高中数学竞赛解题方法篇(不等式)

高中数学竞赛解题方法篇(不等式)
高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法

摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.

1.排序不等式 定理1

设1

212...,...n n a a a b b b ≤≤≤≤≤≤,则有

1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和)

1122 ...n n a b a b a b ≤+++(顺序积和)

其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和

顺序积和.)

证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式

1212...n

r r n r S a b a b a b ≤+++的意义:当

121,2,...,n r r r n

===时,S 达到最大值

1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有

.n n k n n r k r n n a b a b a b a b +≤+ (1-1)

事实上, ()()()0n n n n n

k r k n n r n r n k a b a b a b a b b b a a +-+=--≥

不等式(1-1)告诉我们当n

r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n

a 和n

b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122

...n n a b a b a b +++,这就证明了

1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.

再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,

1211(...)n

n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .

例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3

()

a b c a b c

a b c abc ++≥.

思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有:

lg lg lg lg lg lg a a b b c c a b b c c a ++≥++

lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++

有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3

a b c

a b c

a

b c abc ++≥

故 3

()

a b c a b c

a

b c abc ++≥ .

例2 设a,b,c R +

∈,求证:222222333

222a b b c c a a b c a b c c a b bc ca ab

+++++≤

++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设a b c ≥≥,则 2

22a b c ≥≥且111

c b a

≥≥

根据排序不等式,有

222222111a b c a b c c a b a b c

++≥++

222222111a b c a b c b c a a b c

++≥++ 两式相加除以2,得

222222

222a b b c c a a b c c a b

+++++≤++

再考虑3

33a

b c ≥≥,并且

111bc ca ab

≥≥

利用排序不等式,

333333111 a b c a b c bc ca ab ca ab bc

++≥++

333333111 a b c a b c bc ca ab ab bc ac

++≥++

两式相加并除以2,即得

222222333

222a b b c c a a b c c a b bc ca ab

+++++≤++ 综上所述,原不等式得证.

例3 设1

2120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列.

求证:

11

11

r s

n

n

n n

i j r s

r s r s a b a b r s

r s

====≥++∑∑∑∑

. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.

证明:令 1

s n

j r

s b d r s

==+∑

(r=1,2,...,n )

显然 12...n d d d ≥≥≥ 因为 1

2...n b b b ≤≤≤ , 且

111...(1)1

r n r n r ≤≤≤++-+ 由排序不等式

1

n

s

r s b d r s =≤+∑ 又因为 1

2...n a a a ≤≤≤

所以 11r

n n r r i r r r a d a d ==≤∑∑且111

n n

n

s

r r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0) 故

11

1

1

1

r s

s

r

n

n

n n

n

i j j ir

i r

r s r s r a b b a a d

r s r s =======++∑∑∑∑∑

11111n n n

n n

s r s r r r r r s r s b a b

a d a r s r s

=====≥≥=++∑∑∑∑∑ 故 原式得证.

2.均值不等式

定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.

其中,

121()111

...n

H n a a a =

+++

()G n ,

12...()n

a a a A n n

+++=

()Q n =

分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.

记 c =

i i

a b c

=

则 原不等式12...n b b b n ?+++≥

其中 12121

...( (1)

n n b b b a a a c =

= 取 12,,...,n x x x 使 1121

2123,,...,,n n n x x x

b b b x x x --=

== 则 1

.n n x b x = 由排序不等式,易证

11

1221

......n n n n x x x b b b n x x x -+++=

+++≥ 下证

()()A n Q n ≤

因为 2

22

21

2121...[(...)n n a a a a a a n +++=+++22212131()()...()n a a a a a a +-+-++-

2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]

2121

(...)n a a a n

+++ 所以

12...n a a a n +++≤

从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.

下面证明 ()()H n G n ≤

对n 个正数

12111

,,...,n

a a a ,应用 ()()G n H n ≤,得

12111

...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).

例4已知2201,0a x y <

<+=,求证:1

log ()log 28

x y a a a a +≤+

. 证明:由于 01a <<,0,0x

y a a >>,

x

y a

a +≥=从而

log ()log log 22

x

y a a a x y

a a ++≤=+

下证

128x y +≤ , 即 1

4

x y +≤。 又因为 2

111()244x y x x x +=-=--+≤,等号在x=12(这时y=14

)时取得

所以 1log ()log 28

x y

a a a a +≤+ .

例5(IMO )设a,b,c 是正实数,且满足abc=1.

证明:111

(1)(1)(1)1a b c b c a -+-+-+≤ 证明:令 ,,y y z

a b c x z x

===,其中x,y,z 是正实数,将原不等式变形为

()()()x y z y z x z x y xyz -+-+-+≤ (2-1)

记 ,,u x y z v y z x w z x y =

-+=-+=-+,

注意到u,v,w 任意两个之和是一个正数,所以它们中间至多有一个负数. 如果恰有一个负数,那么0uvw xyz ≤<

(2-1)式成立. 如果这三个数都大于0,由算术—几何平均不等式

1

()2

x y z y z x x ≤-++-+=

y

≤z 于是

xyz ≤

即 uvw xyz ≤,

(2-1)式得证.

例6 已知12,,...,0n a a a >,且12...1n a a a +++=.

求证:

1223131211...1...1 (21)

n n n n a a a n

a a a a a a a a a n -++≥++++++++++++-.

思路分析:左边各项形式较复杂,首先将其化简为112

(1)22n

n

i i i i i

a a a ===---∑∑. 左边为和的形式,但其各项之和难与右边联系,利用算术平均大于几何平均难以求证,而左边各项

2

2i

a -可看为倒

数形式,尝试用调和平均. 证明:不等式左边化为

112

(1)22n

n

i i i i i a a a ===---∑∑, 对

12222

,, (222)

a a a ---,利用

()()A n H n ≥有

11

1222n i

n

i i i

i a n a n a ==≥--∑∑

即 222

1

1

221122122n

i

n

i i i a n n n n n n a ==-≥

==

--

-∑∑ 所以 2

111222(1)22221n

n n

i i i i i i i

a a n n n a a n ===-=-=-≥----∑∑∑21n n =

- .

3.柯西不等式

()()

()

()()()()()()2

11222223322

112

13312

12212

22112

2

22

12

2

22

1

---++-++-+

-++-+-=+++-++++++n n n n n n n n n n n n b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b a a a

由实数性质()R ∈≥αα

02

可得柯西不等式成立。

以上给出了柯西不等式的几种证法。不难看出柯西不等式的重要性。它的对称和谐的结构、广泛的应用、简洁明快的解题方法等特点深受人们的喜爱。所以,若将此定理作进一步剖析,归纳它的各类变形,将会有更多收获。

柯西不等式的推广 命题1

若级数∑∑==n

i i n

i i b a 12

12

与收敛,则有不等式∑∑∑===≤??

? ??n

i i n i i n i i i b a b a 12

122

1。

证明:∑∑==n

i i n i i b a 12

12, 收敛,??

? ????? ??≤??? ??≤∑∑∑===n i i n i i n i i i b a b a 12122

10

i n

i i b a ∑=∴1

收敛,且∑∑∑=∞

→=∞→=∞→≤??? ??n

i i

n n i i n n i i i n b a b a 12

122

1lim lim lim

从而有不等式∑∑∑===≤??

? ??n

i i n i i n i i i b a b a 12

122

1成立。

命题2[3]

若级数∑∑==n

i i n

i i b a 1212与收敛,且对N n ∈?有∑∑∑===≤??

? ??n

i i n i i n i i i b a b a 12

122

1,则对定义在[]b a ,上的任意连续函数

()()x g x f ,有不等式()()()()dx x g dx x f dx x g x f b

a b a b a ???≤??

? ??222

证明:因为函数

()()x g x f ,在区间[]b a ,上连续,所以函数()()()()x g x f x g x f 22、、与在[]b a ,上可积,将

[]b a ,区间n 等分,取每个小区间的左端点为i ξ,由定积分的定义得:

()()()()()()()()x

g dx x g x f dx x f x

g dx x g x f dx x f i n

i n b

a

i n

i n b

a

n

i i

n b

a

n

i i

n b

a

?=?=?=?=∑?∑?

∑?∑?=∞

→=∞

→=∞

→=∞

→ξξξξ1

221

221

1

lim ,lim lim ,lim

令()()12

21

12

2

1

,ξξg b f a

==,则∑∑==n

i i

n i i b a 1

2

1

2

与收敛,由柯西不等式得

例7 设12,,...,n x x x R +

∈,求证:2222

1

1212231

......n n n n x x x x x x x x x x x -++++≥+++.

思路分析:注意到式子中的倒数关系,考虑运用柯西不等式来证明. 证明:因为12,,...,n

x x x >0,故由柯西不等式,得

22

22

1

12

231

231

2

2

231

(...)(...)

...

(...)

n n

n

n

n

x x

x x

x x x x

x x x x

x x x x

-

++++++++

≥++

=++++

所以

22

22

1

12

12

231

......

n n

n

n

x x

x x

x x x

x x x x

-

++++≥+++.

例8已知实数,,,

a b c d,e满足22222

8,16

a b c d e a b c d e

++++=++++=,求e的取值范围.

思路分析:由22222

a b c d e

++++联想到应用柯西不等式.

解:因为22222222

4()(1111)()

a b c d a b c d

+++=++++++

2

(),

a b c d

≥+++

即22

4(16)(8)

e e

-≥-,

22

6446416

e e e

-≥-+

即2

5160

e e

-≤,所以(516)0

e e-≤,

6

5

e

≤≤.

评述:此题十分巧妙地应用柯西不等式求最值,十分典型,它是将重要不等式应用于求最值问题的一道重要题目.

例9

123

,,

x x x R+

∈满足222

123

1

x x x

++=,求3

12

222

123

111

x

x x

x x x

++

---

的最小值.

:容易猜到

123

x x x

===3

12

222

123

111

x

x x

x x x

++

---

.

为了证明这一点,利用柯西不等式,得

333

322

2

111

.(1)1

1

i

i i i

i i i

i

x

x x x

x

===

-≥=

-

∑∑∑,

只需要证明

3

32

1

(1)

i i

i

x x

=

-≤

等价于

33

53

11

i i

i i

x x

==

+≥

∑∑(3-1)

由几何—算术平均不等式,得

2

53

11

x x

+≥=,

同理可证,

2

53

22

x x

+≥=,

2

53

33

x x

+≥=,

以上三式相加,(3-1)式得证,进而证得

3

12

222

123

111

x

x x

x x x

++

---

123

x x x

===

评述:柯西不等式中的

i i

a b

∑的项i i a b如何拆成两个因式i a和i b

的积,可以说是应用此不等式的主要技巧(上例

3

32

1

(1)

i i

i

x x

=

-≤

∑,我们将32

1

i

i

x

=

∑中的2i x

的积),正因为i i

a b可以按照我们的需要加以分解,柯西不等式的应用更为广泛.

例10试问:当且仅当实数

01

,,...,(2)

n

x x x n≥满足什么条件是,存在实数

01

,,...,

n

y y y使得

2222

012

...

n

z z z z

=+++成立,其中

k k k

z x iy

=+,i为虚数单位,k=0,1,…,n. 证明你的结论.(高中联赛,1997)

思路分析:将2222

012

...

n

z z z z

=+++成立转换到实数范围内求解。根据表达式的特点,结合柯西不等式寻找

(1,2,...,)

i

x i n

=的范围.

解:将2222

012

...

n

z z z z

=+++转化到实数范围内,即

2222

00

11

00

1

,

n n

k k

k k

n

k k

k

x x y y

x y x y

==

=

?

-=-

??

?

?=

??

∑∑

(3-2)

若存在实数

01

,,...,

n

y y y使(3-2)成立,则222

00

1

()

n

k k

k

x y x y

=

=∑.

由柯西不等式可得 2222

1

1

()()n n

k k k k x

y x y ==≤∑∑ (3-3) 如果220

1

n

k

k x

x

=>∑,由(3-2)可知

220

1n

k k y y =>∑,从而

2222

1

1

()()n

n k

k k k x y x y ==>∑∑与 (3-3)矛盾 于是得 220

1

n

k k x

x =≤∑ (3-4)

反之若(3-4)成立,有两种情况:

⑴220

1n

k k x

x ==∑,则取k k y x =,k=0,1,2,…,n ,显然(3-2)成立.

⑵220

1

n

k

k x

x

=<∑,记2

22

01

0n

k k a

x x ==->∑,则1,...,n x x 不全为0. 不妨设0n

x ≠,

0,0,1,2,...,2k y k n ==-,并且取

1n n y y -=

=

易知(3-2)成立.

综上,所求的条件为 220

1

n

k k x

x =≤∑.

4.切比雪夫不等式 定理4 设

12,,...,n

x x x ,

12,,...,n

y y y 为任意两组实数,若

12...n

x x x ≤≤≤且

12...n

y y y ≤≤≤或

12...n x x x ≥≥≥且12...n y y y ≥≥≥,则

111

111()()n n n

i i i i i i i x y x y n n n ===≥∑∑∑ (4-1)

若1

2...n x x x ≤≤≤且12...n y y y ≥≥≥或12...n x x x ≥≥≥且12...n y y y ≤≤≤,则

111

111()()n n n

i i i i i i i x y x y n n n ===≤∑∑∑ (4-2)

当且仅当12...n x x x ===或12...n y y y ===时,(4-1)和(4-2)中的不等式成立.

证明: 设1212,,...,,,,...,n n x x x y y y 为两个有相同次序的序列,由排序不等式有

11221122......n n n n x y x y x y x y x y x y +++=+++ 112212231......n n n x y x y x y x y x y x y +++≥+++ 1122

13242......n n n x y x y x y x y x y x y +++≥+++

…………

11221211......n n n n n x y x y x y x y x y x y -+++≥+++

把上述n 个式子相加,得 1

1

1

()()n

n n

i i

i i i i i n

x y

x y ===≥∑∑∑

上式两边同除以2

n ,得 111

111()()n n n

i i i i i i i x y x y n n n ===≥∑∑∑

等号当且仅当1

2...n x x x ===或12...n y y y ===时成立.

例 10 设0(1,2,...,)i a i n >=,

求证:121

21

(...)1

2

12...(...)

n n a a a a a a n

n

n a

a a a a a +++≥

证明:不妨令 12...0n a a a ≥≥≥>,则 12lg lg ...lg n a a a ≥≥≥

由切比雪夫不等式,有

11221212lg lg ...lg 1

(...)(lg lg ...lg )n n

n n a a a a a a a a a a a a n

+++≥++++++ 即 12121

(...)1212lg(...)lg(...)

n n a a a a a a n

n

n a

a a a a +++≥

从而证得 12121

(...)1

2

12...(...)

n n a a a a a a n

n

n a a a a a a +++≥.

例11 已知1

211...0,...0n n n a a a b b b -≥≥≥>≥≥≥>.

求证: 111

n

i

n

i i n

i i

i

i a b n a b

===≥∑∑∑.

证明:取,i i i i x a y b ==,则由2211...0,...0n n n a a a b b b -≥≥≥>≥≥≥>,

可知i x ,i b 满足切比雪夫不等式的条件,故

11111111

()()n n n i

i i i i i i

a a n

b n n b ===≥∑∑∑ 又由均值不等式,正数12,,...,n b b b 的调和平均数不大于它们的算术平均数,

1

11n

i

i n

i i

b

n n

b ==≤

∑∑.

其中等号仅在12...n b b b ===时成立.

这样就有 111

1n

i

n i

i n i i

i

i a

b n a b

===≥∑∑∑,

即 111

n

i

n

i i n

i i

i

i a b n a b

===≥∑∑∑, 而且等号仅在1

2...n b b b ===时成立.

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性质分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈>>?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||22a x a a x a a x ≤≤-?≤?>≤ (2).)0(||22a x a x a x a a x -≤≥?≥?>≥或 (3)||||||||||||b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 1.比较法(比较法可分为差值比较法和商值比较法。) (1)差值比较法(原理:A - B >0 A > B .) 例1 设a, b, c ∈R +,

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

2019年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷) 一试 一、填空题(本大题共8小题,每小题8分,共64分) 1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11 a b +的值为________. 答案:设连等式值为k ,则2 3 2 ,3 ,6k k k a b a b --==+=,可得答案108 分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过 2. 设集合3|12b a b a ?? +≤≤≤????中的最大元素与最小你别为,M m ,则M m -的值为______. 答案:33251b a +≤+= ,33 b a a a +≥+≥ ,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______. 答案:零点分类讨论去绝对值,答案[]2,0- 分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过 4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则 2014 122013a a a a =+++______. 答案:()1221 n n n a a n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+?+?+++, 乘以公比错位相减,得2n n S n =,故答案为2015 2013 . 分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过 5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN 与PC 之间的距离是 ________. 答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过 6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则 椭圆Γ的短轴与长轴的比值为________. 答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+, 可得△2PQF 三边长为7,21,2c c + ,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关 7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之 比的最大值为________. 答案:sin sin APB APC S PAB S PAC ∠=∠,又两角和为60 最大,即AP 与 (),1I 切于对称轴右侧 2 分析:平面几何最值、面积、三角函数、轨迹

高中数学竞赛_集合 函数 不等式 导数

专题二 集合 函数 不等式 导数 一 能力培养 1,函数与方程思想; 2,数形结合思想; 3,分类讨论思想; 4,运算能力; 5,转化能力. 二 问题探讨 [问题1] 已知{3}A x x a =-≤,2{780}B x x x =+->,分别就下面条件求a 的 取值范围: (I)A B =?;(II)A B B =. [问题2]求函数()a f x x x =+ 的单调区间,并给予证明. [问题3]已知()1x f x e ax =--. (I)若()f x 在定义域R 内单调递增,求a 的取值范围; (II)若()f x 在(,0]-∞上单调递减,在[0,)+∞上单调递增,求a 的值; (III)设2()22g x x x =-++在(II)的条件下,求证()g x 的图象恒在()f x 图象的下方. [问题4]设11()lg 21x f x x x -=+++. (I)试判断()f x 的单调性; (II)若()f x 的反函数为1()f x -,证明1()0f x -=只有一个解; (III)解关于x 的不等式1 1[()]22 f x x -<.

三 习题探讨 选择题 1已知函数()2x f x =,则12(4)f x --的单调减区间是 A,[0,)+∞ B,(,0]-∞ C,[0,2) D,(2,0]- 2已知集合M={01}x x ≤≤,N={01}x x ≤≤,下列法则不能构成M 到N 的映射的是 A,2y x = B,sin y x = C,tan y x = D,y 3已知函数(1)()(1)x x f x x x ≥?=?-?,已知()1f a >,则a 的取值范围为 A,(1,1)- B,(,1)(1,)-∞-+∞ C,(,2)(0,)-∞-+∞ D,(1,)+∞ 6对于函数32()3f x x x =-,有下列命题:①()f x 是增函数,无极值;②()f x 是减函数, 无极值;③()f x 的增区间是(,0)-∞,(2,)+∞,()f x 的减区间是(0,2);④(0)0f =是极 大值,(2)4f =-是极小值.其中正确的命题有 A,一个 B,二个 C,三个 D,四个 填空题 7函数2(2)log x f x =的定义域是 . 8已知2(1cos )sin f x x -=,则()f x = . 9函数2log (252)x y x x =-+-单调递增区间是 . 10若不等式2log 0(0,1)a x x a a -<>≠对满足102 x <<的x 恒成立,则实数

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立.

(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1 2 12...n r r n r S a b a b a b =+++。 不等式 1 2 12...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到 最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不 变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 1211(...)n n n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

高中数学竞赛介绍,尖子生请收好

高中数学竞赛介绍,尖子生请收好! 首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件: ?高考数学可以轻松应对; ?对数学竞赛有兴趣,自发选择学习数学竞赛; ?具备自主学习能力; ?高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。 数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。为什么?因为学习数学竞赛的好处很多。 与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。 此外,数学竞赛学到一定深度后就会发现,数学竞赛不再是由知识结构和解题方法组成,而是对思维能力的培养和运用,而思维能力的价值是远超过数学本身的,这将会对学生以后对问题的思考与对事物的判断等产生不可估量的影响。当然,这是后话。 说归说,高中数学竞赛指的究竟是什么?我想说的是,绝不仅仅是高联(全国高中数学联赛)这么简单。下面,我就带着大家理一理高中阶段可能会遇到的竞赛。

1. 全国高中数学联赛 全国高中数学联赛旨在选拔在数学方面有突出特长的同学,让他们进入全国知名高等学府,而且选拔成绩比较优异的同学进入更高级别的竞赛,直至国际数学奥林匹克(IMO)。并且通过竞赛的方式,培养中学生对于数学的

兴趣,让学生们爱好数学,学习数学,激发学生们的钻研精神,独立思考精神以及合作精神。 2.中国数学奥林匹克(CMO) CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。颁奖与IMO类似,设立一、二、三等奖,分数最高的约前60名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。 3.国际数学奥林匹克(IMO) 国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。 正如专家们指出:IMO的重大意义之一是促进创造性的思维训练,对于科学技术迅速发展的今天,这种训练尤为重要。数学不仅要教会学生运算技巧,更重要的是培养学生有严密的思维逻辑,有灵活的分析和解决问题的方法。 根据我的感觉,如果高考的数学难度有两星,那么高联的一试难度大概有三颗星,二试难度大概有四颗星;而CMO和IMO的难度大概在五颗星左右。因此,参加高中竞赛的确

竞赛均值不等式专题讲解

均值不等式专题讲解 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。. 二、用均值不等式求最值 利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。 例1:下列命题中正确的是【 】 A 、x x 1 + 的最小值为2; B 、x x -+2 2的最小值为2; C 、b a a b +的最小值为2; D 、θθcot tan +的最小值为2。 点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。 例2:你能指出下列推导过程错在哪里吗? ⑴若0>x ,则221213x x x x x ++=+≥332 23123?=???x x x ; ⑵若?? ? ??∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=?x x ; ⑶若R x ∈,则 ( ) 4 144 144 1)4(4 52 22 2 2 2 2 2 2 ++ += +++= +++= ++x x x x x x x x ≥2。

高中数学竞赛训练题—填空题

高中数学竞赛训练题—填空题 1. 若不等式1-log a )10(x a -<0有解,则实数a 的范围是 . 2.设()f x 是定义在R上的奇函数,且满足(2)()f x f x +=-;又当01x ≤≤时, 1()2 f x x = ,则方程21 )(-=x f 的解集为 。 3.设200221,,,a a a Λ均为正实数,且 2 1 212121200221=++++++a a a Λ,则200221a a a ???Λ的最小值为____________________. 4. ,x R ∈ 函数()2sin 3cos 23 x x f x =+的最小正周期为 . 5. 设P 是圆2 2 36x y +=上一动点,A 点坐标为()20,0。当P 在圆上运动时,线段PA 的中点M 的轨迹方程为 . 6.. 设z 是虚数,1 w z z =+ ,且12w -<<,则z 的实部取值范围为 . 7. 设4 4 2 )1()1()(x x x x k x f --+-=。如果对任何]1,0[∈x ,都有0)(≥x f ,则k 的最小值为 . 8.= 。 9.设lg lg lg 111()121418x x x f x = +++++,则 1 ()()_________f x f x +=。 10.设集合{}1215S =L ,,,,{}123A a a a =,,是S 的子集,且()123a a a ,,满足: 123115a a a ≤≤<<,326a a -≤,那么满足条件的集合A 的个数为 . 11.已知数列}{n a 满足,01=a ),2,1(1211Λ=+++=+n a a a n n n ,则n a =___ . 12.已知坐标平面上三点()()) 0,3,,A B C ,P 是坐标平面上的点,且 PA PB PC =+,则P 点的轨迹方程为 . 13.已知0 2sin 2sin 5=α,则) 1tan() 1tan(00-+αα的值是______________. 14.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________. 15.不等式 92) 211(42 2 +<+-x x x 的解集为_______________________.

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

数学竞赛选讲不等式证明

§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈> >?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ΛΛ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函 数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更 为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法. 例题讲解 1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 2.0,,>c b a ,求证:.) (3 c b a c b a ab c c b a ++≥ 3.:.222,,,3 33222222ab c ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤ ++∈+ 求证 4.设* 21,,,N a a a n ∈Λ,且各不相同, 求证:.321312112 23221n a a a a n n ++++≤+ +++ΛΛ.

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

高中数学竞赛集训训练题

高中数学竞赛集训训练题 1.b a ,是两个不相等的正数,且满足2 2 3 3 b a b a -=-,求所有可能的整数 c ,使得ab c 9=. 2.已知不等式 24 131...312111a n n n n > ++++++++对一切正整数a 均成立,求正整数a 的最大值,并证明你的结论。 3.设{}n a 为14a =的单调递增数列,且满足22 111168()2n n n n n n a a a a a a +++++=++,求{n a } 的通项公式。 4.(1)设,0,0>>y x 求证: ;4 32y x y x x -≥+ (2)设,0,0,0>>>z y x 求证: .2 333zx yz xy x z z z y y y x x ++≥+++++ 5. 设数列ΛΛΛ,1 ,,12, 1,,13,22,31,12,21,11k k k -, 问:(1)这个数列第2010项的值是多少; (2)在这个数列中,第2010个值为1的项的序号是多少. 6. 设有红、黑、白三种颜色的球各10个。现将它们全部放入甲、乙两个袋子中,要求每

个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等。问共有多少种放法。 7.已知数列{}n a 满足1a a =(0,1a a ≠≠且),前n 项和为n S ,且(1)1n n a S a a = --, 记lg ||n n n b a a =(n *∈N ),当a =时,问是否存在正整数m ,使得对于任意正整数n ,都有m n b b ≥?如果存在,求出m 的值;如果不存在,说明理由. 8. 在ABC ?中,已9,sin cos sin AB AC B A C ==u u u r u u u r g ,又ABC ?的面积等于6. (Ⅰ)求ABC ?的三边之长; (Ⅱ)设P 是ABC ?(含边界)内一点,P 到三边AB 、BC 、AB 的距离为1d 、2d 和3d ,求 123d d d ++的取值范围. 9.在数列{}n a 中,1a ,2a 是给定的非零整数,21n n n a a a ++=-. (1)若152a =,161a =-,求2008a ; (2)证明:从{}n a 中一定可以选取无穷多项组成两个不同的常数数列. 10. 已知椭圆)1(12 22>=+a y a x ,Rt ABC ?以A (0,1)为直角顶点,边AB 、BC 与椭圆 交于两点B 、C 。若△ABC 面积的最大值为27 8 ,求a 的值。

不等式高中数学竞赛标准教材

第九章不等式(高中数学竞赛标准教材) 第九章不等式 一、基础知识不等式的基本性质:(1)a>b a-b>0;(2)a>b, b>c a>c;(3)a>b a+c>b+c;(4)a>b, c>0 ac>bc;(5)a>b, c<0 acb>0, c>d>0 ac>bd; (7)a>b>0, n∈N+ an>bn; (8)a>b>0, n∈N+ ; (9)a>0, |x|a x>a或x<-a; (10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab; (12)x, y, z∈R+,则x+y≥2 , x+y+z 前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b 矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立; -|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为 |a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥ ,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)= (a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥ ,等号当且仅当x=y=z时成立。二、方法与例题 1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1 设a, b, c∈R+,试证:对任意实数x, y, z, 有x2+y2+z2 【证明】左边-右边= x2+y2+z2 所以左边≥右边,不等式成立。例2 若alog(1-x)(1-x)=1(因为0<1-x2<1,所以 >1-x>0, 0<1-x<1). 所以 |loga(1+x)|>|loga(1-x)|. (2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,

数学竞赛历年的不等式题

(2006年全国)2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A . 112x << B .1 , 12 x x >≠且 C . 1x > D . 01x << 【答】( B ) 【解】因为2 0,1210 x x x x >≠?? +->?,解得 1 ,12x x >≠. 由2log (21)log 2 1x x x x +->- 32log (2)log 2x x x x x ?+-> 32 01 22 x x x x <? ? +->? 解得 1x >,所以x 的取值范围为 1 , 12x x >≠且. 1.(05)使关于x k ≥有解的实数k 的最大值是( ) A 解 : 令 6, y x =≤≤ 则 2(3)(6)2[(3)y x x x =-+-+≤- (6)] 6.x +- =0y k ∴<≤实数 D 。 (2004年全国)3.不等式2log 21 1log 32 12++ -x x >0的解集是( C ) A .[2,3] B .(2,3) C .[2,4] D .(2,4) 解:原不等式等价于2 2331log 0222 log 10 x x ++>?-≥? 解得20log 11,24x x ≤-<∴≤<.故选C . (2003年全国)5已知x ,y 都在区间(-2,2)内,且xy =-1,则函数 u =244 x -+2 99y -的最小值是D (A) 58 (B)11 24 (C)712 (D)512 (2003年全国)7不等式|x |3-2x 2-4|x |+3<0的解集是__________.7、}2 5 133215| {-<<-<<-x x x 或; (2003年全国)13已知 52 3 ≤≤x ,证1923153212<-+-++x x x

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

高中数学竞赛训练题 (3)

高中数学竞赛训练题 一、选择题(仅有一个选择支正确) 1.已知全集}{}{N n n x x B N n n x x A N U ∈==∈===,4,,2,,则( ) (A ) B A U = (B) )(B A C U U = (C) B C A U U = (D) B C A C U U U = 2.已知b a ,是正实数,则不等式组???>+>+ab xy b a y x 是不等式组? ??>>b y a x 成立的( ) (A )充分不必要条件 (B) 必要不充分条件 (C) 充分且必要条件 (D)既不充分又不必要条件 3.等差数列{}n a 中,,336),9(30,1849=>==-n n S n a S 则n 的值是( ) (A )8 (B) 9 (C) 16 (D) 21 4.已知复数2 121 -+ =z z w 为纯虚数,则z 的值为( ) (A ) 1 (B) 21 (C) 31 (D) 不能确定 5.边长为5的菱形,若它的一条对角线的长不大于6,则这个菱形对角线长度之和的最大值是( ) (A ) 16 (B) 210 (C) 14 (D) 65 6.平面上的整点(横、纵坐标都是整数)到直线5 435+=x y 的距离中的最小值是( )(A ) 17034 (B) 8534 (C) 170343 (D) 30 1 7.若232,2,2++x y x x 成等比数列,则点),(y x 在平面直角坐标系内的轨迹是( ) (A ) 一段圆弧 (B) 一段椭圆弧 (C) 双曲线的一部分 (D) 抛物线的一部分 8.若ABC ?的三边c b a ,,满足:,0322,0222 =+-+=---c b a c b a a 则它的最大内角的度数是( ) (A ) 0150 (B) 0120 (C) 090 (D) 060

相关文档
最新文档