MATLAB通信仿真要点

MATLAB通信仿真要点
MATLAB通信仿真要点

成绩

南京工程学院

课程设计说明书(论文)题目带限数字基带传输系统的仿真

课程名称Matlab通信仿真设计

院(系、部、中心)通信工程学院

专业无线通信

班级无线通信131

学生姓名陈明星

学号208130115

设计地点信息楼C 322

指导教师刘伟伟

设计起止时间:2015年 12月14日至 2014年 12月 18日

一、课程设计目的和要求

1.综合运用信号与线性系统,通信原理,以及matlab语言等综合应用知识。

2.基本熟悉软件开发流程、要点以及注意事项。

3.掌握基带数字传输系统的仿真方法。

4.熟悉基带传输系统的基本结构。

5.掌握带限信道的仿真以及性能分析。

6.通过观察眼图判断信号的传输质量。

7.设计和编程,以加深对通信系统基础知识的理解,提高学生利用matlab在通信领域进行实践的应用能力、分析解决问题的能力;增强学生对实践应用流程模式的理解。

二:课设设备

1.硬件:PC机

2.软件:MATLAB7.1,Windows7操作系统

三:课程设计原理及背景知识

在实际通信中传输信道的带宽是有限的,这样的信道称为带限信道。带限信道的冲激响应在时间上是无限的,因此一个时隙内的代表数据的波形经过带限信道后将在邻近的其他时隙上形成非零值,称为波形的拖尾。拖尾和邻近其他时隙上的传输波形相互叠加后,形成传输数据之间的混叠,造成符号间干扰,也称为码间干扰。接收机中,在每个传输时隙中的某时间点上,通过对时域混叠后的波形进行采样,然后对样值进行判决来恢复接收数据。在采样时间位置上符号间的干扰应最小化(该采样时刻称为最佳采样时刻),并以适当的判决门限来恢复接收数据,使误码率最小(该门限称为最佳判决门限)。

在工程上,为了便于观察接收波形中的码间干扰情况,可在采样判决设备的输入端以恢复的采样时钟作为同步,用示波器观察该端口的接收波形。利用示波管显示的暂时记忆特性,在示波管上将显示多个时隙内接收信号的重叠波形图

案,称为眼图。对于传输符号为等概的双极性码,最佳判决门限为0,最佳采样时刻为眼图开口最大处,因为该时刻上的码间干扰最小。当无码间干扰时,在最佳采样时刻上眼图波形将会聚为一点。

显然,只要带限信号冲击响应的拖尾波在时隙周期整数倍上的值为0,那么在采

样时刻就没有码间干扰,例如抽样函数

x x

x Sa sin )(=

。然而,抽样函数的频谱时门

函数,物理不可实现,即使近似实现也十分困难。还存在一类无码间干扰的时域函数,具有升余弦频率特性,幅频响应是缓变的,在工程上易于实现,其冲激响应为:

()()()2

/41/cos /t/T sin 22s cos s s s t r T t T t T t h ααπππ-=

其中,s T 为码元传输时隙宽度,10≤≤α为滚降系数。α=0时,退化为矩形门函数;α=1时,为全升余弦。其傅里叶变换()ωcos r H 即为相应的系统函数。 设发送滤波器为()ωT G ,物理信道的传递函数为()ωC ,接收滤波器为()ωR G ,则带限信号总的传递函数为()()()()ωωωωR T G C G H =。

对于物理信道是AWGN 信道的情况,可以证明,当发送滤波器与接收滤波器相互匹配时,即()()ωωR T G G *=,系统误码率最小。对于理想的物理信道 (()ωC =1),收发滤波器相互匹配时有

()()()()

2

*

ω

ωωωT T G G G H R ==

由此求得收发滤波器传递函数的实数解为

()()()ωωωH G G R T =

=

无码间干扰情况下,信道总的传递函数是滚升余弦的,匹配的收发滤波器称为平

方根升余弦滤波器,有

()()()ωωωrcos H ==R T G G

工程上,滚升余弦滤波器和平方根滚升余弦滤波器通常用FIR 滤波器来近似实现。FIR 滤波器的分母系数为1,分子系数向量等于冲激响应的采样序列。Matlab 通信工具箱中提供了设计升余弦滤波器的函数rcosine 。函数rcosine 用

于计算FIR滤波器时的用法如下。

Num=rcosine(Fd,Fs,’fir/normal’,r,delay)

‘fir/normal’用于FIR滚升余弦滤波器设计

num=rcosine(Fd,Fs,’fir/sqrt’,r,delay)

‘fir/sqrt’用于FIR平方根滚升余弦滤波器设计

r是滚降系数;Fd是输入数字序列的采样率即码元速率;Fs为滤波器的采样率,Fs必须是Fd的整数倍;delay是输入到响应峰值之间的延迟(单位是码元时隙数)。

四:课程设计任务

任务一:升余弦波形及其频谱研究

用MATLAB通信工具箱提供的rcosine函数作出一组滚升余弦滤波器的冲击响应,滚降系数为0,0.5,0.75,1,并通过FFT求出其幅频特性。码元时隙为1ms,在一个码元时隙内采样10次,滤波器延时为5个码元时隙。

任务二:滚升余弦滤波器设计

设计一个滚升余弦滤波器,滚降系数为0.75。输入为4元双极性数字序列,符号速率为1000波特,设滤波器采样率为10000次/s,即在一个符号间隔中有10个采样点。请建立simulin仿真模型观察升余弦滤波器的输出波形,眼图及功率谱。

任务三:带限基带传输模型

建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为AWGN信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,统计误码率。

五:课程设计成果内容及相关截图

任务一:

MATLAB编程如下:

clc;

Fd=1e3;

Fs=Fd*10;

delay=5;

for r=[0,0.5,0.75,1]

num=rcosine(Fd,Fs,'fir/normal',r,delay)

t=0:1/Fs:1/Fs*(length(num)-1);

figure(1);

plot(t,num);

axis([0 0.01 -0.2 1.1]); hold on;

Hw=abs(fft(num,1000));

f=(1:Fs/1000:Fs)-1;

figure(2);

plot(f,Hw);

axis([0 1500 0 12]);

hold on;

end

升余弦波形图:

升余弦波形图对应的幅频特性曲线:

任务二:

滚升余弦滤波器和眼图测试模型

模块分析:

系统仿真步进设为1e-4s,采用Random Integer Generator产生采样间隔为1e-3的4元整数(0,1,2,3),并用Unipolar to Bipolar Converter模块将其转换为双极性(-3,-1,1,3)。通过升速率模块Upsample将基带数据的采样速率升高为10000次每秒,其输出为冲激脉冲形式的数据序列。滚升余弦FIR滤波器以Discrete Filter模块实现,其分母系数设置为1,分子系数通过rcosine函数计算。这样,就得到了滚降系数为0.75的滚升余弦滤波器,滤波器延时时间为3个数据时隙,即30个滤波器采样间隔。滤波器输出通过Downsample模块降低4倍采样速率,使送入频谱仪的采样率为2500次/s,这样频谱仪显示的频谱范围是0~1250HZ。同时,滤波输出送入通信模块库中的眼图显示模块Discrete-Time Eye Diagram Scope显示眼图。在眼图显示模块中需要设置:

(1)每个数据的采样点数,设为10;

(2)每次扫描显示的符号个数设为2,这样眼图将显示2个符号时间宽度;(3)显示所保留的扫描波形轨迹图,可使用默认值;

(4)每次显示的新轨迹数,也可使用默认值;

(5)Discrete-Time Eye Diagram Scope模块可同时显示同相支路和正交支路上的波形眼图,本题只有一个支路,可选择In-phase Only选项。

仿真结果截图

任务三:

高斯信道下基带传输系统测试模型

模块分析:

设计系统仿真采样率为1e4Hz,滤波器采样速率等于系统仿真采样率。数字信号速率为1000bps,故在进入发送滤波器之前需要10倍升速率,接收解码后再以10倍降速率来恢复信号传输比特率。仿真模型如图所示,系统分为二进制信源、发送滤波器、高斯信道、接收匹配滤波器、接收采样、判决恢复以及信号测量等7部分。二进制信源输出双极性不归零码,并想接收端提供原始数据以便对比和统计误码率。发送滤波器和接收滤波器均为平方根升余弦滤波器,高斯信道采用随机数发生器和加法器实现。接收定时假设为理想的,采用脉冲发生器实现1000HZ的矩形脉冲作为恢复定时脉冲,以乘法器实现在最佳采样时刻对接收滤波器输出的采样。然后对抽样结果进行门限判决,最佳判决门限为零,判决输出结果在一个传输码元时隙内不变,最后以10倍降速率采样得出采样率为1000HZ 的恢复数据。

Triggered Subsystem保持子系统模型

高斯信道下基带传输系统测试眼图仿真结果

测试误码率部分截图(错误码元为9个,共发送10000个码元)

发送和接收的二进制双极性不归零码

六:课程设计心得与体会

在这次课程设计中,我有如下几点总结与思考:

首先:我认识了MA TLAB中的SIMULINK仿真,通过对照课设指导书,能独立地完成课设任务,通过参考相关MATLAB方面的书籍,自己能设计出一个SIMULINK的例子。

其次:在此次课程设计中,需要用到通信原理方面的相关知识,然而通信原理是上学期学的,其中相关的知识都已经忘得差不多了,我不得不重新拿起通信原理的教材,简单的看一看,所以说以前学过的知识要复习,要温故。

第三点:不管做啥事都要有计划性,要按照计划,逐个攻克,不能“盲,忙”。课设前两天,我无计划的做着任务,一遇到问题,就跳过,接着做下一个,结果两天下来,一个任务也没有完成。于是我不得不停下来,调整思路,制定自己的计划。

最后一点:通过此次课程设计,我不仅复习了通信原理的知识,而且学习了matlab的SIMULINK仿真(不仅复习了旧知识,而且学习了新知识,虽然这新知识对我以后所从事的工作无关,但毕竟开阔了眼界),如果让我自己去设计,我相信有了这次课程设计的基础,我在设计的时候应该会更容易,更有信心去完成好设计。

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

基于MATLAB的MIMO通信系统仿真(DOC)

目录 (一)基于MATLAB的MIMO通信系统仿真………………………… 一、基本原理……………………………………………………… 二、仿真…………………………………………………………… 三、仿真结果……………………………………………………… 四、仿真结果分析…………………………………………………(二)自选习题部分…………………………………………………(三)总结与体会……………………………………………………(四)参考文献…………………………………………………… 实训报告 (一)基于MATLAB的MIMO通信系统仿真 一、基本原理 二、仿真 三、仿真结果 四、仿真结果分析 OFDM技术通过将频率选择性多径衰落信道在频域内转换为平坦信道,减小了多径衰落的影响。OFDM技术如果要提高传输速率,则要增加带宽、发送功率、子载波数目,这对于频谱资源紧张的无线通信时不现实的。 MIMO能够在空间中产生独立并行信道同时传输多路数据流,即传输速率很高。这些增加的信道容量可以用来提高信息传输速率,也可以通过增加信息冗余来提高通信系统的传输可靠性。但是MIMO却不能够克服频率选择性深衰落。 所以OFDM和MIMO这一对互补的技术自然走到了一起,现在是3G,未来也是4G,以及新一代WLAN技术的核心。总之,是核心物理层技术之一。 1、MIMO系统理论:

核心思想:时间上空时信号处理同空间上分集结合。 时间上空时通过在发送端采用空时码实现: 空时分组、空时格码,分层空时码。 空间上分集通过增加空间上天线分布实现。此举可以把原来对用户来说是有害的无线电波多径传播转变为对用户有利。 2、MIMO 系统模型: 11h 12 h 21 h 22 h r n h 1r n h 21 R n h 2 R n h 1 n n R h 可以看到,MIMO 模型中有一个空时编码器,有多根天线,其系统模型和上述MIMO 系统理论一致。为什么说nt>nr ,因为一般来说,移动终端所支持的天线数目总是比基站端要少。 接收矢量为:y Hx n =+,即接收信号为信道衰落系数X 发射信号+接收端噪声 3、MIMO 系统容量分析: (附MIMO 系统容量分析程序) 香农公式的信道容量(即信息传送速率)为: 2log (1/)C B S N =+ 4、在MIMO 中计算信道容量分两种情况: 未知CSI 和已知CSI (CSI 即为信道状态信息),其公式推导较为复杂,推导结果为信道容量是信噪比与接收、发射天线的函数。 在推导已知CSI 中,常用的有waterfilling ,即著名的注水原理。但是,根据相关文献资料,通常情况下CSI 可以当做已知,因为发送,接收端会根据具体信道情况估算CSI 的相关参数。 在这里对注水原理做一个简单介绍:之所以成为注水原理是因为理想的注水原理是在噪声大的时候少分配功率,噪声小时多分配功率,最后噪声+功率=定值,这如果用图形来表示,则类似于给水池注水的时候,水池低的地方就多注水,也就是噪声小分配的功率就多,故称这种达到容量的功率分配方式叫做注水原理。通过给各个天线分配不同的发射功率,增加系统容量。核心思想就是上面所阐述的,信道条件好,则分配更多功率;信道条件差,则分配较少的功率。 在MIMO 的信道容量当中要注意几个问题:(下面说已知CSI 都是加入了估计CSI 的算法,并且采用了注水原理。) 1. 已知CSI 的情况下的信道容量要比发送端未知CSI 的情况下的信道容量高,这是 由于当发送端已知CSI 的时候,发送端可以优化发送信号的协方差矩阵。也就是

通信原理基于matlab的计算机仿真_源代码

例错误!文档中没有指定样式的文字。-1 %周期信号(方波)的展开,fb_jinshi.m close all; clear all; N=100; %取展开式的项数为2N+1项 T=1; fs=1/T; N_sample=128; %为了画出波形,设置每个周期的采样点数 dt = T/N_sample; t=0:dt:10*T-dt; n=-N:N; Fn = sinc(n/2).*exp(-j*n*pi/2); Fn(N+1)=0; ft = zeros(1,length(t)); for m=-N:N ft = ft + Fn(m+N+1)*exp(j*2*pi*m*fs*t); end plot(t,ft) 例错误!文档中没有指定样式的文字。-4 利用FFT计算信号的频谱并与信号的真实频谱的抽样比较。 脚本文件T2F.m定义了函数T2F,计算信号的傅立叶变换。 function [f,sf]= T2F(t,st) %This is a function using the FFT function to calculate a signal's Fourier %Translation %Input is the time and the signal vectors,the length of time must greater %than 2 %Output is the frequency and the signal spectrum dt = t(2)-t(1); T=t(end); df = 1/T; N = length(st); f=-N/2*df:df:N/2*df-df; sf = fft(st); sf = T/N*fftshift(sf); 脚本文件F2T.m定义了函数F2T,计算信号的反傅立叶变换。 function [t st]=F2T(f,sf) %This function calculate the time signal using ifft function for the input %signal's spectrum

MATLAB通信建模实验仿真实验报告

实验1:上采样与内插 一、实验目的 1、了解上采样与内插的基本原理和方法。 2、掌握上采样与内插的matlab程序的设计方法。 二、实验原理 上采样提高采样频率。上采样使得周期降低M倍,即新采样周期Tu和原有采样周期Ts的关系是T u=T s/M,根据对应的连续信号x(t),上采样过程从原有采样值x(kT s)生成新采样值x(kT u)=x(kT s/M)。操作的结果是在每两个采样值之间放入M-1个零值样点。 更实用的内插器是线性内插器,线性内插器的脉冲响应定义如下: 上采样值x(kT u)=x(kT s/M)通过与线性内插器的脉冲响应的卷积来完成内插。 三、实验内容 仿真正弦波采样和内插,通过基本采样x(k),用M=6产生上采样x u(k),由M=6线性内插得到样点序列x i(k)。 四、实验程序 % File: c3_upsampex.m M = 6; % upsample factor h = c3_lininterp(M); % imp response of linear interpolator t = 0:10; % time vector tu = 0:60; % upsampled time vector x = sin(2*pi*t/10); % original samples xu = c3_upsamp(x,M); % upsampled sequence subplot(3,1,1) stem(t,x,'k.') ylabel('x') subplot(3,1,2) stem(tu,xu,'k.') ylabel('xu') xi = conv(h,xu); subplot(3,1,3) stem(xi,'k.') ylabel('xi') % End of script file. % File: c3_upsample.m function out=c3_upsamp(in,M)

MATLAB通信系统仿真心得体会

MATLAB通信系统仿真心得体会 课程名称(中文) MATLAB通信系统仿真成绩姓名班级学号日期 学习MATLAB通信系统仿真心得体会 经过一学期的MATLAB通信系统仿真的学习,使我对通信原 理及仿真实践有了更深层次的理解。在学习过程当中,了解到了MATLAB的语言基础以及应用的界面环境,基本操作和语法,通信仿真工具箱的应用,simulink 仿真基础,信号系统分析等一系列的内容。我明白学好这门课程是非常的重要。 在学习当中,我首先明白了通信系统仿真的现实意义,系统模型是对实际系统的一种抽象,是对系统本质(或是系统的某种特性)的一种描述。模型可视为对真实世界中物体或过程的信息进行形式化的结果。模型具有与系统相似的特性,可以以各种形式给出我们所感兴趣的信息。知道了通信系统仿真的必要性,利用系统建模和软件仿真技术,我们几乎可以对所有的设计细节进行分层次的建模和评估。通过仿真技术和方法,我们可以有效地将数学分析模型和经验模型结合起来。利用系统仿真方法,可以迅速构建一个通信系统模型,提供一个便捷,高效和精确的评估平台。明白了MATLAB通信系统仿真课程重点就是系统仿真软件 Matlab / Simulink 在通信系统建模仿真和性能评估方面的应用原理,通信系统仿真的一般原理和方法。 MATLAB集成度高,使用方便,输入简捷,运算高效,内容丰富,并且很容易由用户自行扩展,与其它计算机语言相比, MATLAB有以下显著特点:1.MATLAB是一种解释性语言;2(变量的“多功能性”;3.运算符号的“多功能性”;4(人机界面适合科技人员;5(强大而简易的作图功能;6(智能化程度高;7(功能丰富,可扩展性强。在MATLAB的Communication Toolbox(通 信工具箱)中提供了许多仿真函数和模块,用于对通信系统进行仿真和分析。

MATLAB 2psk通信系统仿真报告

实验一 2PSK调制数字通信系统 一实验题目 设计一个采用2PSK调制的数字通信系统 设计系统整体框图及数学模型; 产生离散二进制信源,进行信道编码(汉明码),产生BPSK信号; 加入信道噪声(高斯白噪声); BPSK信号相干解调,信道解码; 系统性能分析(信号波形、频谱,白噪声的波形、频谱,信道编解 二实验基本原理 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理 数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的

相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为(t)=Acos t+) 其中,表示第n个符号的绝对相位: = 因此,上式可以改写为 图2 2PSK信号波形 解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图 3 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.

通信原理课程设计:基于matlab的b4b编码与译码的设计与仿真

课程设计I(数据通信原理) 设计说明书 题目:3B4B编码与译码的设计与仿真 学生姓名樊佳佳 学号1318064017 班级网络工程1301班 成绩 指导教师贾伟

数学与计算机科学学院2015年 9 月 12 日

课程设计任务书 2015—2016学年第 1 学期 课程设计名 称: 课程设计I(数据通信原理) 课程设计题 目: 3B4B编码与译码的设计与仿真 完成期限:自 2015 年 8 月 11 日至 2015 年 9 月 11 日共2 周 设计内容: 设计一种数字基带传输中的一种编译码系统(HDB3、AMI、CMI、2B1Q、3B4B、曼切斯特、差分曼切斯特等选取一种)。 使用Matlab/Simulink仿真软件,设计所选择的基带传输的编码和译码系统。系统能根据随机信源输入的二进制信息序列给出对应的编码及译码结果,并以图形化的方式显示出波形,能观察各分系统的各级波形。 指导教师:教研室负责人: 课程设计评阅

摘要 设计一个码元信息传递系统,包括编码和译码两部分,这个系统可以高效地传递信息。该系统是基于matlab/simulik实现的,设计数字电路来实现码元由3bit一组到4bit一组的转换,提高信息的传输效率。 关键词: 3B4B ; 编码器; 译码器

目录 目录 (2) 1.课题描述 (3) 2.3B4B码编译码模块设计 (4) 2.1 3B4B码编译码原理 (3) 2.2 3B4B编码器原理及框图 (4) 2.3 3B4B译码器原理及框图 (5) 2.4 编译码程序图 (5) 3.3B4B编译码程序图的参数设置及其仿真结 (8) 3.1仿真系统中模块参数设置和仿真实验结果 (8) 4.总结 (11) 5.参考文献 (13)

matlab与通信仿真实验指导书(上)

《Matlab与通信仿真》实验指导书(上) 刘毓杨辉徐健和煦黄庆东吉利萍编著 通信与信息工程学院 2011-1

目录 第一章 MALTAB基础知识 (1) 1.1MATLAB基础知识 (1) 1.2MATLAB基本运算 (2) 1.3MATLAB程序设计 (7) 第二章 MATLAB计算结果可视化和确知信号分析 (13) 2.1计算结果可视化 (13) 2.2确知信号分析 (17) 第三章随机信号与数字基带仿真 (23) 3.1基本原理 (23) 3.2蒙特卡罗算法 (30) 第四章模拟调制MATLAB实现 (34) 4.1模拟调制 (34) 4.2信道加性高斯白噪声 (35) 4.3AM调制解调的MATLAB实现 (36) 第五章模拟信号的数字传输 (45) 5.1脉冲编码调制 (45) 5.2低通抽样定理 (45) 5.3均匀量化原理 (46) 5.4非均匀量化 (48) 第六章数字频带传输系统 (52) 6.1数字频带传输原理 (52) 6.2数字频带传输系统的MATLAB实现 (53) 第七章通信系统仿真综合实验 (67) 7.1基本原理 (67) 7.2实验内容 (67)

第一章 MALTAB基础知识 本章目标 ●了解MATLAB 程序设计语言的基本特点,熟悉MATLAB软件运行环境 ●掌握创建、保存、打开m文件及函数的方法 ●掌握变量等有关概念,具备初步的将一般数学问题转化为对应的计算机模型并进行处理的能力 1.1 MATLAB基础知识 1.1.1 MATLAB程序设计语言简介 MATLAB,Matrix Laboratory的缩写,是由MathWorks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。与大家常用的Fortran和C等高级语言相比,MATLAB的语法规则更简单,更贴近人的思维方方式,被称为“草稿纸式的语言”。MATLAB软件主要由主包、仿真系统(simulink)和工具箱(toolbox)三大部分组成。 1.1.2 MATLAB界面及帮助 MATLAB基本界面如图1-1所示,命令窗口包含标题栏、菜单栏、工具栏、命令行区、状态栏、垂直和水平波动条等区域。 图1-1 MATLAB基本界面 (1)菜单栏

通信原理matlab实验1

实验一 设计任务: 用MatLib仿真一个BFSK通信系统,基本参数: 1)fc=1000Hz; 2)Rb=100bps; 3)信息序列:“Hello world”的ASCII 实验与报告基本要求: 1)Matlab程序,要点旁注(可打印后手写); 2)绘出信号波形,绘出信号PSD; 3)给出解调后的信息序列; 4)将信息重复3遍以上,FSK信号保存为WAV文件格式,使用音频播放,聆听;M文件: wave.m function[t,mt]=wave(m,dt,fs) l=length(m); mt=[]; ddt=1/fs; n=floor(dt*fs); m_add=ones(1,n); for i=1:l if(m(i)) mt=[mt,m(i),m_add]; else mt=[mt,m(i),m_add*0]; end t=(1:((n+1)*l))*ddt; end my_filter.m function[num,den]=my_filter(wp,ws,ap,as) if nargin<4 as=15; end if nargin<4 ap=3; end [n,wn]=buttord(wp,ws,ap,as); [num,den]=butter(n,wn); end 代码:

f0=800;%‘0’码载波频率 f1=1200;%‘1’码载波频率 fs=4000;%采样频率 Rb=100;%比特率 dt=1/Rb;%一个比特发送时间 A0=2;%调制幅度 A1=2;%相干解调幅度 miu=0;sigma=0.3;%miu:高斯白噪声均值,sigma:高斯白噪声均方差 str='Hello world';%信号字符串 m_dec=abs(str);%将信号字符串转换成ASCII码(十进制) m_bin=dec2bin(m_dec,8); m_bin=abs(m_bin)-48;%将十进制转换成8比特二进制矩阵 m=[]; for i=1:size(m_bin,1) m=[m,m_bin(i,:)]; end%将二进制转换成行向量 [t,m]=wave(m,dt,fs);%对信号采样 mt_f1=m.*cos(2*pi*f1*t)*A0;%频率f1调制 mt_f0=(~m).*cos(2*pi*f0*t)*A0;%频率f0调制 mt=mt_f1+mt_f0;%发送信号 l=length(mt); subplot(2,1,1);plot(t,mt); grid on;xlabel('t/s');title('m(t)');%发送信号波形subplot(2,1,2);periodogram(mt,[],l,fs);grid on;%发送信号PSD

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)

2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波 形及幅频特性曲线。 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x)

北邮dsp软件matlab仿真实验报告

题目: 数字信号处理MATLAB仿真实验 姓名 学院 专业 班级 学号 班内序号

实验一:数字信号的 FFT 分析 1、实验内容及要求 (1) 离散信号的频谱分析: 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。 (2) DTMF 信号频谱分析 用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。 2、实验目的 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。 3、程序代码 (1) N=5000; n=1:1:N; x=0.001*cos(0.45*pi*n)+sin(0.3*pi*n)-cos(0.302*pi*n-pi/4); y=fft(x,N); magy=abs(y(1:1:N/2+1)); k=0:1:N/2; w=2*pi/N*k; stem(w/pi,magy) axis([0.25,0.5,0,50]) (2) column=[1209,1336,1477,1633]; line=[697,770,852,941]; fs=10000; N=1024; 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

(完整版)基于matlab的通信系统仿真毕业论文

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽
班 级 学 号: 指 导 老 师: 温 靖

二 O 一四年十月十五日
目录
一、引言........................................................................................................................ 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成 ............................................................................................................... 4 2.2 信道编译码 ........................................................................................................................ 4 2.2.1 卷积码的原理 ........................................................................................................ 4 2.2.2 译码原理 ................................................................................................................ 5 2.3 调制与解调 ....................................................................................................................... 5 2.3.1 BPSK 的调制原理 .................................................................................................. 5 2.3.2 BPSK 解调原理 ...................................................................................................... 6 2.3.3 QPSK 调制与解调 ................................................................................................. 7 2.4 信道 .................................................................................................................................... 8

通信原理MATLAB仿真课程设计

《通信系统仿真》课程设计报告书 课题名称 Rayleigh 无线衰落信道的MATLAB 仿真 姓 名 伍伟 学 号 1312402-02 学 院 通信与电子工程学院 专 业 通信工程 指导教师 肖湘 2015年 12月19日 ※※※※※※※※※ ※※ ※ ※ ※※ ※※※※※※※※ ※ 2013级学生 通信系统仿真课程设计

Rayleigh 无线衰落信道的MATLAB 仿真 1 设计目的 (1) 对瑞利信道的数学分析,得出瑞利信道的数学模型。 (2) 利用MATLAB 对瑞利无线衰落信道进行编程。 (3) 针对服从瑞利分布的多径信道进行仿真,加深对多径信道特性的了解。 (4) 对仿真后的结果进行分析,得出瑞利无线衰落信道的特性。 2 设计要求 (1) 设计一个瑞利无线衰落信道; (2) 进一步地了解瑞利无线衰落信道对信号的影响; (3) 在设计无线多径信道时,对路径的多少一定要选择合理。 3 设计思路 (1) 分析出无线信道符合瑞利概率密度分布函数,写出数学表达式。 (2) 建立多径衰落信道的基本模型。 (3) 对符合瑞利信道的路径衰落进行分析,并利用MATLAB 进行仿真。 4 设计内容 4.1 理论分析及数学推导 无线信道大体可以分为4种:慢变瑞利衰落信道、快变瑞利衰落信道、慢变频率选择性信道、快变频率选择性信道。 在N 条路径的情况下,信道的输出为 1()()[()]N n n n y t a t x t t =τ=-∑ (4.1.1) 式中,()n a t 和()n t τ表示与第N 条多径分量相关的衰落和传播延迟,延迟和衰减都表示为时间的函数。 由于大量散射分量导致接收机输入信号的复包络是一个复高斯过程。在该

通信原理MATLAB仿真

小学期报告 实习题目通信原理Matlab仿真专业通信与信息工程 班级 学号 学生姓名 实习成绩 指导教师 2010年

通信原理Matlab仿真 目录 一、实验目的------------------------------------------------------------------------------------------------2 二、实验题目------------------------------------------------------------------------------------------------2 三、正弦信号波形及频谱仿真------------------------------------------------------------------------2 (一)通信原理知识--------------------------------------------------------------------------------------2 (二)仿真原理及思路--------------------------------------------------------------------------------------2 (三)程序流程图------------------------------------------------------------------------------------------- 3 (四)仿真程序及运行结果------------------------------------------------------------------------------3 (五)实验结果分析---------------------------------------------------------------------------------------5 四、单极性归零波形及其功率谱密度仿真--------------------------------------------------------5 (一)通信原理知识--------------------------------------------------------------------------------------6 (二)仿真原理及思路------------------------------------------------------------------------------ -------6 (三)程序流程图-------------------------------------------------------------------------------------------6 (四)仿真程序及运行结果--------------------------------------------------------------------------------6 (五)实验结果分析-------------------------------------------------------------------------------- -------6 五、升余弦滚降波形的眼图及功率谱密度仿真-------------------------------------------------8 (一)通信原理知识--------------------------------------------------------------------------------------8 (二)仿真原理及思路------------------------------------------------------------------------------ -------9 (三)程序流程图------------------------------------------------------------------------------- -----------9 (四)仿真程序及运行结果------------------------------------------------------------------------------10 (五)实验结果分析---------------------------------------------------------------------------------------11 六、PCM编码及解码仿真-----------------------------------------------------------------------------12 (一)通信原理知识---------------------------------------------------------------------------------- ---12 (二)仿真原理及思路------------------------------------------------------------------------------ ------ 13 (三)程序流程图------------------------------------------------------------------------------- -----------14 (四)仿真程序及运行结果------------------------------------------------------------------------------15 (五)实验结果分析---------------------------------------------------------------------------------------18 七、实验心得---------------------------------------------------------------------------- -------------------18

相关文档
最新文档