循环泵选型计算书

循环泵选型计算书
循环泵选型计算书

水泵选型计算书

一、设计工况

已知太原某建筑面积A为3、3万m2,楼高24层,每层3米,5层以上为高区,以下为低区,供暖面积各为1、25万m2,预留0、8万m2供暖住宅。现设20台GG-399型96kW锅炉。

二、设计参数

2、1气象资料(太原)

采暖室外计算温度-12℃

采暖室外平均温度-2、7℃

采暖期天数135天

室外平均风速3m/s

2、2室内设计参数

采暖室内计算温度18℃

2、3采暖设计热负荷指标

2、3、1采暖设计负荷指标qs(W/m2) 46、37 在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其她供热设施供给的热量。

2、3、2耗热量指标qh(W/m2) 32

三、循环水泵选型: 3、1系统开闭式扬程公式

开式水系统 Hp=hf+hd+hm+hs 式中

hf 、hd ——水系统总的沿程阻力与局部阻力损失,Pa; hm ——设备阻力损失,Pa;

hs ——开式水系统的静水压力,Pa 。 静水压力应该就是水泵停止状态下,冷却塔静止液面到水泵或设备末端得高差;

hd/ hf 值,小型住宅建筑在1~1、5之间;大型高层建筑在0、5~1之间。 注:闭式水系统没有hs 一项。

3、2 一次循环泵选型

3、2、1一次循环水泵的流量Q:

方法一:

)(12T T C F

R

G -=

式中 G ——循环水泵的质量流量,kg/h; R ——热损失系数,一般取1、05;

F ——采暖系统所需热量,也就就是热水锅炉或热交换器产生的热量,kcal/h;

T2、T1——热水锅炉供回水温度,℃; C ——水的比热,kcal/(kg*℃)。

由上式得,

h

kg G /44.115597)7590(11

.860962005.1=-????

=

查的75℃水的比重γ为974、83kg/m 3,则

h m h m G Q /58.118/83.97444.115597/33=÷==γ

该值即为20台GG-399型热水锅炉与分水器之间所需循环泵的流量值。 方法二:

)/(*86.0Th Tg F qh G -=

式中 G ——循环水泵的质量流量,kg/h;

qh ——采暖设计热负荷指标,这里查询全国主要城市采暖期耗热量指标与采暖设计热负荷指标表太原现有建筑设计热负荷指标为46、37W/m 2; F ——建筑面积,m 2;

Tg 、Th ——系统供回水温度,℃。

由上式得,

h

kg G /04.87732759033000

37.4686.0=-??

=

查得75℃水的比重γ为974、83kg/m 3,则

h m h m G Q /9.89/83.97404.87732/33=÷==γ

综上两种方法,方法一就是约3吨热水锅炉带动3、3万m 2的供暖,符合实践经验,

故太原的实际采暖设计热负荷指标应该有

2

2/18.58330009620m

W m kW q h =?=

,那么根

据方法二的公式可得

h

m h m Q /110/83.974*)7590(33000

*18.5886.033=-*

=。

结论,一次循环泵的流量为110m 3/h 。

3、2、2一次循环泵的扬程H:

一次循环系统由锅炉、循环泵与分水器为主而组成的一个闭式系统,水泵只需克服设备、管件、少许阀件等的压头损失。故公式如下: H=hf+hd+hm+hs

式中 hf 、hd ——一次水系统总的沿程阻力与局部阻力损失(这里比摩阻取200Pa/m,管道长度为50m),m;

hm ——锅炉或热交换器内部压力损失,5~13m 水柱,这里取10m; Hs ——管路调节阀、变径、过滤器等阀组件的阻力,这里取5m 。 注:hd/ hf 值,小型住宅建筑在1~1、5之间;大型高层建筑在0、5~1之间。这里取hd/ hf=1。

在热水循环系统中,循环水泵就是在闭式回路中工作,泵处于系统回水的静压力作用之下,与开式系统相比,泵工作时应该比较省力,循环水泵的压头仅消耗在克服

50mw电站励磁系统参数的计算

50MW电站励磁系统 参数的计算 目录 1 发电机组参数 (2) 2 励磁变压器技术参数计算 (3) 2.1 二次侧额定线电压计算 (3) 2.2 二次侧额定线电流计算 (3) 2.3 额定容量计算 (4) 3 晶闸管整流元件技术参数计算 (4) 3.1 晶闸管元件额定电压的选择 (4) 3.2 晶闸管元件额定电流的选择 (5)

4 快速熔断器参数计算 (6) 5 励磁电缆计算 (6) 6 灭磁及过压保护计算 (7) 6.1 灭磁阀片计算 (7) 6.2 过电压保护计算 (8) 7 直流断路器计算 (9) 8 附录12 1 发电机组参数 A. 额定容量(MVA)58.8 B. 额定功率因数(滞后)0.85 C. 额定电压(kV)10.5 D. 额定频率(Hz)50 E. 相数 3 F. 空载励磁电压(V)62 G. 额定负荷及功率因素下励磁电压(V)164 H. 空载励磁电流(A)592 I. 额定负荷下励磁电流(A)1065 J. 励磁绕组绝缘的最高耐压(直流V)1500

K. 励磁绕组75?C 的电阻(Ω) 0.1307 L. 直轴瞬态开路时间常数T 'do(s) 6.76 M. 直轴瞬态短路时间常数T 'd(s) 1.82 N. 直轴同步电抗(Xd ) 1.059 O. 直轴瞬态电抗(Xd ’) 0.308 2 励磁变压器技术参数计算 2.1 二次侧额定线电压计算 励磁系统保证在机端正序电压下降到额定值的80%时,能够提供励磁系统顶值电压。励磁系统顶值电压为发电机额定容量时励磁电压的2.0倍。 A. 具体计算公式: min 2cos 35.18.0α??= fN u fT U K U 式中: Ku----电压强励倍数(α=10?时),取2.0倍(在80%U GN 下)。 fN U -----发电机额定容量时励磁电压。 B. 针对本文设计发电机组: ? ???= 10cos 35.18.0164 0.22fT U =308V 综合考虑,取fN U =360V 2.2 二次侧额定线电流计算 励磁系统保证当发电机在额定容量58.8MVA 、额定电压和功率因素为0.85的励磁电流的1.1倍时,能够长期连续运行。 A. 具体计算公式:

全国最好热水循环泵型号十大品牌排行榜

1.上海阳光泵业制造有限公司 上海阳光泵业是集设计/生产/销售泵、给水设备及泵用控制设备于一体的大型综合性泵业集团,是中国泵行业的龙头企业。总资产达38亿元,在上海、浙江、河北、辽宁、安徽等省市拥有7家企业,5个工业园区,占地面积67万平方米,建筑面积35万平方米。上海阳光获得了“上海市质量金奖”、“上海市科技百强企业”、“上海市名牌产品”、“中国质量信用AAA级”、“全国合同信用等级AAA 级”、“质量、信誉、服务三优企业”、“中国最具竞争力的商品商标”、“五星级服务认证”等荣誉,连续多年入选全国机械500强。 高端人才和高素质的员工队伍是阳光发展的动力。集团现有员工4500余人,其中工程技术人员500多名,主要由国内知名水泵专家教授、博士硕士、中高级工程师、高级工艺师组成,形成了具有创新思维的梯队型人才结构。 科技创新,是阳光基业长青的生命之源。集团是上海市高新技术企业、上海市知识产权示范企业和上海市专利示范企业。上海市级的“企业技术中心”,每年以销售总额的5%,用于技术创新和新产品研发。 2.台州桐乐山泵业有限公司 台州桐乐山泵业有限公司,涉及电机、阀门、电控系统、环保节能、机械铸造、热交换机、空压机、减速机、电气产品、压力容器等相关领域,集科研、制造、营销、服务为一体的科、工、贸企业集团。 台州桐乐山泵业有限公司始创于二十世纪八十年代,现拥有资产数亿元,注册资金贰亿零捌万元。旗下拥有罗店铸造、东方威尔空压机、东方威尔传动设备、东方威尔电机、东方威尔阀门、东方威尔节能技术、东方威尔水处理设备、南通威尔电机、东方泵业南通有限公司、意斯特压力容器、意斯特电气十几家控股子公司。集团总占地面积51.6万平方米,建筑面积43.8万平方米,综合实力位居中国泵行业前列。 台州桐乐山泵业有限公司先后获得"国家免检产品"、"济南名牌"、济南市"民营科技企业100强"、中国机械企业500强等称号,被评为济南市守合同重信用企业、济南市A类纳税企业及AAA级资信企业。公司现为中国通用机械泵业协会理事、中国水利企业协会灌排分会泵阀委员会副主任委员、中国节能工程建设会员、中石化市场成员、中石油天然气一级网络成员、国家电力公司电站配件供应网络成员、中国化工装备总公司泵阀产业网络成员、济南市消防协会成员等。 3. 上海贝德泵业有限公司

安全阀计算公式

安全阀计算公式 安全阀系压力容器在运行中实现超压泄放的安全附件之一,也是在线压力容器定期检验中必检项目。它包括防超压和防真空两大系列,即一为排泄容器内部超压介质防止容器失效,另一方面则为吸入外部介质以防止容器刚度失效。凡符合《容规》适用范围的压力容器按设计图样的要求装设安全阀。 一.安全阀的选用方法 a)根据计算确定安全阀.公称直径.必须使安全阀的排放能力≥压力容器的安全泄放量b)根据压力容器的设计压力和设计温度确定安全阀的压力等级; c)对于开启压力大于3MPa蒸汽用的安全阀或介质温度超过320℃的气体用的安全阀,应选用带散热器(翅片)的形式; d)对于易燃、毒性为极度或高度危害介质必须采用封闭式安全阀,如需采用带有提升机构的,则应采用封闭式带板手安全阀; e)当安全阀有可能承受背压是变动的且变动量超过10%开启压力时,应选用带波纹管的安全阀; f)对空气、60℃以上热水或蒸汽等非危害介质,则应采用带板手安全阀 g)液化槽(罐)车,应采用内置式安全阀. h)根据介质特性选合适的安全阀材料:如含氨介质不能选用铜或含铜的安全阀;乙炔不能选用含铜70%或紫铜制的安全阀. i)对于泄放量大的工况,应选用全启式;对于工作压力稳定, 泄放量小的工况,宜选用微启式;对于高压、泄放量大的工况, 宜选用非直接起动式,如脉冲式安全阀.对于容器长度超过6m的应设置两个或两个以上安全阀.

j)工作压力Pw低的固定式容器,可采用静重式(高压锅)或杠杆重锤式安全阀.移动式设备应采用弹簧式安全阀. k)对于介质较稠且易堵塞的, 宜选用安全阀与爆破片的串联组合式的泄放装置. l)根据安全阀公称压力大小来选择的弹簧工作压力等级. 安全阀公称压力与弹簧工作压力关系,见表1 m) 安全阀公称压力PN与弹簧工作压力关系表 表1 安全阀应动作灵敏可靠,当到达开启压力时,阀瓣应及时开启和完全上升,以顺利排放;同时应具有良好的密封性能,不仅正常工作时保持不漏,而且要求阀瓣在开启复位后及时关闭且保持密封;在排气压力下阀瓣应达到全开位置,无震荡现象,并保证排出规定的气量。 二.安全阀计算实例

励磁系统参数计算

########大学毕业论文设计 50MW电站励磁系统参数计算 指导老师:胡先洪 王波、张敬 学生姓名:######## 《电气工程及自动化》2002级

目录 1 发电机组参数 (3) 2 励磁变压器技术参数计算 (3) 2.1 二次侧额定线电压计算 (3) 2.2 二次侧额定线电流计算 (4) 2.3 额定容量计算 (4) 3 晶闸管整流元件技术参数计算 (5) 3.1 晶闸管元件额定电压的选择 (5) 3.2 晶闸管元件额定电流的选择 (5) 4 快速熔断器参数计算 (6) 5 励磁电缆计算 (7) 6 灭磁及过压保护计算 (7) 6.1 灭磁阀片计算 (7) 6.2 过电压保护计算 (9) 7 直流断路器计算 (9) 8 附录12

1 发电机组参数 A. 额定容量(MVA ) 58.8 B. 额定功率因数(滞后) 0.85 C. 额定电压(kV ) 10.5 D. 额定频率(Hz ) 50 E. 相数 3 F. 空载励磁电压(V ) 62 G. 额定负荷及功率因素下励磁电压(V ) 164 H. 空载励磁电流(A ) 592 I. 额定负荷下励磁电流(A ) 1065 J. 励磁绕组绝缘的最高耐压(直流V ) 1500 K. 励磁绕组75?C 的电阻(Ω) 0.1307 L. 直轴瞬态开路时间常数T 'do(s) 6.76 M. 直轴瞬态短路时间常数T 'd(s) 1.82 N. 直轴同步电抗(Xd ) 1.059 O. 直轴瞬态电抗(Xd ’) 0.308 2 励磁变压器技术参数计算 2.1 二次侧额定线电压计算 励磁系统保证在机端正序电压下降到额定值的80%时,能够提供励磁系统顶值电压。励磁系统顶值电压为发电机额定容量时励磁电压的2.0倍。 A. 具体计算公式: min 2 cos 35.18.0α??= fN u fT U K U 式中: Ku----电压强励倍数(α=10?时),取2.0倍(在80%U GN 下)。

循环泵选型计算书(1)

水泵选型计算书 一、设计工况 已知太原某建筑面积A为3.3万m2,楼高24层,每层3米,5层以上为高区,以下为低区,供暖面积各为1.25万m2,预留0.8万m2供暖住宅。现设20台GG-399型96kW锅炉。 二、设计参数 2.1气象资料(太原) 采暖室外计算温度-12℃ 采暖室外平均温度-2.7℃ 采暖期天数135天 室外平均风速3m/s 2.2室内设计参数 采暖室内计算温度18℃ 2.3采暖设计热负荷指标 2.3.1采暖设计负荷指标qs(W/m2) 46.37 在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其他供热设施供给的热量。 2.3.2耗热量指标qh(W/m2) 32 全国主要城市采暖期耗热量指标和采暖设计热负荷指标 城市名采暖期 天数(d) 采暖室外 计算温度 (d) 采暖室外 平均温度 (d) 节能建筑现有建筑 耗热量指标 q h(W/m2) 设计负荷指 标q h(W/m2) 耗热量指标 q h(W/m2) 设计负荷指 标q h(W/m2) 北京120 -9 -1.6 20.6 28.37 31.82 43.82 天津119 -9 -12 20.5 28.83 31.54 44.36 石家庄112 -8 -0.6 20.3 28.38 31.23 43.66 太原135 -12 -2.7 20.8 30.14 32 46.37 沈阳152 -19 -5.7 21.2 33.10 32.61 50.91 大连131 -11 -1.6 20.6 30.48 31.69 46.89 长春170 -23 -8.3 21.7 33.83 33.38 52.04 哈尔滨176 -26 -10 21.9 33.69 34.41 52.93 济南101 -7 -0.6 20.2 31.38 29.02 45.08

安全阀计算与选型

安全阀计算与选型 1. 确定确定安全阀类型安全阀类型 根据卸放介质物性、卸放量确定安全阀类型。 2. 确定安全阀公称压力 根据介质操作条件确定PN,选定弹簧工作压力级。 3. 安全阀安全阀计算计算 3.1 由工艺计算软件(hysis,pro II,aspen)计算获得介质基本物性数据(比重ρ,分子量M, 粘度μ,泄放量Gv,气体特性系数C,流量系数Kf,压缩系数Z,最高泄放压力Pm,泄放温度Ti,操作压力P 0,整定压力Ps)。 3.2 计算公式: 安全阀的计算参照GB/T 12241-2005(它与ISO 4126 安全阀一般要求计算方法相同) 中 的公式并依据实测额定排量系数来计算安全阀的额定排量,进而确定安全阀的口径,是比较可靠的计算方法。具体计算公式见GB/T 12241-2005 6.3节/6.5节。 3.2.1 介质为气体或蒸汽 1)临界流动下的理论排量计算 在下列条件下达到临界流动: 临界流动下的理论排量计算公式: 2)亚临界流动下的理论排量计算: 在下列条件下达到亚临界流动: 亚临界流动下的理论排量计算公式: 3)Excel 表格计算安全阀卸放面积A 0(作者Huang WenJia)

3.3 将必须的介质物性数据编入Excel 表格,并在安全阀卸放面积栏编好计算公式(见安全阀 计算excel 表格)。 安全阀安全阀的选用与的选用与的选用与计算实例计算实例计算实例 安全阀系压力容器在运行中实现超压泄放的安全附件之一,也是在线压力容器定期检验中必检 项目。它包括防超压和防真空两大系列,即一为排泄容器内部超压介质防止容器失效,另一方面则为吸入外部介质以防止容器刚度失效。凡符合《容规》适用范围的压力容器按设计图样的要求装设安全阀。 一.安全阀的选用安全阀的选用 1. 1. 安全阀安全阀安全阀各种参数的确定各种参数的确定各种参数的确定 a)确定安全阀公称压力。 根据阀门材料、工作温度和最大工作压力选定公称压力。 b) 确定安全阀的工作压力等级。 根据压力容器的设计压力和设计温度选定工作压力等级。安全阀的工作压力与弹簧的工作压力级有着不同的含义,不能混为一谈。工作压力是指安全阀正常运行时阀前所承受的静压力,它与被保护系统或设备的工作压力相同。而弹簧的工作压力级则是指某一根弹簧所允许使用的工作压力范围,在该压力范围内,安全阀的开启压力(即整定压力)可以通过改变弹簧的预紧压缩量进行调节。同一公称压力的安全阀,根据弹簧设计要求,可以分为多种不同的工作压力级。具体划分见下表,划分的前提是能足以保证各个工作压力级的压力上限与下限均能符合有关标准所规定的动作性能指标。 选用安全阀时,应根据所需开启压力值确定阀门的工作压力级。 表1 安全阀公称压力PN 与弹簧工作压力关系表 PN 弹簧工作压力等级 1.6 0.06~0.1 >0.12 >0.16~0.25 >0.25~0.4 >0.4~0.5 >0.5~0.6 >0.6~0.8 >0.8~1.0 >1.0~1.3 >1.3~1.6 2.5 >1.3~1.6 >1.6~2.0 >2.0~2.5 只能用于大于 1.3MP 6.4 ->1.3~1.6 >1.6~2.0 >2.0~2.5 >2.5~3.2 >3.2~4.0 >4.0~6.4 只能用于大于1.3MPa 10 >4~5 >5~6.4 >6.4~8 >8~10 只能用于大于4.0MPa

液态二氧化碳储罐安全阀计算

濮城油田沙一下新建31#注气站工程 100m 3液态CO 2储罐 安全阀计算 一. 计算基本参数 设计压力:2.42MPa ;介质:液态CO 2; 容器内径=3200mm 容器壁厚=28mm 容器筒体长度=12000mm 所以,D 0-压力容器外径,D 0=3.256m ; L-压力容器总长,L=13.736m ; 容器位置:设备置于地面以上,F=1.0 保冷:有绝热保冷层(聚氨酯泡沫);保温层厚度δ=0.08m; λ-导热系数:λ=0.0864KJ/m*h*℃; q-介质的汽化潜热,取q=151.798KJ/Kg ; M-摩尔质量M=44.01g/mol ; k-绝热指数k=1.3; C-气体特性系数C=346.98; Z-压缩系数Z=0.873; t-泄放压力下介质的饱和温度,t=-9℃; 二、需要的安全泄放量 容器型式:椭圆形封头的卧式容器,容器受热面积r A 的计算: )0.3D (L D A 00r +?=π=150.422m 保冷层:有绝热保冷层,液化气体的安全泄放量按下列要求计算: h q Ar t W s /Kg 72.497)650(61.282 .0=-?=δλ

三.泄放面积的计算 1.判断是否是临界条件 P 0-安全阀出口侧的压力(绝压),P 0=0.1MPa ; 取超压限度为: 2.42x10%=0.242MPa ; P f -安全阀的泄放压力(绝压),P f =2.42+0.242+0.1=2.762MPa ; P 0/P f =0.1/2.762=0.036205648≤5457.0)1 k 2(1k k =+- 所以,是临界条件。 2.需要的排放面积的计算: M ZT p 16.13A f f CK W S = K-安全阀泄放系数,取K=0.62; T f -泄放温度,取273.15+(-9)=264.15K 所以,A=23.17mm 2 3.单个安全阀的排放面积的计算 选择全启式安全阀DA42Y-40DN100X150,数量为2个。 查表,得安全阀阀座喉径d 1=65mm 所以,单个安全阀的排放面积A 1= 221mm 6.33164d =π 4.判断 因为A 1>A ,所以,所选的安全阀合格,完全满足排放量要求。 设计: 校对: 审核: 审定:

安全阀的工艺计算

安全阀的工艺计算 1各种事故工况下泄放量的计算 1.1阀门误关闭 1.1.1出口阀门关闭,入口阀门未关闭时,泄放量为被关闭的管道最大正常流量。 1.1.2管道两端的切断阀关闭时,泄放量为被关闭液体的膨胀量。此类安全阀的入口一般不大于DN25。但对于大口径、长距离管道和物料为液化气的管道,液体膨胀量按式(1.1)计算。 1.1.3换热器冷侧进出口阀门关闭时,泄放量按正常工作输入的热量计算,计算公式见式(1.1)。 1.1.4充满液体的容器,进出口阀门全部关闭时,泄放量按正常工作输入的热量计算。按式(1.1)计算液体膨胀工况的泄放量: V=B·H/(G l ·C p ) (1.1) 式中: V——体积泄放流量,m3/h; B——体积膨胀系数,l/℃; H——正常工作条件下最大传热量,kJ/h; G l ——液相密度,kg/m3; C P --定压比热,kJ/(kg℃)。 1.2循环水故障 1.2.1以循环水为冷媒的塔顶冷凝器,当循环水发生故障(断水)时,塔顶设置的安全阀泄放量为正常工作工况下进入冷凝器的最大蒸汽量。 1.2.2以循环水为冷媒的其它换热器,当循环水发生故障(断水)时,应仔细分析影响的范围,确定泄放量。 1.3电力故障 1.3.1停止供电时,用电机驱动的塔顶回流泵、塔侧线回流泵将停止转动,塔顶设置的安全阀的泄放量为该事故工况下进入塔顶冷凝器的蒸汽量。 1.3.2塔顶冷凝器为不装百叶的空冷器时,在停电情况下,塔顶设置的安全阀的泄放量为正常工作工况下,进入冷凝器的最大蒸汽量的15%。 1.3.3停止供电时,要仔细分析停电的影响范围,如泵、压缩机、风机、阀门的驱动机构等,以确定足够的泄放量。

励磁系统设计导则

东北电力设计院技术标准 Q/DB 1-D011-2007 交流同步发电机励磁系统设计导则 2007-10-20发布2007-10-30实施中国电力工程顾问集团东北电力设计院发布

目次 前言...................................................................... III 1 范围 (1) 2 规范性文件 (1) 3 总则 (2) 4 同步发电机励磁系统的作用和性能要求 (2) 4.1 同步发电机励磁系统的主要作用 (2) 4.2 励磁系统应具有的性能 (3) 5 同步发电机的励磁种类和对励磁系统的基本要求 (3) 5.1 励磁系统的分类 (3) 5.2 对励磁系统的基本要求 (3) 6 同步发电机励磁调节系统对电流、电压采集的基本要求 (5) 6.1 对电流互感器的要求 (5) 6.2 对电压互感器的要求 (5) 7 目前大中型汽轮发电机的常用励磁方式 (5) 7.1 三机旋转励磁系统的特点 (5) 7.2 自并励静止励磁系统的特点 (7) 7.3 国内大中型汽轮发电机的常用励磁方式的应用情况 (9) 8 自并励方式的优势 (9) 8.1 励磁系统可靠性增强 (9) 8.2 电力系统的稳态、暂态稳定水平提高 (9) 9 大中型汽轮发电机自并励静止励磁系统设计 (10) 9.1 自并励系统的应用条件 (10) 9.2 励磁调节器的选择 (10) 9.3 发电机起励问题 (11) 9.4 可控硅励磁功率柜的选择 (11) 9.5 灭磁及过压保护装置的配置 (12) 9.6 励磁变压器及励磁回路继电保护 (12)

发电机励磁系统的选型技术

发电机励磁系统的选型技术 刘绍华(湖北赤壁市陆水自动化技术研究所) [文摘] 励磁系统是发电机组重要的辅助设备,本文从励磁方式、励磁调节器、通道结构、励磁变压器、起励灭磁等方面阐述励磁的选择问题。微机型励磁调节器已成为同步发电机励磁调节器的主流,本文还介绍了微机型励磁调节器的主要先进技术。?[主题词]励磁系统自并励微机励磁调节器励磁变压器起励灭磁??励磁系统是发电机组重要的辅助设备,其主要任务是向同步发电机的的励磁绕组提供一个可调的直流电流(电压),控制机端电压恒定,满足发电机正常发电的需要,同时控制发电机组间无功功率的合理分配,以满足电力系统安全运行的需要,它对提高了电厂的自动化水平,提高发电机组运行的可靠性,提高电力系统稳定性有着重要的作用,因此,正确选择励磁设备也就致关重要。? 励磁方式的选择??在发电机的各种励磁方式中,自并励方式以其接线简单,可靠性高,造价低,电压响应速度快,灭磁效果好的特点而被广泛应用。?随着电子技术的不断发展,大容量可控硅制造水平的逐步成熟,发电机采用自并励励磁方式已成为一种趋势,对于大型机组业界人士也越来越倾向于采用自并励方式。一般说来,自并励励磁的价格比同容量的直流励磁机还要低,但其调节范围、控制速度、抑制甩负荷时过电压的能力等等性能则是老式励磁无可比拟的。新建的中小型电站,也大多采用自并励方式,取消了常规的直流励磁机,以简化发电机的轴系统,减低厂房高度,减少工程造价,减少噪音,同时提高自动化水平。改造时,由于自并励最为简单经济,通常被优先考虑。?对于在发电机出口或近端短路时自并励的可靠性问题,大型机组已由封闭式母线和快速继电器给予了保证,中小型电站可配以带电流记忆的低电压过电流后备保护来解决。近二十年来,美国、加拿大对新建电站几乎一律采用自并励励磁系统,加拿大还拟将火电厂原交流励磁机励磁系统改为自并励励磁系统。??励磁调节器? 发电机励磁调节器是励磁装置的控制核心,它的发展经历了机电型、电磁型、晶体管分立元件型、模拟运算放大器型以及微机型几个阶段。 目前,我国中小型水电站的励磁大都采用微机调节器,少量采用模拟运算放大器为核心的励磁调节器,老式的分立元件电路已逐步被淘汰。近年来,微机型励磁调节器已成为同步发电机励磁调节器的主流。?模拟运算放大器式励磁调节器,有着调压精度高()、调压范围宽()、直观容易熟悉等特点,对于中小型电站来说,在今后的一段时期内仍然具有吸引力。 模拟式励磁调节器也有一些缺点和不足:功能少;调试麻烦,各主要参数需定期校正,维护工作量大;因元件的分散性影响了脉冲的对称性;因电路的积累误差影响到各工况的线性对称等等。?随着发电机单机容量和电网规模的增大,发电机组及电力系统对励磁控制在快速性、可靠性、多功能性等方面提出了愈来愈高的要求,致使常规模拟式励磁变得过份复杂甚至力不从心。相应地,励磁控制在理论和实践上也在不断更新、发展和完善,我国从年代初开始研制微机式励磁调节器,经过多年的努力,设计、生产和运行方面已积系了丰富的经验,微机式励磁调节器在生产运行中都显示了优良的性能。九十年代以来,微机型励磁调节器在中小型机组也得到了广泛应用得到了迅猛发展和广泛应用。?与模拟式励磁调节器相比较,微机式励磁调节器的优点是:()可以实现模拟式励磁调节器难以实现的与动态响应相结合的控制规律、电力系统稳定器、非线性控制、自适应控制及模糊控制等控制规律;()调节准确、精度高,在线改变参数方便;()可靠性高,无故障工作时间长;()系统功能组态灵活、操作简单、维修和试验智能化,实现电站综合自动化智能化,实现“无人值班少人值守”()通信方便,便于远方控制和实现发电机组的计算机综合协调控制。?交流采样技术是九十年代微机励磁取得的重大技术突破之一,它利用微机强大的计算能力,对交流电量进行直接采样,完成电量测量功能,电量测量是励磁快速性、可靠性、多功能性的重要基础组成部分:一方面,交流采样测量的电量齐全、快速,励磁系统对这方面要求犹为重要,测量电量的反映速度是励磁动态指标的基础,只有测量反映速度快,励磁才能及时强励或强减;测量电量齐全是软件调差、励磁欠励限制、过励限制、控制规律、恒无功功率控制、恒功率因素控制的等功能的基础;另一方面,交流采样技术的测量硬件极为简单(仅电量隔离),运行可靠,由于无需对波形进行变换,这样,彻底取消了常规的非交流采样技术的整流滤波、功率变换等波形变换的复杂电路,以往这些环节正是影响可靠性、调试维护的重点难点所在。影响励磁调节器可靠性、调试维护的重点难点之一还有脉冲移相电路,微机式励磁调节器采用微机软件移相技术,利用软件中断方法进行控制角延时和分相触发方式,软件中断分相、测频,根据频率变化,软件调

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

换热站、补水泵、循环泵、风机设备选型计算书(审图)

换热站设备选型计算 本工程为陕西碧桂园嘉誉项目换热站设计,为住宅楼1#—8#楼冬季提供低温地板辐射采暖热水,本换热站设于地下室设备用房内。 (1)热负荷统计表 注:(已考虑:外网热损失、室内采暖系统损失以及热力站系统热损失)本工程热源为市政热网热水,经水-水换热以后为小区提供采暖热水。市政热源参数为:总供热量4800.0kW,流量169.0m3/h,供回水温度:95/70℃,1.6MPa;二次侧采暖热水供回水温度:50/40℃。各热力系统分别选用两台板式换热器,单台承担总负荷的70%, 热水循环泵为一用一备,补水泵为一用一备,板式换热器和循环水泵,补水泵组合为一套换热机组。补水定压系统:采暖系统均选用定压罐定压,各系统均选用两台补水泵(一用一备)进行补水。 一.高区采暖换热机组选型计算 1、换热器选型计算 住宅高区采暖总热负荷为1912.1kW,高区热力系统总计算热负荷 Q jz =1912.1x1.1=2103.31kW。换热机组选用板式换热器两组,单台承担70%负荷,即Q1=2103.31x0.65=1367.15kW。 选用板式换热器BRO0.35-1.6-15-E-I,满足设计要求。 2、采暖采暖热水循环系统计算 m/h; 二次侧流量G=3.6x2103.31/(4.2x(50-40))=180.283 换热器内水流阻力约为50kPa; 机房内内管道系统及其他设备水压降约为100kPa; 室外管道水力损失为75.68kPa; 最不利室内环路阻力为35.0kPa, 系统总阻力为(50+100+75.68+35.0)x1.1=286.75kPa。 m/h,H=32.0m,热水循环水泵一用一备,选用KQL 150/315-30/4型,G=187.03 P=30.0kW。

锅炉房热水循环泵的选择

第14卷第3期呼伦贝尔学院学报No.3 V ol.14 2006年6月Journal of Hulunbeier College Published in June.2006 锅炉房热水循环泵的选择 李 莹 (长春铁路房产生活段 吉林 长春 130000 ) 摘 要:本文主要对锅炉房热水循环泵的参数的选择和计算进行介绍、分析和比较。简要介绍国外热水循环泵参数的选择;详细介绍我国热水循环泵的计算方法。在我国的计算方 法中,主要的观点是在计算循环流量时是否加入附加循环流量,在计算扬程时,应确定以哪 一种流量通过那些管段的水头损失为计算依据。最后,经过详细的分析确定,在计算热水循 环泵流量时应以循环流量和附加循环流量之合为计算依据,在计算热水循环泵扬程时应以循 环流量与附加流量在系统无配水情况时管路的水头损失。 关键词:热水供应;循环泵;循环流量 中图分类号:TK22 文献标识码:A 文章编号:1009-4601(2006)03-0080-02 在建筑全日制机械循环全日制热水供应系统中,循环流量是补偿热水系统不用水或用水量较小时热水管道向周围损失的热量,以使用户随时得到所需水温的热水。循环泵是水在整个供水系统中循环的动力。目前,各个国家在选择全日制机械循环热水供应系统的循环泵、确定其选泵参数时,均以保证热水系统水温为基本出发点,但选泵参数的计算方法却不尽相同。 一、计算方法的比较 (一)我国循环泵参数的选择 目前,我国循环水泵参数的选择基本沿用了前苏联的方法,但是对附加循环流量的取值有所调整。现行《建筑给水排水设计规范》规定,在全日制机械循环热水供应系统中,循环泵的出水量应为循环流量与附加流量之和。其中循环流量系指管网不配水时使配水点的水温不低于规定温度所需的最小循环流量。附加循环流量则是考虑若仅按循环流量选择水泵,当热水供应系统大量用水时,系统的循环流量就会降低,配水点的水温就会低于规定的温度。因此,循环流量应有一个附加流量,附加循环流量的大小取决于建筑物的性质及使用要求,一般宜为设计小时用水量的15%。 (二)国外循环泵参数的选择 国外循环泵参数的选择主要有两种。一种为:在满足热水供应系统准许降温的条件下,根据系统配水管道的热损失计算系统配水管道所需循环流量q x,并以此确定循环泵的流量Q b;以q x通过计算环路的水头损失来确定循环泵的扬程。日、美等国按此法计算。另一种为:在满足热水供应系统准许降温的条件下,根据系统配水管的热损失计算系统配水管所需循环流量q x,并以系统平均小时用水量的25%~33%(小系统为平均小时用水量的15%)作为附加循环流量q f,以q f和q x之和确定循环泵的流量Q b,以q f和q x通过计算环路中配水管道的水头损失和q x,通过计算环路中回水管道的水头损失之和确定循环泵扬程。前苏联按此法计算,而在美国计算一些特殊管道系统的循环流量时,也不计入回水管道的热损失。 显然,第一种选泵方法的依据是:考虑系统的准许温降时,充分考虑回水管道的散热损失,以确保最不利点的温度要求,并且在设计好的管道系统中,在系统没有出流的情况下,能有适当的循环流 收稿日期:2006-02-10 作者简介:李莹(1972-),女,长春铁路房产生活段,工程师。

2020年(安全生产)安全阀的工艺计算

(安全生产)安全阀的 工艺计算

安全阀的工艺计算 1各种事故工况下泄放量的计算 1.1阀门误关闭 1.1.1出口阀门关闭,入口阀门未关闭时,泄放量为被关闭的管道最大正常流量。 1.1.2管道俩端的切断阀关闭时,泄放量为被关闭液体的膨胀量。此类安全阀的入口壹般不大于DN25。但对于大口径、长距离管道和物料为液化气的管道,液体膨胀量按式(1.1)计算。 1.1.3换热器冷侧进出口阀门关闭时,泄放量按正常工作输入的热量计算,计算公式见式(1.1)。 1.1.4充满液体的容器,进出口阀门全部关闭时,泄放量按正常工作输入的热量计算。按式(1.1)计算液体膨胀工况的泄放量: V=B·H/(G l·C p)(1.1) 式中: V——体积泄放流量,m3/h; B——体积膨胀系数,l/℃; H——正常工作条件下最大传热量,kJ/h; G l——液相密度,kg/m3; C P--定压比热,kJ/(kg℃)。 1.2循环水故障 1.2.1以循环水为冷媒的塔顶冷凝器,当循环水发生故障(断水)时,塔顶设置的安全阀泄放量为正常工作工况下进入冷凝器的最大蒸汽量。 1.2.2以循环水为冷媒的其它换热器,当循环水发生故障(断水)时,应仔细分析影响的范围,确定泄放量。 1.3电力故障 1.3.1停止供电时,用电机驱动的塔顶回流泵、塔侧线回流泵将停止转动,塔顶设置的安全阀的泄放量为该事故工况下进入塔顶冷凝器的蒸汽量。 1.3.2塔顶冷凝器为不装百叶的空冷器时,在停电情况下,塔顶设置的安全阀的泄放量为正常工作工况下,进入冷凝器的最大蒸汽量的15%。 1.3.3停止供电时,要仔细分析停电的影响范围,如泵、压缩机、风机、阀门的驱 动机构等,以确定足够的泄放量。

太阳能热水系统循环泵的选型

太阳能热水系统循环泵的选型 提要:在太阳能集中式热水系统中会用到比较多的管道循环泵,来实现太阳能集热系统的热量吸收、转移和交换。从式(2)可知:太阳能热水系统循环水泵的扬程取决于两个因素,一个是水泵提升水的高度,另一个是系统循环回路的流动阻力。 来源:山东德州飞天工贸有限公司 0 前言 在太阳能集中式热水系统中会用到比较多的管道循环泵,来实现太阳能集热系统的热量吸收、转移和交换。所以,循环泵的流量和扬程就成为一个比较关键的技术参数,会直接影响到系统的运行效果,在此,对太阳能集热系统中循环泵的选型做一详细阐述。 1太阳能集中集热—集中储热式系统中集热循环泵选型 1.1循环泵流量确定 对于太阳能热水系统,集热循环管路为闭合回路,管道计算流量为全部集热器循环流量,按公式(1)计算: q=A·QS(1)式中: q—循环流量,L/h; A-太阳能集热器的总集热面积,m2; QS—集热循环流量,由于太阳辐照量的不确定性,太阳能热水系统的集热循环流量一般按照每平方米集热器的流量为 0.01~0.02L/s考虑,即36~72L/(h·m 2),对于真空管太阳能集热器可取低值,对于平板太阳能集热器取高值。假设,集热循环流量取50L/(h·m2),太阳能集热器的总集热面积为100m2,经计算集热器循环流量为5000L/h。水泵的流量选择应使水泵的工作流量在计算的集热循环流量附近。 1.2水泵的扬程 太阳能热水系统循环泵扬程计算方法: H=(1.1~1.2)(Hs+Hx)(2)式中: Hs—太阳能热水系统提升液体介质(水)的高度,mH2O; Hx—太阳能热水系统总流动阻力(扬程阻力和局部阻力之和),mH2O。 从式(2)可知:太阳能热水系统循环水泵的扬程取决于两个因素,一个是水泵提升水的高度,另一个是系统循环回路的流动阻力。

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型 1、冷水泵: 在冷水环路中,驱动水进行循环流动的装置。我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷水由于阻力的限制不会自然流动,这就需要水泵驱动冷水进行循环以达到换热的目的。 2、冷却水泵: 在冷却水环路中驱动水进行循环流动的装置。我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。外形同冷冻水泵。 3、补水泵: 空调补水所用装置,负责将处理后的软化水打入系统中。外形同上水泵。 常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷水系统,冷却水系统和补水系统中。对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。 水泵并联运行情况

水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故建议: 1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。 2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过3台。 3)大中型工程应分别设置冷、热水循环泵。 一般,冷水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。 4、水泵流量的计算: 1)冷水泵/冷却水泵流量计算公式:L=Q×(1.15~1.2)/(5℃×1.163)式中:Q为制冷主机的制冷量,kW;L为冷水/冷却水泵的流量,m3/h。 2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。补给水箱的有效容积可按1~1.5h的正常补水量考虑。 5、水泵扬程的确定: 1)冷水泵扬程的组成: 制冷机组蒸发器水阻力: 一般为5~7m H2O; 末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力: 一般为5~7m H2O(具体值可参看产品样本); 回水过滤器,二通调节阀等的阻力: 一般为3~5m H2O;

安全阀计算书

安全阀计算书 设备参数:蒸汽分汽缸DN273X8㎜,容积V=0.085m3,最高工作压力为1.4MPa,工作温度为105,进口管为φ108X6 。 计算过程如下: (1).确定气体的状态条件: 设Po—安全阀出口侧压力(绝压)0.103MPa (近似为0.1MPa) 则P d—安全阀泄放压力(绝压)为 P d=1.1Ps+0.1 =1.1×1.1Pw+0.1=1.794MPa (GB150附录B4.2.1) 当安全阀出口侧为大气时: Po/Pd=0.103/1.794=0.057 而{2/(k+1)}k/(k-1)={2/(1.4+1)}1.4/(1.4-1)=0.55 (水蒸汽的绝热指数为k=1.3) ∴Po/Pd<(2/(k+1))k/(k-1) 是属于临界状态条件, 安全阀排放面积A按GB150式(B5)计算 (B5) 式中: C:气体特性系数,查表B1或C=520√k(2/(k+1)(k+1)/(k-1))得出:C=347 K:安全阀额定泄放系数,K=0.9倍的泄放系数(泄放系数由制造厂提供,一般为0.75);或按《容规》附件五第二节有关规定中选取. 本计算书取:K=0.675 M:气体摩尔质量,水蒸汽摩尔质量M=18.2Kg/kmol Z:气体压缩系数,水蒸汽Z=0.9216 T:气体绝对温度,T=273+105=378k (2). 容器安全泄放量的计算: 盛装压缩气体或水蒸汽的容器安全泄放量,按下列规定来确定

a.对压缩机贮罐或水蒸汽的容器,分别取压缩机和水蒸汽发生器的最大产气量; b.气体储罐等的安全泄放量按GB150式(B1)计算 Ws=2.83×10-3ρυd2㎏/h (B1) ρ:为排放压力下的气体密度㎏/m3. ρ=M/V ρ=M(分子量)×Pw’(排放绝对压力)×T标/P (V×T) 空气分子量 M=18.2 标准状态理想气体摩尔体积 V=22.4 排放绝对压力 Pw’=17.94㎏/㎝2 大气绝对压力 P=1.03㎏/㎝2 将M、Pw’、 T标、P、V、T代入上式得 ρ=18.2×17.94×273/1.03×22.4×378=10.22㎏/m3 υ:容器在工作压力下的进口管的气体流速m/s;根据HG/T20570.6-95中表2.0.1饱和水蒸汽管径DN :200~100mm时,υ:35~25m/s 所以本计算书取:υ=25m/s d:进气管内径, d=92mm 将上述ρ、ν、d代入式(B1)得 Ws=2.83×10-3×10.22×25×922 =6120㎏/h (3). 安全阀排放面积的计算: 将上述Ws、C、K、P d、M、Z、T代入上式(B5)可计算出:A=873.3mm2 根据设备工况选用全启式安全阀 则:A=0.785d02=873.3mm2 安全阀喉径为:d0=33.4㎜ 根据安全阀公称直径与喉径对照表 表1 安全阀公称直径与喉径对照表

安全阀校核计算(复证图纸)

过 程 设 备 设 计 计 算 书 SW6-1998 ( v2.0 ) 安全阀的校核计算(CH011) 一、 空气储罐的安全泄放量: W S = 2.83×10-3ρvd 3 kg/h 式中 W S —— 压力容器的安全泄放量,kg/h ; d —— 压力容器进口管的内径,mm ; v —— 压力容器进口管内气体的流速,m/s ; ρ —— 气体密度,kg/m 3; 本储罐 d=31 mm v=10 m/s ρ=12.8 kg/m 3 W S = 2.83×10-3×12.8×10×312 = 348 kg/h 二、 安全阀的泄放能力: W s ’ = 7.6×10 -2 CKp d A ZT M kg/h 式中:W s ’——临界条件下安全阀的排放能力,kg/h ; C ——气体特性系数,C=5201 112-+?? ? ??+k k k k 见《压力容器安全技术监察 规程》第102页附表5-1;k ——气体绝热系数 k=C P /C V ; K ——排放系数,与安全阀结构有关,全启式安全阀取0.70; p s ——安全阀的整定压力,本储罐取1.1,Mpa ; p d ——安全阀的排放压力(绝压),p d =1.1p s +0.1=1.1×1.1+0.1 =1.31,Mpa ; A ——安全阀最小排气截面积,mm 2; A=π×4 2042 2?=πd =314 mm 2 M ——气体摩尔质量,kg/kmol ; T ——气体温度,K ; Z ——气体在操作温度压力下的压缩系数,Z=1。 W s ’ = 7.6×10-2×356×0.7×1.31×314×293 129 ? = 2450 kg/h ∵ W s ’>W s ∴ 本安全阀公称直径合格

安全阀计算实例

安全阀计算实例 安全阀系压力容器在运行中实现超压泄放的安全附件之一,也是在线压力容器定期检验中必检项目。它包括防超压和防真空两大系列,即一为泄放容器内部超压介质防止容器失效,另一方面则吸入外部介质以防止容器刚度失效。凡符合《容规》适用范围的压力容器,按设计图样的要求装设安全阀。安全阀设置原则是适用于清洁、无颗粒、低粘度的流体。有颗粒的场合,安全阀进口前加设过滤装置;须安装但又不适合时,应安装爆破片或爆破片与安全阀串联使用。容器在正常运行下为什么会产生超压?1.压力来自容器外部的压力容器,若输入气量大于输出气量,使密度增加,压力就提高; 2. 减压阀失灵; 3. 介质进行化学反应,使压力不断增高(称料不当等);4.盛装液化气体,工作温度上升或超装; 5.储藏介质产生聚合反应,热量增高,压力上升 6.用于制造高分子聚合物的高压釜,由于原料,催化剂使用不当或操作失误致使单体爆聚,热量猛增,压力就骤升。 一、下列压力系统必须安装安全阀: a)容器的压力来自于没有安全阀的场合; b)设计压力低于来源处的压力容器或管道;容积泵和压缩机出口的管道; c)由于不凝气的积累产生超压的容器; d)液化气体储罐; e)空压机的附属储罐; f)容器内进行放热或进行化学反应,能使气体压力升高的压力容器; g)高分子聚合(物理反应)设备; h)有热载体加热,使器内液体蒸发气化的换热器; i)用减压阀降压后输入容器的(使用压力低于压力源的容器); j)余热锅炉; k)介质毒性为高度极度危害的压力容器; l)共用同一个气源的容器等。 二、下列压力系统不适宜安装安全阀 a)系统压力有可能迅速上升,如化学爆炸等场合 b)泄放介质含有颗粒、易沉积、易结晶、易聚合或粘度较大;强腐蚀介质; c)一些影响安全阀排放面积过大、造价过高、动作困难的场合(极低温度等) 三、安全阀的开启压力(整定压力): 安全阀的开启压力(整定压力)---是指阀瓣开始上升,介质经阀瓣上升后的空隙,继续排放时的瞬时压力.对于蒸汽安全阀---有5滴冷凝水时的压力.安全阀的回座压力一般为0.93~0.96Pl,也就是回座压力差在4~7%左右最大不超过10%. 由于安全阀阀瓣开启动作的滞后,使容器不能马上泄压.因此压力容器的设计压力一般不低于安全阀的开启压力. 下面的示意图,表明压力容器与安全阀各种动作压力之间关系. 压力容器安全阀 试验压力 最大允许工作压力排放压力 设计压力 开启压力 回座压力关闭压力 最高工作压力 四、安全阀的选用方法为;

相关文档
最新文档