值”是两个时代的两个单桩承载力指标,没有可比性。犹如关公和秦琼。 当代的工程师忘了“单桩承载力设计值”这个没有意义的概念吧。 承载力特征值 在地基设计里,大多采用特征值,而不是设计值或标准值。实际上,这里的,同时具备了设计值和的含义。地基承载力特征值,指由载荷试验测定的地基土压力变形曲线线性变形内规定的变形所对应的压力值,其最大值为比例界限值。[1]

普通模板荷载标准值及分项系数

普通模板荷载标准值及分项系数 AI计算模板时的荷载标准值 AI.1模板自重标准值,应根据模板设计图纸确定。肋形楼板 及无梁楼板模板的自重标准值,可按表AI采用。 表AI楼板模板自重标准值kN/m2 AI.2新浇混凝土自重标准值,对普通混凝土可采用24kN/m3,对其他混凝土可根据实际表观密度确定。 AI.3钢筋自重标准值,应根据设计图纸确定。对一般梁板结构,每立方米钢筋混凝土的钢筋自重标准值可采用下列数值: 楼板1.1kN; 梁1.5kN。 AI.4施工人员和设备荷载标准值: AI.4.1计算模板及直接支承模板的小楞时,对均布荷载取2.5kN/m2,另应以集中荷载2.5kN进行验算,比较两者所得的弯矩值,按其中较大者采用;AI.4.2计算直接支承小楞结构构件时,均布荷载取1.5kN/m2; AI.4.3计算支架立柱及其他支承结构构件时,均布荷载取1.0kN/m2。 注 1对大型浇筑设备如上料平台、混凝土输送泵等按实际情况计算。 2混凝土堆集料高度超过100mm以上者按实际高度计算。 3模板单块宽度小于150mm时,集中荷载可分布在相邻的两块板上。 AI.5振捣混凝土时产生的荷载标准值,对水平面模板可采用2.0kN/m2;对垂直面模板可采用4.0kN/m2(作用范围在新浇筑混凝土侧压力的有效压头高度之内)。 AI.6新浇筑混凝土对模板侧面的压力标准值,一采用内部振捣器时,最大侧压力可按下列二式计算,并取二式中的较小值。 F=0.22γc t0β1β2v1/2 (A1) F=γc H (A2) 式中:F——新浇混凝土对模板的最大侧压力(kN/m2); γc——混凝土的表观密度(kN/m3);

模板支架检查验收表.doc

模板支架构造要求 模板支架检查验收表 工程名称施工单位 搭设项目验 负责人经理收日期 检查结果代 √=合格×=不合格无=无此项号说明 序验收验备 验收内容及要求 号项目收结果注 (1)模板支架搭设和拆除应编制专项 施工方案,模板结构设计应进行计算,并 应按规定进行审核、审批; (2)模板支架搭设高度 8m 及以上; 保施 跨度 18m 及以上,施工总荷载 10kN/㎡及 1 证工 以上;集中线荷载 15kN/m 及以上的超过方 项 一定规模的危险性较大的模板支撑安全案 专项施工方案应按规定组织专家论证; 目 (3)专项施工方案应明确混凝土浇筑方式,并制定有针对性安全措施。

2 3 (1)支架立杆基础应坚实、平整,承载力应符合方案设计要求,并应能承受支 架上部全部荷载; (2)支架立杆底部应按规范要求设置支 底座、垫板,垫板规格应符合规范要求; 架 (3)支架立杆底部纵、横向扫地杆的基 设置应符合规范要求; 础 (4)支架立杆基础应设排水设 施,并应排水畅通; (5)当支架立杆设在楼面结构上时,应对楼面结构强度进行验算,必要时 应对楼面结构采取加固措施。 (1)模板支架立杆材质及间距应符合方案设计和规范要求; 支 (2)模板支架立杆顶部应按规范设置架可调支托; 构 造(3)模板支架立杆底部距地面 200mm 高处应按规范设置纵横扫地杆; (4)模板支架立杆应按规范设置纵

4 5 横水平杆,水平杆步距应符合方案设计和 规范要求,且水平杆应按规范要求连续设 置; (5)模板支架立杆接长应按规范进行连接,严禁采用搭接;严禁将上段的钢 管立柱与下段钢管立柱错开固定在水平拉 杆上; (6)模板支架应按施工方案和规范要求设置纵、横向及水平剪刀撑。 (1)当支架高宽比大于规定值时,应按规定设置连墙杆或采用增加架体 宽 度的加强措施; 支 架 (2)立杆伸出顶层水平杆中心线至支稳撑点的长度应符合规范要求; 定(3)浇筑混凝土时应对架体基础沉降、架体变形进行监控,基础沉降、架体 变形应在规定允许范围内。 (1)模板上施工均布荷载、集中荷载施 工应在设计允许范围内; 荷 (2)当浇筑混凝土时,应对混凝土堆载 积高度进行控制。

标准值、设计值、特征值、强度代表值资料

关于标准值、设计值、特征值 2007-08-25 21:48 一、原因 与钢、混凝土、砌体等材料相比,土属于大变形材料,当荷载增加时,随着地基变形的相应增长,地基承载力也在逐渐加在,很难界定出下一个真正的“极限值”,而根据现有的理论及经验的承载力计算公式,可以得出不同的值。因此,地基极限承载力的确定,实际上没有一个通用的界定标准,也没有一个适用于一切土类的计算公式,主要依赖根据工程经验所定下的界限和相应的安全系数加以调整,考虑一个满足工程的要求的地基承载力值。它不仅与土质、土层埋藏顺序有关,而且与基础底面的形状、大小、埋深、上部结构对变形的适应程度、地下水位的升降、地区经验的差别等等有关,不能作为土的工程特性指标。 另一方面,建筑物的正常使用应满足其功能要求,常常是承载力还有潜力可挖,而变形已达到可超过正常使用的限值,也就是变表控制了承载力。 因此,根据传统习惯,地基设计所用的承载力通常是在保证地基稳定的前提下,使建筑物的变形不超过其允许值的地基承载力,即允诺承载力,其安全系数已包括在内。无论对于天然地基或桩基础的设计,原则均是如此。 随着《建筑结构设计统一标准》(GBJ68-84)施行,要求抗力计算按承载能力极限状态,采用相应于极限值的“标准值”,并将过去的总安全系数一分为二,由荷载分项系数和抗力分项系数分担,这给传统上根据经验积累、采用允许值的地基设计带来了困扰。 《建筑地基基础设计规范》(GBJ7-89)以承力的允许值作为标准值,以深宽修正后的承载力值作为设计值,引起的问题是,抗力的设计值大于标准值,与《建筑可靠度设计统一标准》(GB50068-2001)规定不符,因此本次规范进行了修订。 二、对策 《建筑结构可靠度设计统一标准》(GB50068-2001)鉴于地基设计的特殊性,将上一版“应遵守本标准的规定”修改为“宜遵守本标准规定的原则”,并加强了正常使用极限状态的研究。而《建筑结构荷载规范》(GB50009-2001)也完善了正常使用极限状态的表达式,认可了地基设计中承载力计算可采用正常使用极限状态荷载效应标准组合。 “特征值”一词,用以表示按正常使用极限状态计算时采用的地基承载力和单桩承载力的值。 三、应用 用作抗力指标的代表值有标准值和特征值。当确定岩土抗剪强度和岩石单轴抗压强度指标时用标准值;由荷载试验确定承载力时取特征值,载荷试验包括深层、浅层、岩基、单桩、锚杆等,见规范有关附录。 地基承载力特征值fak是由荷载试验直接测定或由其与原位试验相关关系间接确定和由此而累积的经验值。它相于载荷试验时地基土压力-变形曲线上线性变形段内某一规定变形所对应的压力值,其最大值不应超过该压力-变形曲线上的比例界限值。 修正后的地基承载力特征值fa是考虑了影响承载力的各项因素后,最终采用的相应于正常使用极限状态下的设计值的地基允许承载力。 单桩承载力特征值Ra是由载荷试验直接测定或由其与原位试验的相关关系间接推定和由此而累积的经验值。它相应于正常使用极限状态下允许采用单桩承载力

500×500柱标准规定模板计算书

500×500柱模板计算书 柱模板的背部支撑由两层组成,第一层为直接支撑模板的竖楞,用以支撑混凝土对模板的侧压力;第二层为支撑竖楞的柱箍,用以支撑竖楞所受的压力;柱箍之间用对拉螺栓相互拉接,形成一个完整的柱模板支撑体系。 柱模板设计示意图 柱截面宽度B(mm):500.00;柱截面高度H(mm):500.00;柱模板的总计算高度:H = 3.00m;

计算简图 一、参数信息 1.基本参数 柱截面宽度B方向对拉螺栓数目:0;柱截面宽度B方向竖楞数目:3;柱截面高度H方向对拉螺栓数目:0;柱截面高度H方向竖楞数目:3; 2.柱箍信息 柱箍材料:木方; 宽度(mm):60.00;高度(mm):80.00; 柱箍的间距(mm):450;柱箍合并根数:1; 3.竖楞信息 竖楞材料:木方;竖楞合并根数:1; 宽度(mm):60.00;高度(mm):80.00;

4.面板参数 面板类型:胶合面板;面板厚度(mm):18.00; 面板弹性模量(N/mm2):6000.00;面板抗弯强度设计值f c(N/mm2):13.00; 面板抗剪强度设计值(N/mm2):1.50; 5.木方参数 方木抗弯强度设计值f c(N/mm2):13.00;方木弹性模量 E(N/mm2):9000.00; 方木抗剪强度设计值f t(N/mm2):1.50; 二、柱模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: F=0.22γtβ1β2V1/2 F=γH 其中γ-- 混凝土的重力密度,取24.000kN/m3; t -- 新浇混凝土的初凝时间,取2.000h; T -- 混凝土的入模温度,取20.000℃; V -- 混凝土的浇筑速度,取2.500m/h; H -- 模板计算高度,取3.000m; β1-- 外加剂影响修正系数,取1.200; β2-- 混凝土坍落度影响修正系数,取1.000。 分别计算得20.036 kN/m2、72.000 kN/m2,取较小值20.036 kN/m2作为本工程计算荷载。

模板支架验收标准

检查与验收 4.2.8.1 材质验收 4.2.8.2 架体验收 (1)架体验收必须由项目安全部、技术质量部、工程部及施工队伍等共同参与,

并填写验收单、合格后方可进行搭设或使用。 (2)支架的验收和日常检查按照以下规定进行,检查合格后,方允许投入使用或继续使用。 (3)达到设计搭设高度。 (4)在使用过程中,发现有显著变形、沉降、拆除杆件和拉结以及其它安全隐患存在的情况时。 (5)支架搭设的技术要求、允许偏差与检验方法见下表:

4.2.8.3模板验收 (1)模板安装必须垂直,角模方正,位置标高正确,两端水平标高一致。 (2)模板之间的拼缝及模板与结构之间的接缝必须严密,不得漏浆。 (3)预埋件位置准确,绑扎或焊接牢固,在浇注混凝土时不得位移或变形。 (4)脱模剂必须涂刷均匀。 (5)拆除模板时严禁碰撞墙体.对拆下的模板要及时进行清理和保养,如发现变形,开焊,应及时进行修理。 模板安装允许偏差要求见下表

4.2.8.4质量通病防治措施 (1)防治错模 支模前要放好模板线及检查线,模板安装完后,要复查位置、尺寸。(2)防治爆模 木方、对拉螺栓及支撑的设置要严格按施工方案进行,不允许随意改变间距,且注意木方要立放,对拉螺栓和地脚螺栓用的钢筋要经过检验,合格后才能使用。在砼浇筑过程中,要经常检查,如发现变形,松动等情况,及时修补加固。 (3)防治模板拼缝及清理通病浇筑砼不合格 要对所有背楞方木通过木工压刨,加工裁制成统一尺寸,以防止模板翘曲不平。模板接缝宽度不大于1mm时,板缝用包装胶纸贴缝。浇筑砼前,用高压风管清理模板内木屑等杂物。用水管冲洗湿润模板,要保证模板内洁净,用水浇透。

柱模板支撑计算书

柱模板支撑计算书 一、柱模板基本参数 柱模板的截面宽度 B=600mm , 柱模板的截面高度 H=800mm ,H 方向对拉螺栓1道, 柱模板的计算高度 L = 6000mm , 柱箍间距计算跨度 d = 600mm 。 柱箍采用双钢管48mm ×2.9mm 。 柱模板竖楞截面宽度60mm ,高度50mm 。 B 方向竖楞4根,H 方向竖楞5根。 面板厚度15mm ,剪切强度1.2N/mm 2,抗弯强度12.0N/mm 2,弹性模量9000.0N/mm 2。 木方剪切强度1.4N/mm 2,抗弯强度11.0N/mm 2,弹性模量9000.0N/mm 2。 柱模板支撑计算简图 二、柱模板荷载标准值计算 强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载设计值;挠度验算只考虑新浇混凝土侧压力产生荷载标准值。 新浇混凝土侧压力计算公式为下式中的较小值: 800

其中 γc —— 混凝土的重力密度,取24.000kN/m 3; t —— 新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取3.000h ; T —— 混凝土的入模温度,取15.000℃; V —— 混凝土的浇筑速度,取2.500m/h ; H —— 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取6.000m ; β—— 混凝土坍落度影响修正系数,取0.900。 根据公式计算的新浇混凝土侧压力标准值 F1=28.680kN/m 2 考虑结构的重要性系数0.90,实际计算中采用新浇混凝土侧压力标准值: F1=0.90×28.690=25.821kN/m 2 考虑结构的重要性系数0.90,倒混凝土时产生的荷载标准值: F2=0.90×4.000=3.600kN/m 2。 三、柱模板面板的计算 面板直接承受模板传递的荷载,应该按照均布荷载下的简支梁计算,计算如下 面板计算简图 面板的计算宽度取柱箍间距0.60m 。 荷载计算值 q = 1.2×25.821×0.600+1.40×3.600×0.600=21.615kN/m 面板的截面惯性矩I 和截面抵抗矩W 分别为: W=22.500cm 3 I=16.875cm 4 (1)抗弯强度计算 f = M / W < [f] 其中 f —— 面板的抗弯强度计算值(N/mm 2); M —— 面板的最大弯距(N.mm); 21.62kN/m A

建筑结构荷载规范标准

3 荷载分类和荷载效应组合 3.1 荷载分类和荷载代表值 3.1.1 结构上的荷载可分为下列三类: 1 永久荷载,例如结构自重、土压力、预应力等。 2 可变荷载,例如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载等。 3 偶然荷载,例如爆炸力、撞击力等。 注:自重是指材料自身重量产生的荷载(重力)。 3.1.2 建筑结构设计时,对不同荷载应采用不同的代表值。对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 3.1.3 永久荷载标准值,对结构自重,可按结构构件的设计尺寸与材料单位体积的自重计算确定。对于自重变异较大的材料和构件(如现场制作的保温材料、混凝土薄壁构件等),自重的标准值应根据对结构的不利状态,取上限值或下限值。 注:对常用材料和构件可参考本规附录A采用。 3.1.4 可变荷载的标准值,应按本规各章中的规定采用。 3.1.5 承载能力极限状态设计或正常使用极限状态按标准组合设计时,对可变荷载应按组合规定采用标准值或组合值作为代表值。 可变荷载组合值,应为可变荷载标准值乘以荷载组合值系数。 3.1.6 正常使用极限状态按频遇组合设计时,应采用频遇值、准永久值作为可变荷载的代表值;按准永久组合设计时,应采用准永久值作为可变荷载的代表值。 可变荷载频遇值应取可变荷载标准值乘以荷载频遇值系数。 可变荷载准永久值应取可变荷载标准值乘以荷载准永久值系数。 3.2 荷载组合 3.2.1 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。 3.2.2 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合,并应采用下列设计表达式进行设计: γoS≤R (3.2.2)

相关文档
最新文档