图像传感器及其医学应用

图像传感器及其医学应用
图像传感器及其医学应用

固态图像传感器中CCD传感器的原理及应用

摘要:随着半导体与光电技术的迅速发展,固态图像传感技术也应运而生并得以广泛应用。本文阐述了固态图像传感器的工作原理;介绍固态图像传感器的分类;在此基础上,着重介绍了固态图像传感器中CCD传感器的工作原理,及其在尺寸自动检测、文字和图像识别和射线成像检测三方面的应用。

关键字:固态图像传感器;CCD传感器;尺寸自动检测;文字和图像识别;射线成像检测。

一固态图像传感器简介

1,固态图像传感器工作原理

固态图像传感器是指在同一块半导体衬底上,生成若干个光敏单元与移位寄存器构成一体的集成光电器件,按空间分布的光强信息转换成按时序串行输出的电信号。是一种高度集成化、功能化的光电器件。其工作原理图见下图一:

图一固态图像传感器工作原理图

2,固态图像传感器优点

体积小,重量轻,功耗低,耐冲击,寿命长;扫描线性,畸变小,重复性好,适用于尺寸测量、定位和图像传感等方面;光谱响应范围较广,从近紫外到近红外;空间分辨率高,像元间距的几何位置精确,可以获得很高的定位与测量精度;与微机接口容易实现;能实现信息的读取转换和视觉功能的扩展,能给出直观,真实,多层次,多内容的可视图像信息。以上种种优点,使得固态图像传感器成为获取视觉信息的一种基础器材,在现代科学技术中得到越来越广泛的应用。

二CCD传感器

根据所用的敏感器件不同,固态图像传感器可分为CCD传感器、CID传感器、SSPD传感器、CCPD传感器等。其中,CCD是应用最广泛的一种。

1,CCD传感器基本构造

CCD(Charge Coupled Devices)即电荷耦合器件,一个完整的CCD器件由光敏单元﹑转移栅﹑移位寄存器及一些辅助输入﹑输出电路组成。CCD是一种新型的MOS型半导体器件,如图二所示为64位CCD结构,每个光敏元(像素)对应3个相邻的转移栅电极1、2、3,所有电极彼此间离得足够近,以保证硅表面的耗尽区和电荷的势阱耦合及电荷转移。

图二 CCD芯片的构造

2,CCD的基本原理:

在一系列MOS电容器金属电极上,加以适当的脉冲电压,排斥掉半导体村底内的多数载流子,形成“势阱”的运动,进而达到信号电荷(少数载流子)的转移。由此可知,CCD的基本原理与MOS电容器的物理机理密切相关。因此,首先分析MOS电容器的原理。如下图三所示:

图三 MOS电容器原理结构图

表面势V 是一个非常重要的物理量。在如图2-3所示的情况下,若所加U 不超过某限定值时,则表面势为

式中 q ——电子电荷; A N ——单位面积受阻浓度;

d X ——耗尽层厚度; s ε——的介电常数;

0ε——真空介电常数。

3,线阵CCD 和面阵CCD :

CCD 图像传感器按其像素的空间排列可分为两大类:一是线阵CCD ,主要用于一维尺寸的自动检测,如测量精确的位移量、空间尺寸等,也可以由线阵CCD 通过附加的机械扫描,得到二维图像,用以实现字符、图像的识别。二是面阵CCD ,主要用于实时摄像,如生产线上工件的装配控制、可视电话以及空间。

最简单的线性固态图像传感器是单通道式的,如图四所示是其结构示意图。它包括感光区和传输区两部分:感光区是由一列光敏单元组成;传输区是由转移栅及一列移寄位存器组成。光照产生的信号电荷存储于感光区的势阱中,接通转移栅,信号电荷流入传输区。传输区是遮光的,以防止因光生噪声电荷的干扰而导致图像模糊。

图四 单通道线型图像传感器的结构

为了减少信号电荷在转移过程中的损失,转移的次数应尽量少,因此,通常采用双通道式固态图像传感器。双通道式固态图像传感器如图五所示,有两个移位寄存器平行地配置在感光区两测。当光生信号电荷积累后,时钟脉冲接通转移

栅。信号电荷就转移到移位寄存器。奇数光敏单元中的电荷转移到A寄存器,偶数单元转移到B寄存器。这样每个电荷包的传输次数减少了一半,降低了器件的传输损失,也缩短了器件尺寸。

图五双通道线型图像传感器的结构

按一定的方式将一维线型光敏单元及移位寄存器排列成二维阵列,即可以构成面型CCD图像传感器。按传输方式的不同,面阵CCD图像传感器常用的两种传输结构为行间传输结构和场传输结构。如图六所示为行间传输面阵CCD 结构图。它是由光敏单元阵列构成的光敏面、垂直移位寄存器、转移栅和水平移位寄存器组成。光敏单元与垂直寄存单元相隔排列,即一列感光元件,一列不透光的存储元件,一一对应,两者之间由转移栅控制,下部是一个水平读出移位寄存器。

图六水平移位寄存器

三,CCD传感器的应用

1.尺寸自动检测

对于尺寸为较小的物体目标(2-30mm),可以采用平行光成像法,不难看出,此种测试方法的精度取决于平行光的准直程度和CCD像元尺寸的大小。当然,平行光源要作得十分理想是有一定困难的,且随准直度的提高成本增加,光源的体积也要加大。在实际应用中常常通过计算机处理,对测量值进行修正,以使测量结果更接近于实际,这在一定程度上降低了对光源的苛求。

2.文字和图像识别:

利用线阵CCD的自扫描特性,可以实现文字和图像识别,从而组成一个功能很强的扫描/识别系统。

3.射线成像检测

图示出了X射线成像检测系统。射线经过构件后直接由射线-可见光转换屏转换,而后由CCD相机获取转换后的图像,经数字图像处理系统处理后,转换为数字图像进行分析处理和识别,从而完成构件缺陷的射线实时检测。

参考文献

[1] 张毅刚、彭喜源、曲春波编著。摄像器件发展设计。哈尔滨工业大学出版社,

[2] 胡新宇,赵勇.传感器与自动检测技术.北京:高等教育出版社. 2006,79-88

[3] 曹克登.CCD原理与应用. 北京:机械工业出版社.2007,19-25

[4] CCD基础知识百度文库提供设计资料

[5] 王明连深入CCD传感光学清华大学出版社

[6] 孔凡才.自动控制系统. 北京:机械工业出版社. 2005,194-199

[7] 曹克.CCD原理与应用. 北京:机械工业出版社.2007,176-178

高等数学在医学中的应用

数学在医学中的应用众所周知,数学是一门以高度的抽象性、严谨性为特点的学科,但同时数学在其他各门学科也有广泛的应用性,而且随着大型计算机的飞速发展,数学也越来越多的渗透到各个领域中。数学建模可以说是用数学方法解决实际问题的一个重要手段。简单的说,用数学语言来描述实际问题,将它变成一个数学问题,然后用数学工具加以解决,这个过程就称为数学建模。人们通过对所要解决的问题建立数学模型,使许多实际问题得到了完满的解决。如大型水坝的应力计算、中长期天气预报等。建立在数学模型和计算机模拟基础上的CAD(Computer Aided Design)技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。那么数学在医学领域有哪些应用呢?现代的医学为什么要借助数学呢?本研究主要叙述这两个问题。 1现代医学应用数学的必要性 现代医学的大趋势是从定性研究走向定量研究,即要能够有效地探索医学科学领域中物质的量与量关系的规律性,推动医学科学突破狭隘经验的束缚,向着定量、精确、可计算、可预测、可控制的方向发展,并由此逐渐派生出生物医学工程学、数量遗传学、药代动力学、计量诊断学、计量治疗学、定量生理学等边缘学科,同时预防医学、基础医学和临床医学等传统学科也都在试图建立数学模式和运用数学理论方法来探索出其数量规律。而这些都要用到数学知识。数学模型有助生物学家将某些变量隔离出来、预测未来实验的结果,或推论无法

测量的种种关系,因为在实验中很难将研究的事物抽离出来单独观察。尽管这些数学模型无法极其精确地模仿生命系统的运作机制,却有助于预测将来实验的结果。可以利用数学分析实验数据资料。当实验数据非常多时,传统的方法就不再适用了,只能转而使用数值计算的相关理论,以发现数据中存在的关联和规则。特别地随着当前国际生命科学领域内最重要的基因组计划的发展,产生了前所未有的巨量生物医学数据。为分析利用这些巨量数据而发展起来的生物信息学广泛应用了各种数学工具,从而使得数学方法在现代生物医学研究中的作用日益重要。 2医学上的一些例子 医学统计学(Medical Statistics)临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律;运用统计的原理和方法,结合医学的工作实际,研究医学的实验设计和数据处理。医学统计学是基于概率论和数理统计的基本原理和方法,研究医学领域中数据的收集、整理和分析的一门学科。如在疾病的防治工作中,经常要探讨各种现象数量间的联系,寻找与某病关系最密切的因素;要进行多种检查结果的综合评定、探讨疾病的分型分类:计量诊断,选择治疗方案;要对某些疾病进行预测预报、流行病学监督,对药品制造、临床化验工作等作质量控制,以及医学人口学研究等。医学统计学,特别是其中的多变量分析,为解决这些问题提供了必要的方法和手段。以传染病模型为例,了能定量的研究传染病的传播规律,人们建立了各

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的内容,抑制不重要的内容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

CCD与CMOS图像传感器的成像原理

工业相机,选择TEO CCD与CMOS图像传感器的成像原理你还在为不知道工业相机图像传感器的成像而苦恼吗?美国TEO为您做了以下解析,希望对工业相机爱好的朋友们有所帮助。 在接受光照之后,感光元件(感光二极管PD:photodiode)产生对应的电流,电流大小与光强对应,因此感光元件直接输出的电信号是模拟的。在CCD 传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。 由于感光元件生成的电信号实在太微弱了,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理—这项任务是由CCD传感器中的放大器专门负责,经放大器处理之后,每个像点的电信号强度都获得同样幅度的增大;但由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以二进制数字图像矩阵的形式输出给专门的DSP 处理芯片。 而对于CMOS传感器,上述工作流程就完全不适用了。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。 换句话说,在CMOS传感器中,每一个感光元件都可产生最终的数字输出,

工业相机,选择TEO 所得数字信号合并之后被直接送交DSP芯片处理—问题恰恰是发生在这里,CMOS感光元件中的放大器属于模拟器件,无法保证每个像点的放大率都保持严格一致,致使放大后的图像数据无法代表拍摄物体的原貌—体现在最终的输出结果上,就是图像中出现大量的噪声,品质明显低于CCD传感器。

高等数学在医学中的作用的

浅谈高等数学在现代医学中的作用一、高等数学在医学领域的应用 数学是一门语言, 它是表达量变和质变最完美的工具; 数学又是一种感觉, 它是科学迅速超越时空的触角。恩格斯曾对数学做过如下定义: 数学是研究现实世界的空间形式与数量关系的 科学。数学是基础教育中最受重视的学科之一, 并贯穿于整个基础教育阶段。高等数学教育则几乎覆盖了大学本科阶段所有自然学科领域和部分人文社会学科领域。 随着计算机科学技术的不断发展, 数学的社会化程度也日 益提高, 数学的思想、观点、方法已广泛地渗透到自然科学和社会科学的各个领域。数学在传统领域的应用, 以及在新领域取得的许多重要进程, 使得数学在医学领域中的作用也不断突出。数学与医学, 特别是生物医学的结合越来越紧密。例如, 可以为生物医学工程学、细胞分子生物学、肿瘤生长动力学、药物动力学等现代生物医学做出定性描述向定量描述的趋变; 常微分方程 可以运用到临床医学的定量分析和群体医学的动态分析; 生物 统计学、概率论可以为药物使用、人口统计与流行病、公共卫生管理等作出决策; 数学可为医学基础、临床医学、预防医学建立医学数学模型,经过数学处理得到可供人们作出分析、判断、预测和决策的定量结果; 临床治疗和医学科研所使用到的各种高、精、尖端医学仪器都离不开数学和计算机科学的支持, 等等。 马克思曾说过:“一门科学只有成功地应用数学时, 才算达

到了完善的地步。”因此可以看出, 数学与现代医学结合程度将决定现代医学的发展程度。中科院在《21 世纪初科学发展趋势》的研究报告中指出, 生命科学“可能发展成为科学革命的中心”, 数学科学则“一直是整个科学技术发展的带动因素”, 加快数学在医学领域的应用和发展是当今医学发展的必然趋势。 二、高等数学教育在医学教育中的作用及意义 数学的思维方式、计量分析技术有力地推动了现代医学的 迅速发展。强调用数学、统计学研究并解决医学问题的思路和方法, 增强对医学问题进行定量分析与处理的能力, 提高医学科研 水平, 促进临床工作进一步精确化、科学化早已成为各国高等医学教育所关注的重要内容。目前国内绝大多数的医学院校都在 大学一年级开设了《医用高等数学》。笔者认为, 开设这门课程除了可以扩大学生知识面以外, 还有着如下五个方面的作用及意义: 1. 高数教育可以加强医学生的道德教育 抽象性是数学的基本特征之一, 具体表现为推理的严谨性、 表达的准确性、类别的归纳性、计算的规定性、定义的唯一性等等。学生在学习高数的同时, 也能受到其特性的影响: 教育过程 中数学史的讲解可以激发学生的爱国主义热情; 逻辑性的推理 可以培养学生严谨的思维模式; 公理、定义、计算规则的唯一性要求可以使学生形成对法律法规、社会公德的内在自我约束; 对问题的归类、分析可以培养学生灵活思考问题、周密总结分析的

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

CCD图像传感器详解汇总

CCD图像传感器 CCD(Charge Coupled Device)全称为电荷耦合器件,是70年代发展起来的新型半导体器件。它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。实验室用的数码相机、光学多道分析器等仪器,都用了CCD 作图象探测元件。 一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。 一.CCD的MOS结构及存贮电荷原理 CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。 当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。光越强,势阱中收集的电子越多,光弱则反之,这样就把光的强弱变成电荷的数量,实现了光与电的转换,而势阱中收集的电子处于存贮状态,即使停止光照一定时间内也不会损失,这就实现了对光照的记忆。

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

高等数学知识在医学中的应用举例

高等数学知识在生物化学工程中的应用举例 高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 在化工原理中常用的柏努利方程式中的应用 化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。 流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。 定态流动时液体的机械能衡量式为 ∑?-=+?+ ?f e p p h W v d p u z g 212 2 (1) 该式队可压缩液体和不可压缩液体均适用。对不可压缩液体,(1)式中?2 p p vdp 项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρ ρ ρp p p dp vdp p p p p ?= -= = ??2 12 2 1 ,代入(1)式有: ∑-=?+?+?f e h W p u z g ρ 22 或 ∑+++=+++f e h p u gz W p u gz ρ ρ22 22121122 (2) (2)式称为柏努利方程式。 需要注明的是,22u 为动能,gz 为位能,ρ p 为静态能,e W 为有效能,∑f h 为能量损耗,z ?为高度差。 例2 混合气体粘度的计算 常温下混合气体的计算式为

∑∑=== n i i i n i i i i m M y M y 1 211 21μμ (3) 其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。 例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用 Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度? 解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率, Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为 s Pa Ar s Pa N s Pa O ??????---55252 1009.2107.11003.2 代入(3)式计算空气的粘度,即 s Pa M y M y n i i i n i i i i m ??=?+?+????+???+???= = ----==∑∑52 12 12 12 15 2 152 151 211 21 1078.19 .3901.02878.03221.09 .391009.201.028107.178.0321003.221.0μμ 例3. 在细胞生长计算中的应用 随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。 如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。设限制性基质为A ,其浓度为a ,

数字图像技术在医学领域的应用

图像处理技术在医学领域的应用 摘要:介绍了图像处理技术在医学领域的发展,阐释了图像分割、图像融合和图像重建技术在医学领域的发展。提出了图像处理技术发展所面临的相关问题及其发展方向。 关键词:图像处理技术图像分割图像融合图像重建 图像处理技术是20世纪60年代发展起来的一门新兴学科。近几十年来,由于大规模集成电路和计算机科学技术的迅猛发展,离散数学理论的创立和完善,以及军事、医学和工业等方面需求的不断增长,图像处理的理论和方法的更加完善,已经在宇宙探测、遥感、生物医学、工农业生产、军事、公安、办公自动化、视频和多媒体系统等领域得到了广泛的应用,成为计算机科学、信息科学、生物学、医学等学科研究的热点。 图像处理在医学界的应用非常广泛,无论是病理研究还是临床诊断都大量采用图像处理技术。它因直观、无创伤、方便安全等优点而受到人们青睐。图像处理首先应用于细胞分类、染色体分类和放射图像分析等,20世纪70年代图像处理在医学上的应用有了重大突破,1972年X射线断层扫描CT得到实用:1977年白血球自动分类仪问世:1980实现了CT的立体重建。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前

的医学图像主要包括CT(计算机断层扫描)图像、MRI(核磁共振)图像、B超扫描图像、数字X光机图像、X射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但由于医学成像设备的成像机理、获取条件和显示设备等因素的限制,使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度,突出重点内容,抑制次要内容,来适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 什么是医学图像处理 医学图像处理就是利用计算机系统对生物学图像进行的具有临床医学意义的处理和分析。 医学图像处理是一个和复杂的过程。医学图像作为一种信息源,也和其他的有关病人的信息一样,是医生做出判断时的依据。医生在判断医学图像时,要把图像与其他解剖学、生物学和病理学等知识作对照,还要根据经验来捕捉图像中的有重要意义的细节和特征。所以要从一副或几副医学图像中判断出是否有异常,或是属于什么疾病,如果不是训练有素的医生,是难以发现图像上的异常的。所以对医学领域的图像处理显得尤为重要。 图像处理技术及其在医学领域的应用 (一)图像分割

高等数学在医学中的应用

数学在医学中的应用众所,数学是一门以高度的抽象性、严谨性为特点的学科,但同时数学在其他各门学科也有广泛的应用性,而且随着大型计算机的飞速发展,数学也越来越多的渗透到各个领域中。可以说是用解决实际问题的一个重要手段。简单的说,用数学语言来描述实际问题,将它变成一个数学问题,然后用数学工具加以解决,这个过程就称为数学建模。人们通过对所要解决的问题建立,使许多实际问题得到了完满的解决。如大型水坝的应力计算、中长期等。建立在数学模型和计算机模拟基础上的CAD(Computer Aided Design)技术,以其快速、经济、方便等优势,大量地替代了传统中的现场实验、物理模拟等手段。那么数学在医学领域有哪些应用呢?现代的医学为什么要借助数学呢?本研究主要叙述这两个问题。 1现代医学的必要性 现代医学的大趋势是从定性研究走向定量研究,即要能够有效地探索医学科学领域中与量关系的规律性,推动医学科学突破狭隘经验的束缚,向着定量、精确、可计算、可预测、可控制的方向发展,并由此逐渐派生出学、数量遗传学、药代、计量、计量治疗学、定量等边缘学科,同时、和等传统学科也都在试图建立数学模式和运用数方法来探索出其数量规律。而这些都要用到数学知识。数学模型有助将某些变量隔离出来、预测未来实验的结果,或推论无法测量的种种关系,因为在实验中很难将研究的事物抽离出来单独观察。尽管这些数学模型无法极其精确地模仿生命系统的运作机制,却有助于预测将来实验的结果。可以利用实验数据资料。当实验数

据非常多时,传统的方法就不再适用了,只能转而使用数值计算的相关理论,以发现数据中存在的关联和规则。特别地随着当前国际生命科学领域内最重要的基因组计划的发展,产生了前所未有的巨量数据。为分析利用这些巨量数据而发展起来的广泛应用了各种数学工具,从而使得数学方法在现代生物医学研究中的作用日益重要。 2医学上的一些例子 医学(Medical Statistics)临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律;运用统计的原理和方法,结合医学的工作实际,研究医学的实验设计和。医学统计学是基于和的基本原理和方法,研究医学领域中数据的收集、整理和分析的一门学科。如在疾病的防治工作中,经常要探讨各种现象数量间的联系,寻找与某病关系最密切的因素;要进行多种检查结果的综合评定、探讨疾病的分型分类:计量诊断,选择治疗方案;要对某些疾病进行预测预报、监督,对药品制造、临床化验工作等作,以及医学人口学研究等。医学统计学,特别是其中的多变量分析,为解决这些问题提供了必要的方法和手段。以模型为例,了能定量的研究传染病的传播规律,人们建立了各类模型来预测、控制疾病的发生发展。这种模型的建立是在合理假设的前提下,选择了一些相关因素(例如自然因素、人为因素)作为参数,并通过它们之间的关系来描述传染病学的现象。通过这些现象,可以反映出传染病的流行过程及一些规律特征。运用这些规律,人们可以估计不同条件下的相关因素参数、预测疾病的发生发展趋势、设计疾病控制方案及检验假设病因等。比如,通过预测高峰期的时间

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

数学在现代医学中的应用探究

数学在现代医学中的应用探究 1数学思维方法在中医理论中的应用 数学是研究数量、结构、变化以及空间模型的一门学科,由计数、计算、量度和对物体及运动的观察中产生,数学思维是应用想象和推理对所观察的事物脱离其具体形态,进行思考和运算,进而做出判断和结论。中医学是发祥于中国古代的研究人体生命、健康、疾病的科学。其数量表现如阴阳(2个)、五行(5个),结构表现如五行循环图,变化表现如阴阳平衡,无行相生相克,空间模型表现如阴阳鱼,它既有临床诊断后的定量用药治疗方法,也有经过抽象思维建立的中医基础理论。通过对具体数学问题进行不同的解题方法,尝试性进行数学思维方法与中医理论之间的关系分析,可以利用数学为中医学习和研究提供参考,比如古代着名的鸡兔同笼问题、和尚分馒头问题、尺绳测进问题。中医理论中的阴阳五行理论,从宏观角度对人体肺腑之间的关系进行了定性分析,但是没有明确提出在什么条件之下这些量值关系成立以及反之需要什么条件,基础理论给人的感觉是什么条件都可以利用这些关系治病进行中医辨证治病,这也容易得出中医包治百病、无所不能的说法。但是中医的临床经验表明,宏观原则只有在适当容许的治疗方法的前提下才成立,才可以取得较好的治疗效果,通过数学分析,强调要注意中医的内涵与数量机理,即金、木、水、火、土之间的阴阳平衡是什么关系,这些相生相克的关系又是在什么条件下成立。应用数学的研究方式也就是根据疾病机理首先建立五行平衡关系的数学方程,如果方程正确,则一定存在解析解,否则,在此条件下对病人所用的治疗方法是无效的,即方程建立的前提和依据可能错误,必须变换思路重新研究整治方法。纵观古今,人类的健康和对疾病的治疗一直是最重要的内容之一,中医学的建立和发展也成为人们不断与疾病进行抗争的智慧结晶。研究数学理论与中医临床和基础理论之间的关系,尝试采用数学定量方法对中医理论进行研究,对中医临床和中医理论的现代化具有重要的意义。 2数学模型在中药资源可持续发展的应用 中药资源包括可再生的野生、栽培的药用动植物资源,也包括不可再生的药用矿物资源。具统计,我国现有的中药资源有近13000种,其中药用植物资源占%,药用动物资源占%,药用矿物资源占%[2,3]。常用的320种植物类药材的总蕴藏量达到850吨以上,因此,中国是世界上药用资源最丰富的国家之一。受各种因素影响我国丰富的中药材资源正在不断衰竭,有的甚至濒临灭绝。野生人参、川贝、冬虫夏草等名贵药材正沿着越贵越挖—越挖越少—越少越贵的恶性循环而走

医学影像学在临床中的应用

医学影像学在临床中的应用 摘要:医学影像学在医学诊断领域是一门新兴的学科,不过目前在临床的应用上是非常广泛的,对疾病的诊断提供了很大的科学和直观的依据,可以更好的配合临床的症状、化验等方面,为最终准确诊断病情起到不可替代的作用;同时也很好的应用在治疗方面。现对X成像、CT成像、超声成像、核磁共振等基本原理、临床应用特点进行介绍。 关键字:医学影像学、X光成像(X-ray)、脑断层扫描(CT)、核磁共振成像(MRI)、超生成像(ultrasound)等 1895年德国的物理学家伦琴发现了X线,不久即被用于人体的疾病检查,并由此形成了放射诊断学。近30年来,CT、MRI、超声和核素显像设备在不断地改进核完善,检查技术核方法也在不断地创新,影像诊断已从单一依靠形态变化进行诊断发展成为集形态、功能、代谢改变为一体的综合诊断体系。与此同时,一些新的技术如心脏和脑的磁源成像和新的学科分支如分子影像学在不断涌现,影像诊断学的范畴仍在不断发展和扩大之中。 1. X线成像 1.1 X线成像的基本原理 X线之所以能使人体组织在荧屏上或胶片上形成影像,一方面是基于X 线的穿透性、荧光效应和感光效应;另一方面是基于人体组织之间有密度和厚度的差别。当X线透过人体不同组织结构时,被吸收的程度不同,所以到达荧屏或胶片上的X线量即有差异。这样,在荧屏或X线片上就形成明暗或黑白对比不同的影像。 1.2 X线成像的特点 显示的结构层次比较丰富,有利于整体观察受检部位的组织结构,具有较高的空间分辨率,但其密度分辨率较低,无法区别组织密度差别小的结构。 1.3 X线成像在临床中的应用

X线成像是重要的临床诊断方法之一,是影像学的基础,已经积累了丰富成熟的经验,也是临床上使用最多的、最基本的诊断方法,特别是在骨骼、胸部、胃肠道应用广泛。 2. CT成像 2.1 CT的成像基本原理 CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素,。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵,数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即象素,并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。 2.2 CT的成像的特点 CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映的是相应体素的X线吸收系数。不同CT装置所得图像的象素大小及数目不同。 CT图像是以不同的灰度来表示,反映器官和组织对X线的吸收程度。因此,与X线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如含气体多的肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X线图像相比,CT的密度分辨力高,即有高的密度分辨力。因此,人体软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。 2.3 CT的成像在临床中的应用 CT由于它的特殊诊断价值,已广泛应用于临床。但CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是定性诊断,还有一定限度,所以不宜将CT检查视为常规诊断手段,应在了解其优势的基础上,

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

数理统计在医学中的应用

谈数理统计在医学中的应用 摘要:目前数理统计在医学方面的应用越来越广泛。本文首先论述了其研究内容和特点,再通过举例说明,表明数理统计这门学科在疾病的治疗、药物的研究等方面发挥着不可替代的作用,最后是对该学科的展望,数理统计这门学科有广阔的发展空间,并且越来越多地应用到实际生活中。 关键词:数理统计医学贝叶斯公式药物疾病 第一章概述 数理统计是研究现实世界中大量现象的客观规律性的科学。也即从实际资料出发,来研究大量现象的规律性。具体来说,数理统计是研究从被研究对象的总体中抽出的一部分的某些性质,从而推断分析所研究的总体的性质。 医用数理统计方法是研究医学随机现象变异规律性的一门科学方法,它运用数理统计的基本知识,研究如何科学地搜集原始数据资料,建立有效的数据处理方法,进行统计分析,通过被研究问题作出估计和检验,从而指出事物变异的统计规律性。 在实际生活中,医学随机现象的变异性是普遍存在的,如同一地区内性别、年龄在不同时间段的构成比不同;同一疾病用同一种方法治疗,不同人群会有不同的治疗效果等。医学随机事件直接表现为一;定数量,这些数量的取值不能事先确定,而是受偶然因素的影响而改变的。这种随着偶然因素而改变的变量,称为随机变量。例如治愈数、死亡数、测量身高、体重所产生的误差等。通过数理统计研究使我们对于随机变量的特征及其变化规律获得一个总的认识,即通常所说的统计规律性就是随机变量概率分布特征的规律性。 统计学原理中要求抽样调查必须遵循的原则是抽样随机化。随机变量一般分为连续型随机变量和离散型随机变量,连续型随机变量是指随机变量取值充满某一个区间,如人的身高和血压的测定值等,它符合正态分布; 离散型随机变量是指随机变量只能取有限个或可数个值,如同一疾病中的治愈人数等,它符合二项分布。在医疗实践中,数理统计就是对大量随机事件进行科学的搜集整理统计资料并根据概率理论,以样本资料对总体的某些性质作出估计和判断

IT在医学上的应用

专业:热能与动力工程班级:02 姓名:陈小波学号:100303021118 2010.11.13

概述: 随着现代科学技术的发展,现代网络技术已经深入了各个领域,教育、国防、医疗、科研乃至娱乐,它已经成为我们生活中不可或缺的一部分,时时刻刻再为我们服务。医学作为一门古老却又永远年轻的科学,因其严谨、专业,而又不断发展,需要大量的信息。网络技术在医学上的应用将为医学发展提供一个新的契机。下面就IT 在医学上的应用及发展前景作简要介绍。 1、IT在医疗系统中的应用 2、IT在医疗诊断中的应用 3、IT在医疗治疗中的应用 4、IT在医学中的发展前景

医疗系统(Hospital Information System简称HIS)是一门容医学、信息、管理、计算机等多种学科为一体的操作管理平台。其中计算机网络系统占据很重要的地位。 计算机在规范医疗秩序、药品管理、数据入库起到了很重要的作用。 如下图介绍了计算机具体流程(包括医生、病人和厂家)

如下图介绍了医药的生产、采集和入库流程 由上图来看,现代医疗已经完成了数字化、信息化和智能化的管理。而这些系统的开发与应用必将优化医疗服务,减少医疗事故的发生,同时使医疗过程方便、便捷,使患者拥有更加优质的服务! 同时,便捷的网络使医学及其相关信息的传播更为广泛、迅速。可以面向病人和普通人群传播健康保健知识;面向医药从业人员传播专业信息,包括最新医学期刊的内容、历年医学文献的检索、通过BBS组织网上学术讨论和交流和继续教育,这些信息为医生、护士、药师、医院管理者等更合理地安排工作与进修时间提供了方便;

现代计算机技术深入的发展,医疗中也涌现了不少用于诊断的新型诊断仪,大大缩短了患者的诊断时间,使病人能够更快的接受治疗,同时也提高了诊断精度及有效减轻了病人的痛苦。 图是应用于现代诊断的核磁共振仪: 上图是核磁扫描仪上图是核磁分析仪 这些仪器和数字化的结合,创造了现代化的组合仪, 下面对它们的效果与传统的处理数据比较, 传统图

CMOS图像传感器的应用与发展

CMOS图像传感器的应用与发展 姓名: 班级:学号: 摘要:首先介绍了CMOS传感器的发展历程,然后对CMOS传感器的基本原理进行介绍,分析了CMOS传感器技术优于CCD传感器技术的特点,主要有制造简单、节省电影、价格便宜和小体积等。介绍了CMOS传感器的应用及研发。最后说明了CMOS传感器超越CCD传感器的美好发展前景,并说明了CMOS传感器现存的一些问题。 关键词:图像传感器;应用;趋势 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。如果把CMOS 图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、

matlab在医学图像处理中的应用

MATLAB在医学图像处理中的应用 13级信息管理及信息系统 2013051804 王志群 摘要:随着科学技术的发展,光学、数学、电子学、计算机科学、信息论、人工智能等各 门学科的交叉应用,成为现代科学研究中的一个突出特色。近年来,计算机相关技术和图 形图像处理技术逐步引入医学领域,许多数字化医学影像设备不断应用于临床,产生了CT、MRI、PET、SPET等大量的医学图像,这些医学图像具有数据结构复杂、数据量大等特点。 要使临床医学对人体内部病变的观察更直接、更清楚,医学图像的处理和分析是前提和关键,因此,医学图像处理技术一直是国内处有关专家们研究的重点。 Matlab是由MathWorks公司开发的一种主要用于数值计算和可视化图形图像处理的工 程语言。经过不断的发展和完善,现在已成为具有超强数值计算、图形图像处理和仿真处 理能力的软件。Matlab简单易学、开放式可扩展环境,特别是附带的30多种面向不同领域的工具箱支持,把计算、图示和编程集成到一个环境中,用起来非常方便。用MATLAB实现 医学图像的数字化处理可以大大简化各种算法的难度和复杂度。 关键词:MATLAB,数字图像处理 1、医学图像的数字化处理 医学图像数字化处理是指使用计算机对获取的图像进行各种处理,使之满足医疗需要的一系列技术的总称[4]。它是应用图形图像处理技术,来弥补影像设备和成像中的不足,从而得到用传统手段无法获取的医学信息。随着医学图像处理技术的发展,图像的去噪、图像的增强、图像的分割等基本技术,使得传统的医学图像的获取和观察方式被完全改变,图像处理技术在医学领域中变得越来越重要。 1.1 图像的去噪图像在生成、获取和传输等过程中,往往会发生质量的损伤,造成图像质量的损坏。医学图像的噪声是常见的影像问题,如超声设备中的斑点噪声。此类噪声如图像切割引起的即黑图像上的白点,白图像上的黑点噪声。这些噪声对医学图像的质量影响特别大,严重妨碍了影像的诊断。因此,图像的噪声过滤是图像处理的首要任务。目前,图像的噪声滤除方法有空域法和频域法两大类。医学图像的去噪,要根据具体产生的原因采用不同的方法。例如,对于 CT图像中的的椒盐噪声可以采用中值滤波技术,它能在过滤噪声的同时,又能 很好地保护边缘轮廓的信息。用MATLAB工具箱中medfilt2()函数实现中值滤波。 1.2 医学图像的增强图像增强是对图像进行加工,以得到对具体应用来说视觉效果更“好”、更“有用”的图像,也就是把有用信息变得更清晰,增强感兴趣的特征,抑制不感兴趣的特征,改变图像质量,丰富图像信息,加强图像识别是一种常见图像处理方法。常用的图像增强技术根据对图像进行处理所在的空间

相关文档
最新文档