最新五年级数学思维拓展课程整体设计教学内容

最新五年级数学思维拓展课程整体设计教学内容
最新五年级数学思维拓展课程整体设计教学内容

《数学思维》课程五年级

课程目标:

1、学生经历从反面思考的过程,掌握用数学思维思考问题的方法。

2、学生观察、分析、归纳能力。

3、学生体验到成功的喜悦,获得积极情感体验,培养对数学的浓厚的兴趣。

课程对象:五年级

课程时间:6课时

课程内容:

1.式题巧算

2.最大最小积问题

3.和倍问题

4. 工程问题

5.置换问题

6. 周期问题

课程环境:班级

课程实施:

1.课程实施的建议。(例如:实施的观点、方式、方法等)

2.具体实施教学设计(见教学设计具体内容)

课程评价:对课程的整体评价,可以从教师、学生、家长、三方面评价;也可以从学生学习本课程的不同方面对学生进行评价,每位学生一份,以表格形式呈现。定期评价(每学期至少1次)。

样表如下:

课程评价班级姓名一、教学设计

1.试求和是91,乘积最大的两个自然数。最大的积是多少?

之和的最小值是多少?

3.比较下面两个乘积的大小:

123456789×987654321,

123456788×987654322。

4.现计划用围墙围起一块面积为5544米2的长方形地面,为节省材料,要求围墙最短,那么这块长方形地的围墙有多少米长?

5.把19分成几个自然数的和,怎样分才能使它们的积最大?

6.1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。那么这两个四位数各是多少?

7.在数123456789101112…9899100中划去100个数字,剩下的数字组成一个新数,这个新数最大是多少?最小是多少?

板书设计123456789×987654321,123456788×987654322。

本课评价

数学思维课程教学设计教学内容和倍问题课时 3

小学五年级数学思维训练解方程

小学五年级数学思维训练解方程(一)【例1】解方程: (1)x+63= 100 (2)x-127=2.7 (3)9x=6.3 (4)x÷5=120 【巩固】解方程: (1)x-7.4=8 (2)3+x=18 (3)0.4x=2.4 (4)x÷5=0.016 【例2】解方程: (1)x+3x=664 (2)4x-x=72 (3)x+7x-4x+x=(15-5)×4 【拓展】解方程:(1)3x+5-2x=13 (2)5x-8x+6x-10x=15 【3】解方程:(1)8x-15=3x+5 (2)15x+3=28+14x (3)3x-3=2x+2 【巩固】解方程: (1)12x-4=7x+6 (2)15x+5=8x+40 (3)0.1x+0.75=3-0.125x 【拓展】解方程:

(1)x+3x+5+2x+1=840 (2)5x-8+6x=10x+15 (3)11x+42-2x=100-9x-22 (4)8x-3+2x+1=7x+6-5x 【例4】解方程:(1)4x+48=6x-8 (2)46-5x=x-6+4 【拓展】解方程:(1)2x+35-3x=15x-39 (2)0.4x-0.08+1.5=0.7x-0.38 【课后练习】 1、解方程:(1)x-0.52=1.3 (2)x+2.7=14.2 (3)0.5x=3.9 (4)x÷2.5=4 2、解方程:(1)x+3x=160 (2)4x-x=249 (3)3x-2x+x=(11-3) ×4

3、解方程:(1)3.4x-1.02=0.2x+16.9 (2)2x+5=25-8x 4、解方程:(1)x+3x+14=134 (2)x+3x+2+3+2=127 5、解方程:(1)1.5x+0.5=2.5x-0.5 (2)6x-59=10x-75 6、解方程:(1)60x-40=(60+20)×(x-5) (2)32x+32×0.5-25x+64x=24x+496-49x

(完整)五年级数学思维拓展训练(一)

五年级数学思维拓展训练(一) 一、 计算题 1. 1×2+2×3+……+50×51 2. 10 91321211?+???+?+? 二、填空题 3. 一列客车和一列货车同时同地反向而行。货车比客车每小时快6 千米,4小时后两车相距384千米,则客车每小时行 千米,货车每小时行 千米。 4. 东东和琳琳在相距1000米的两地同时相向而行。东东每分钟跑320 米,林琳每分钟跑280米,当两人分别跑到对方的出发地后立即返回。再次相遇时,两人分别跑了 分钟。

5.甲、乙两人绕环形跑道同时同地背向而跑。甲每秒跑5米,乙每 秒跑4米,已知甲在与乙相遇后又跑84秒才回到原出发点,那么乙绕跑道一周要秒。 6.甲乙两辆车的速度分别为每小时57千米和40千米,它们同时从 甲地出发到乙地去。出发后6小时,甲车遇到一辆迎面开来的卡车,1小时后乙车也遇到了这辆卡车。则这辆卡车的速度是每小时千米。 7.爷爷去爬山,上山时每小时行4千米,下山时每小时行5千米, 往返共用了18小时。则爷爷往返一趟共行了千米。 8.有10个数字排成一列,它们的平均数为9.3,已知前6个数的平 均数为10.6,后5个数的平均数为11.3,则第6个数是。 9.甲、乙两地相距6000米。某人从甲地步行去乙地,前一半时间平 均每分钟行80米,后一半时间平均每分钟行70米,则他走完整个路程用了分钟。

10.有甲、乙、丙、丁四个数,甲、乙的平均数为34.3;乙、丙的平 均数为19.85;丙、甲的平均数为35.75;乙、丁的平均数为20,则甲、乙、丙、丁中最大的数等于。 11.龟、兔赛跑全程长2000米。龟每分钟爬25米,兔每分钟跑320 米,兔自认为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有720米。那么兔在途中睡了分钟。 12.一只猎狗正在追赶前方27米处的兔子。已知狗一跳前进3米,兔 子一跳前进2米,且狗跳3次的时间兔子跳4次,则兔子跑出米将被猎狗追上。 13.数列3、8、13、18、23……,298共有个数。 14.红、蓝墨水各一瓶,用一根滴管从红墨水瓶中吸一滴滴到蓝墨水 瓶中。搅拌后,再从蓝墨水瓶中吸一滴同样体积的墨水滴到红墨水瓶中。这时红墨水瓶中的蓝墨水多还是蓝墨水瓶中的红墨水多?答:

小学五年级数学思维拓展训练课程 第十讲 追击问题

两个物体向同一方向前进,一个速度快一些,一个速度慢一些,速度慢的在前,速度快的在后,经过一段时间,后面速度快的物体就能追上前面速度慢的物体,这类问题称为追及问题。我们把慢的称为乙,快的称为甲,甲在出发追乙时,乙在前面有一段距离,称为“追及距离”甲和乙两者速度的差额叫做“速度差”,甲追上乙所用的时间称为“追及时间”。 例1 甲骑自行车,乙骑摩托车,两人都要从东城到西城,自行车每小时行16千米,摩托车每小时行40千米。甲先出发1.5小时,乙沿着同一条路线去追赶甲,多少时间后能追上甲? 根据题意,画出线段图: 从线段图上可以看出,乙出发时,甲已经行了1.5小时的路程,这段路程就是乙要追甲的追及距离,而乙每小时比甲快的距离就是每小时他们之间减少的距离,也就是速度差。用追及距离除以速度差就可以求出要追及的时间。 解答 16×1.5÷(40-16)=24÷24=1(小时) 答:1小时后能追上甲。 例2 小时和爸爸同时出门散步,小时向东走,每分钟行60米,爸爸向西走,每分钟行80米,5分钟后,爸爸调转方向去追赶小时。爸爸追上小时时一共走了多少米? 根据题意,画出线段图: A 点是他们出发点, B 点是爸爸5分钟后所在的位置, C 点是小时5分钟后所在的位置。从图上可以看出,BC 的长度就是爸爸和小时5分钟共走的路程,用速度和乘以时间可以求出这段路程。实际上,这段路程也就是爸爸和小时开始追及的距离,用这个距离除以爸爸和小明的速度差,就能求出爸爸追赶小时所用 第十讲 追击问题

的时间,再用爸爸的速度乘以前后一共用的时间就可以求出爸爸一共行驶的路程。 解答(60+80)×5=700(米) 700÷(80-60)=35(分钟)80×(35+5)=3200(米) 答:爸爸追上小明时一共走了3200米。 拓展1 面包车以每小时60千米的速度从甲城开出,30分钟后,小轿车以每小时84千米的速度从甲城开出沿着同一行驶线路追赶面包车,多少小时后追上?拓展2 一列队伍长100米,以每分钟80米的速度前进,随队老师因有事从队尾赶到队首,以每分钟100米的速度追赶,经过几分钟才能赶到队首? 拓展3 家离学校1.8千米,弟弟从家出发以每分钟60米的速度步行,哥哥在15分钟后骑自行车从家出发去追赶弟弟,自行车的速度是每分钟240米,哥哥在离家多远的地方追上弟弟?哥哥追上弟弟后继续前行,到达学校后立即返回,不久与弟弟相遇,那么相遇处离学校多远? 拓展4 兄妹两人同时从家出发去上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时,发现未带课本,立即沿原路回家去取,在离校180米处遇到妹妹。问:家距学校有多远?

五年级数学思维训练—数 的 整 除

数的整除 数的整除特征: ①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。 ②能被5整除的数的特征:个位是0或5。 ③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。 ④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。 ⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。 ⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。 ⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。 例如:判断13574是否是11的倍数? 例如:判断1059282是否是7的倍数? 例如:判断3546725能否被13整除? 例1、在□内填上适当的数字,使六位数43217□能被4(或25)整除. 例2、在□内填上合适的数字,使五位数4□32□能被9整除. 例3、在□内填上合适的数字,使□679□能同时被8、9整除. 例4、在□内填上合适的数字,使六位数19□88□能被35整除. 例5、一个六位数586□□□能同时被3、4、5整除,求这样的六位数中最小的一个?

例6、一年级有72名学生,课间加餐共交了□67.9□元(□内的数字辨认不清),每人交了多少钱?(每人交钱一样多) 例7、一个整数a与108的乘积是一个完全平方数.求a的最小值与这个平方数。 例8、问24共有多少个约数?全部约数之和是多少? 例9、2×3×4×…×9×10,这个连乘积的末尾有几个0? 例10、225×72×(),要使这个连乘积的最后四个数字都是0,在括号内最小应填什么自然数? ※拓展练习: 1、个位数是6,且能被3整除的三位数有多少个? 2、用1,2,3,4这四个数码可以组成24个没有重复数字的四位数,其中能被11整除的有哪几个?

小学五年级趣味数学校本课程教学计划

小学五年级《趣味数学》校本课程教学计划 一、指导思想: 数学是一个色彩缤纷的万花筒〃美丽而奇妙。数学是神奇的世界〃肯定有不少学生产生了浓厚的兴趣。为此〃训练学生的思维活动是重中之重。在数学教学中探求问题的思考、推理、论证的过程等一系列数学活动都是数学教学中实施思维训练的理论依据之一。因此〃趣味数学能更好的促进学生数学思维能力的发展。这学期通过趣味数学校本课程的学习〃提高同学们的学习兴趣〃训练学生的数学思维、培养学生良好的学习习惯,让学生通过学习深入地理解数学知识〃提高学生的思维能力和分析能力。 二、学情分析: 五年级学生已具备良好的分析问题、解决问题的能力。《趣味数学》为孩子们提供了一系列数学故事、益智问题和数学游戏。这些问题和活动为学生提供探索数学奥秘的机会〃学生在参与这些数学游戏和解决数学问题的过程中〃体会数学价值〃锻炼数学智慧〃运用所学的知识与技能〃学习解决问题的方法。 三、目的要求: 1、培养学生学习数学的兴趣和爱好〃让学生在探索解法的过程中亲身体验到了数学思想的博大精深和数学方法的创造力〃从而激发学生学习数学的兴趣〃产生了进一步学习数学的向往感。使学生在学习过程中获得成功的体验〃建立自信心。 2、使学生掌握一定的学习方法、学习技能。 3、使学生获得一些初步的数学实践活动经验〃能运用所学知识和方法解决简单问题,感受数学在生活中的作用。 4、培养学生与人合作、与人交流的意识和能力。让学生对数学产生浓厚的兴趣〃愿意主动去发现生活中的数学现象〃在日常学习生活中敢于质疑〃乐于讨论探究生活中各种现象〃喜欢和他人合作解决问题。培养学生科学的学习态度和方法〃树立攀登科学高峰的志趣和理想。

小学三年级趣味数学(思维训练)课程第十五讲 巧填等式

第十五讲巧填等式 例1 在合适的地方填写“+”或“-”,使等式成立. 1 2 3 4 5 6=1. 分析把六个数分组,试加会发现1+2+3+5=11,4+6=10,这样在4,6前面填上“-”,其他地方填上“+”,等式成立. 解:1+2+3-4+5-6=1. 随堂练习: 在合适的地方填写“+”或“-”,使等式成立. 1 2 3 4 5 6=2. 分析按上题方法试加减,发现无论如何也得不到2,于是想到是否其中有一个两位数,而两位数只能是12,再试就能够成功. 解:12-3+4-5-6=2. 例2 从+、-、×、÷、()中挑选合适的符号,填入适当的地方,使下面等式成立. ①5 5 5 5 5=1 ②5 5 5 5 5=2 分析在加减乘除运算中,有5÷5=1,(5+5)÷5=2,5-5=0这样几个基本关系,充分利用它们就可以使等式成立,一般来说一个式子可以有多种表达形式. 解:①5÷5+(5-5)×5=1 (5+5)÷5-(5÷5)=1 ②(5+5)÷5+5-5=2 5-(5+5+5)÷5=2 随堂练习: 从+、-、×、÷、()中挑选合适的符号,填入适当的地方,使下面等式成立. ①5 5 5 5 5=3 ②5 5 5 5 5=4. 拓展训练 1、把 2、 3、13、18分别填入下面○里,使等式成立. ○-○=○+○. 2、△、○、★分别代表三个不等于0的数字,并且△×★=○,△+△+△=○-△-△,那么★代表的数字是多少.

3、把1~9九个数字填在○里,(每个数字只能用1次),组成三道正确的算式. ○+○=○,○-○=○,○×○=○. 4、在+、-、×、÷中挑选合适的符号填入适当的地方,使下列等式都等于3. 3 3 3 3 3=3 3 3 3 3 3=3 3 3 3 3 3=3

五年级数学思维训练60题

五年级数学思维训练试题 1、一条水渠共6400米,前三个月平均每月修1200米,余下的要在2个月内完成,平均每月至少要完成多少米? 2、王老师和李老师买同样的图书。王老师花了256元买到8本,李老师花了192元,王老师比李老师多买了多少本图书? 3、农具厂原计划每月生产农具400件,技术革新后,9个月生产量就超过全年计划780件,现在平均每月生产多少件? 4、姐姐和妹妹沿环形跑道同方向跑步,姐姐每分钟跑212米,妹妹每分钟跑187米,他们从同一地点出发,16分钟后,姐姐第一次追上妹妹,求跑道的长度。 5、甲乙两人同时从A、B两地相向而行,第一次相遇在离A地70千米的地方,两人仍以原速行进,各自到底后立即返回,又在离B地15千米的地方第二次相遇,两地相距多少千米? 6、甲乙两艘军舰不停地往返于两个军事基地之间巡逻。甲舰时速12千米,乙舰时速9千米,两舰从两个基地同时相向出发,第一次相遇时恰巧用了6小时。这两个军事基地之间有多少千米?

7、一列火车上午8 时从A地出发开往B地,上午10时距A 地180千米,已知AB两地相距540千米,行完全程共要几小时? 8、苹果有50筐,比梨的筐数的2倍少2筐。苹果和梨共有多少筐? 9、一批布原计划做服装1800套,由于每套节约用布0.2米,结果多做了100套,现在每套用布多少米? 10、甲乙两位工人共同加工一批零件,20天完成了任务。已知甲每天比乙多做3个,而乙在中途请假5天,于是乙所完成的零件数恰好是甲的一半,求这批零件的总数是多少个? 12、某机器厂计划30天里完成10800台机床,由于改进技术,每天比原计划多制造180台,这样可以提前几天完成任务? 13、有甲乙两袋大米,甲袋大米的重量是乙袋的1.2倍,如果往乙袋中再加入5千克,两袋大米就一样多了。原来甲乙两袋大米各有多少千克? 14、一桶油连桶重45千克,倒出一半后连桶还剩23千克。如果这种油每千克卖4.5元,一桶油可以卖多少元? 15、一个圆形跑道,财长700米。甲乙两人同时同地出发,相背而行。甲每秒钟跑7.5米,乙每秒跑6.5米,几秒钟后两人相遇?10、客车和货车同时从甲乙两地相对开出,客车每小时行80千米,货车每小时行68千米。两车在距中点30千米处相遇,甲乙两地相距多少千米?

五年级数学下册体积拓展题

五年级数学下册体积拓展题 1、从一个长10厘米,宽8厘米,高5厘米的长方体木块上挖去一个棱长是2厘米的正方体的小洞(如图),秋剩下部分的体积是多少? 2、求右图这个组合图形的体积。(单位:分米) 3、把两块棱长分别是6分米和8分米的正方体铁块,熔铸成一块长方体铁块,它 的横截面是边长4分米的正方形,这个长方体铁块长多少分米? 4、把一块长12厘米,宽8厘米,高5厘米的长方体铁块,熔铸成横截面积是2平方厘米的铁条,铁条长多少米? 5、有一块长方形铁皮,长32厘米,宽16厘米,在这块铁皮的四角各减去一个边长是4厘米的小正方形,然后通过折叠、焊接,做成一个无盖的长方体盒子。这个长方体盒子的容积是多少? 6、一块长方形铁皮,长25厘米,宽20厘米,在这块铁皮的四角各减去一个边长是5厘米的小正方形,然后通过折叠、焊接,做成一个无盖的长方体盒子。这个长方体盒子的容积是多少立方厘米? 7、如图所示,将一个长方体平均截成3段,每段长2米,表面积增加了20平方米。 求原来长方体的体积是多少立方米? 8、一个长方体的底面积是正方形,沿着高截去一个高3分米的小长方体后,剩下部分的表面积比原来大长方体减少了60平方分米。求截去的长方体的体积是多少立方米? 9、有甲、乙两个长方体沙坑,甲沙坑长40分米,宽20分米,沙子深5分米;乙沙坑长20分米,宽10分米,没有沙子。现在从甲沙坑中取一部分沙子到乙坑,使得甲、乙两个沙坑里的沙子一样深。最后两个沙坑中的沙子各深多少分米?

10、有甲、乙两个长方体水杯,甲长10厘米,宽8厘米,高5厘米,乙长5厘米,宽4厘米,高6厘米。现在甲水杯中装满了水,而乙水杯是空的。要将甲水杯中的一部分水倒在乙水杯内,使得甲、乙两个水杯里的水一样深。倒完之后,甲水杯中的水深多少厘米? 11、有一个长方体容器,从里面量,长5分米,宽4分米,高8分米,里面水深4分米。如果把一块棱长3分米的正方体铁块浸入水中,水面上升多少分米? 12、有一个小金鱼缸,长4分米,宽3分米,里面水深2分米。把一块假山石完全浸没水中后,水面上升了1.2分米。这块假山石的体积是多少立方分米? 综合训练六 13、有一个长12厘米,宽2厘米,高4厘米的长方体木块。在它的 左、右两角各切掉一个棱长2厘米的正方体(如图),秋剩下部分的 体积是多少? 14、一段钢材厂15分米,横截面面积是1.2平方分米。如果把它煅铸成一个横截面面是0.2平方分米的钢筋。这根钢筋的长是多少? 15、有一块长方形铁皮,长40厘米,宽30厘米。在这块铁皮的左、右两角各剪下一个边长10厘米的小正方形。然后焊接在下面(如图),再通过折叠,焊接成一个无盖 的长方体盒子。求这个长方体盒子的容积是多少? 16、把一个长方体的长平均分成4段,每段长6厘米,表面积增加30平方厘米,求原来长方体的体积是多少立方厘米? 17、有两个长方体水箱,甲水箱里有水,乙水箱空着。从里面量,甲水箱长40厘米,宽32厘米,水深20厘米;乙水箱长30厘米,宽24厘米。将甲水箱中的一部分水倒入乙水箱,使两个水箱中的水一样深,现在水深多少厘米? 18、有一个长方体水箱,从里面量长40厘米,宽27厘米,深35厘米,箱中水深20厘米,把一个棱长12厘米的正方体铁块浸入水中,现在水面高多少厘米?

校本课程《小学高年级数学思维拓展训练》资料讲解

校本课程《小学高年级数学思维拓展训 练》

本课程是针对五、六年级的学优生开设的。通过八个不同的专题训练,使学生学会解决关键问题,指出思考问题的方法、阐述思考途径,让学生逐步掌握学习的方法,既增长知识,又增长智慧,提高学生的思维能力。 课时一:分析综合法 “分析法”与“综合法”是我们小学生常用的解题思考方法之一。所谓“分析法”就是从要求的问题出发,根据题意和已知的数量关系,想一想,还需要知道什么条件才能推出所求的问题。如果在这一条件中,有的还有未知的,就把它当做新的所求的问题,再来寻找能够求出它的那些条件。这样,逐步寻求需要的条件,直到具备所需的一切条件。我们把这种从未知出发,转化问题,步步逆推,执果索因的思考方法,称为“分析法”,也叫“逆推法”。 所谓“综合法”,就是从题目的某一个(或几个)已知条件出发,想想它能推出一些什么结果,再把推出的结果与另外一些已知条件一起又可以推出什么结果,这样一步一步地向着所要求的问题前进,最后得出要求的结果。这种从“已知”看“可知”,逐步推向“未知”,即从已知条件出发,转化条件,步步顺推,由因导果的思考方法,称为“综合法”,也称“顺推法”。 在解题的过程中,往往既用“分析法”,又用“综合法”,至于在什么情况下用“分析法”,什么情况下用“综合法”,要根据具体情况,恰如其分地选用。 解决一些较复杂的问题时,我们可以先从问题出发,利用分析法探索所要找的条件,当这种分析推理遇到困难时,再从已知条件

出发,用综合法推理,看看能否推出这个条件。我们把这种将“综合法”和“分析法”结合起来分析问题的方法称作“中间会师”。 【例题】甲、乙两块棉田,平均亩产棉花92.5千克,甲棉田是5亩,平均亩产棉花101.5千克,乙棉田平均亩产棉花85千克,乙棉田有什么亩? 思考途径:想到用“分析法”来思考,从问题想起。要求乙棉田有多少亩,需要知道乙棉田的产量比按平均亩产计算的产量少的千克数,还要知道乙棉田的亩产量比平均亩产少的千克数,而要求乙棉田的亩产量少的千克数,需要知道两块棉田的平均亩产量(题中直接提供是92.5千克),还需知道乙棉田的亩产量(题中直接提供为85千克)。要求乙棉田的产量比按平均亩产量计算的产量少的千克数,即甲棉田的产量比按平均亩产计算的产量多的千克量,需要知道甲棉田的质量比按平均计算产量多的千克数。 根据分析得出下面的解答: [(101.5-92.5)×5]÷(92.5-85) =[9×5] ÷7.5 =45÷7.5 =6(亩) 所以,乙棉田有6亩。 【习题1】雪容读一本科技书,第一天读了全书的3 1,第二天读了全书的37.5%,第三天从第69页开始读,第三天要读多少页,才能把这本书读完?

五年级数学思维训练题完整版

五年级数学思维训练题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

五年级数学思维训练100题 和差/和倍/差倍问题 1.甲、乙两人的年龄和是35岁,甲比乙小5岁。问甲和乙各是多少岁? 2.今年小刚和小强的年龄和是21岁,1年前,小刚比小强小3岁,问今年小刚和小 强各多少岁? 3.把长108厘米的铁丝围成一个长方形,使长比宽多12厘米,长和宽各是多少厘米? 4.赵叔叔沿长和宽相差30米的游泳池跑6圈,做下水前的准备活动,共跑了1080米,问游泳池的长和宽各是多少米? 5.甲、乙两桶油共重100千克,从甲桶中取出5千克放入乙桶中,此时两桶油正好 相等。求两桶油原来各有多少千克? 6.在6个连续偶数中,第一个数与最后一个数的和是78。求这6个连续偶数。 7.四(1)班的48个学生站4行照相,每一行都要比前一行多2人。每行各站多少人? 8.两笼鸡蛋共19只,若甲笼再放入4只,乙笼中再取出2只,这时乙笼比甲笼还多 1只,求甲、乙两笼原来各有鸡蛋多少只? 9.甲、乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放入乙仓库中,则甲 仓库比乙仓库还多8袋,求两个仓库原来各有多少袋大米? 10.小强今年15岁,小亮今年9岁。几年前小强的年龄是小亮的3倍? 11.一张桌子的价格是一把椅子的3倍,购买一张桌子比一把椅子贵60元。问桌椅 各多少元? 12.甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重 量相等。两桶酒原来各多少千克? 13.六1班有花盆的数量是六2班的3倍,如果六2班再购买20个花盆后,两班花 盆数相等,两班原有花盆多少个? 14.学校今年参加科技兴趣小组的人数比去年多41人,今年人数比去年的3倍少35人,今年有多少人? 15.有两段一样长的绳子,第一根剪去21米,第二根剪去13米后是第一根剩下的3倍,两根绳子原来有多长?

小学五年级数学思维拓展训练题

小学五年级数学思维拓展训练题(2)1、有四箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个。苹果和桃平均每箱37个。一箱苹果多少个?一箱桃多少个? 2. 一次考试,甲乙丙三人平均91分,乙丙丁三人平均89分,甲丁二人平均95分,甲丁二人各多少分? 3. 五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16,这个改动的数原来是多少? 4. 把五个数从小到大排列,其平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少? 5. 求等差数列3、7、11、……、643的平均数。 6. 小明上山时每小时行3千米,原路返回时每小时行5千米,小明往返的平均速度是多少? 7. 有一个正方形的草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米,求草坪的面积。 8. 五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数,原来每班多少人? 9. 一个两位数的两个数字和是10.如果把这个两位数的两个数字对调位置,组成一个新的两位数,就比原数大72。求原来的两位数。 10. 一个两位数,十位上的数字是个位上的数字的3倍。如果把这两个数字对调位置,组成一个新的两位数,与原数的差是54,求原数。 11. 一个两位数,十位上的数字是个位上的数字的2倍。如果把这两个数字对调位置,组成一个新的两位数,与原数的和是132,求原数。 12. 一个两位数,十位上的数字比个位上的数字少2。如果把这两个数字对调位置,组成一个新的两位数,与原数的和是154,求原数.

小学五年级数学思维拓展训练(1) 1.各位上的数字的和是34的四位数一共有多少个? 2.在一个两位数的两个数字中间加写一个0得到的三位数与原来的两位数相加,和是1002,求原来的两位数。 3.一道减法题被减数各位上的数字的和是37,减数各位上的数字的和是25,如果被减数减去减数所得的差的数字的和是39,那么,在减的过程中有几次退位? 4.甲数和乙数的数字和都能被11整除,这两数相加,和的数字和是6,甲数减乙数,差最小是几? 5.把一包小玩具送给几个小朋友,如果送给1个小朋友7件,剩下的玩具其余每人正好分得3件;如果送给3个小朋友每人3件,剩下的玩具每人正好分得4件。这包玩具有多少件? 6.把一些橙和柑分装入袋,如果每袋6个橙、5个柑,橙分完了还剩3个柑;如果每袋8个柑、6个橙,柑分完了还剩18个橙。橙和柑一共有多少个? 7.陈叔叔骑自行车从甲地到乙地,每小时行10千米,下午1时到达;每小时行15千米,上午11时到达。他想在中午12时到达,每小时应行多少千米? 8.从甲地到乙地的路全是上坡路和下坡路,其中上坡路的路程是下坡路的2倍。一辆汽车从甲地到乙地,行上坡路的速度是下坡路的一半,行1.5小时到达,从乙地返回甲地,要行多少小时? 9.把一个小数去掉小数点后再与原数的4倍相加,和是702,求原来的小数。 10.在一个整数的某两个数字间点上小数点后,把得到的小数与原来的整数相加,和是10063.64,原来的整数是几?

24级数学思维训练课程体系

“数学思维训练课程”24级体系 1、什么是24级体系?在众多一线名师的参与下,拥有辉煌竞赛及培训战绩的学而思教育核心教研团队经过长时间的充分酝酿及反复调研,最终推出这套《数学思维训练体系》,该体系共分为24级,每个年级的课程分为两级,即 1、什么是24级体系? 在众多一线名师的参与下,拥有辉煌竞赛及培训战绩的学而思教育核心教研团队经过长时间的充分酝酿及反复调研,最终推出这套《数学思维训练体系》,该体系共分为24级,每个年级的课程分为两级,即小学10级,初中8级,高中6级,一年两级,而每一级又分上下册,既相互联系又相对独立。 2、为什么要建立24级体系? (1)我们每年培训无数金牌选手的培训教材需要沉淀; (2)近几年尤其是09年和10年杯赛及小升初的现状有了新的变化; (3)当前缺乏完整而优质的教材体系,数学的教学效果需要在分层的基础上实现标准化。 3、谁来创立主导24级体系? 在全国著名数学教育家,超常教育的卓越实践者陶晓永教授指导下,在众多华杯赛等全国顶级赛事的主试委员们的关心下,由一批全部来自清华、北大、复旦等顶尖学府、拥有辉煌竞赛及培训战绩的学而思教育核心教研团队经过长时间的充分酝酿及反复调研,最终推出这套《数学思维训练体系》。

4、在哪些班级展开? 在学而思小学数学课程全面展开。 5、何时开始推行? 从2010年寒假班起开始全面启用新的十二级体系,新体系保留了原体系专业性和应试性的优点,同时增加了层级间的区分度、趣味性、励志性、针对性。 6、怎样理解24级体系的优越性? 24级体系具有曾经数版教材不可比拟的优越性:因材施教、深入浅出、科学系统、思维与技巧同练、应试与趣味兼顾。 在"24级体系"中,小学奥数的知识体系被横向的划分为11大模块。即:计算模块、几何模块、数论模块、组合模块、行程模块、应用题模块、数列与数表模块、数字谜模块、趣味数学模块、代数模块、数学思想与方法模块。 (1) 以几何模型为例: 我们可以看到,我们对于几何模块的学习贯穿了整个小学阶段。小学阶段的几何模块主要包括三大类:一类为巧数图形;一类为巧求周长与面积;一类为图形的切拼割。

最新五年级数学思维训练——逻辑推理

五年级数学思维训练——逻辑推理 知识导航 1.五年级数学思维训练——逻辑推理. 2.五年级数学思维训练——逻辑推理律------同一律、矛盾律和排中律. (1)“矛盾律”指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾. (2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假. (3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换. 3.逻辑推理问题解题的方法一般有: (1)列表画图法(2)假设推理法(3)枚举筛选法 精典例题 例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起, 据了解: (1)王平仅与另外两名运动员比赛过; (2)上海运动员和另外三名运动员比赛过; (3)李兵没有和广西运动员比赛过; (4)江苏运动员和凌华比赛过; (5)广西,江苏,北京的三名运动员相互之间都比赛过; (6)赵林仅与一名运动员比赛过. 问:张俊是哪个省市的运动员? 思路点拨 此题可用列表画图法来解答.“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运动员,只能是北京运动员(如下表);据此采用列表法如下(用“×”表示否定,用“√”表示肯定).

五年级数学思维训练——逻辑推理

知识导航 1.在近年来的许多竞赛试题中,常常会见到这样的一类题目,没有或很少给出什么数量关 系;他们的解决方法主要不是依靠数学概念、法则、公式进行运算,较少用到专门的数学知识,而是根据条件和结论之间的逻辑关系,进行合理的推理,做出正确的判断,最终找到问题的答案,这就是逻辑推理问题。 2.逻辑推理问题的条件一般说来都具有一定的隐蔽性和迷惑性命且没有一定的解题模式。因 此,要正确解决这类问题,不仅需要始终抱地灵活的头脑,更需要遵循逻辑思维的基本规律------同一律、矛盾律和排中律。 (1)“矛盾律”指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾。 (2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假。 (3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换。 3.逻辑推理问题解题的方法一般有: 《 (1)列表画图法(2)假设推理法(3)枚举筛选法 精典例题 例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起, 据了解: (1)王平仅与另外两名运动员比赛过; (2)上海运动员和另外三名运动员比赛过; (3)李兵没有和广西运动员比赛过; (4)江苏运动员和凌华比赛过; (5)广西,江苏,北京的三名运动员相互之间都比赛过; $ (6)赵林仅与一名运动员比赛过。 问:张俊是哪个省市的运动员 | 思路点拨 此题可用列表画图法来解答。“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运

小学五年级数学思维拓展训练课程 第三十五讲 列方程解应用题(一)

第三十四讲列方程解应用题(一) 专题解析: “年龄问题”“盈亏问题”“差倍应用题”大家只要根据两个条件,然后建立等量关系列出方程就可以了。 例1 今年李老师年龄是王东的2倍,李老师10年前的年龄和王东8年后的年龄相等,今年李老师和王东各是多少岁? 分析与解答:要求王东与李老师两个人的年龄,我们不妨设今年王东的年龄是x岁,李老师为2x岁,然后根据“李老师在10年前的年龄和王东8年后的年龄相等”这个数量关系式,列出方程。 解:设今年王东的年龄为x岁,李老师的年龄为2x岁,可列方程 2x-10=x+8 2x-x=10+8 x=18 2x=36 答:李老师今年36岁,王东今年18岁。 随堂练习: 今年爸爸的年龄是朵朵的6倍,再过4年,爸爸的年龄就是朵朵的4倍,今年朵朵几岁?

例2 今年姐姐的年龄比弟弟年龄的3倍多1岁,弟弟5年后年龄比3年前姐姐的年龄大1岁,姐弟俩现在各多少岁? 分析与解答先表示出姐姐与弟弟今年的年龄,然后运用弟弟5年后,姐姐3年前的年龄作为等量关系。 解:设弟弟今年x岁,那么姐姐今年(3x+1)岁,可列方程x+5=3x+1-3+1 x+5=3x-1 6=2x x=3 3x+1=3×3+1=10 答:姐姐今年10岁,弟弟今年3岁。 随堂练习: 今年爸爸的年龄比小明年龄的3倍多2岁,小明15年后年龄比爸爸10年前的年龄还大1岁。那么,爸爸现在多少岁? 例3小学生乘汽车去春游,如果每辆车坐45人,那么有30人没有座位;如果每辆车多坐5人,那么可以多出1辆汽车,问原计划准备多少辆汽车?学校共有学生多少人? 分析解答:假设原计划准备x辆汽车,由第一种坐法,有(45x+30)名学生;由第二种坐法,有(45+5)(x-1)名学生。而学生总人数是不变的,我们根据“总人数相等”作为等量关系列出方程。

小学数学小升初思维拓展题

得分一、填空题:(每小题3分,共30分) 1. 有9名同学进羽毛球比赛,任意两名同学都进行一场比赛,共进行了_________场比赛。 2. 一个三位小数用四舍五入法取近似值是8.30,这个数原来最大是_________. 3. 某校开展评选“优秀少先队员”和“好公民”活动,“好公民”占评上人数的,“优秀少先队员”占评上人数的,同时获得两种称号的有44人,只获得“优秀少先队员”称号的有_________人。 4. 在一个减法算式中,差与减数的比是3:5,减数是被减数的_________%。 5. 一台收音机原价100元,先提价10%,又降价10%,现在售价是_________元。 6. 一个长方形与一个正方形的周长相等,长方形的长与宽的比是5:3,已知正方形的面积是4平方厘米,则长方形的面积是_____________。 8. 一种杂志,批发商按定价打七折批发給书摊,摊主将原定价格降10%卖给读者,如果这种杂志每本卖7.2元,每卖出一本摊主从中赢利_________元 9. △+△=a, △—△=b, △×△=c,△÷△=d, a+b+c+d=100,那么△_________。 10. 将正整数1,2,3,4……按箭头所指的方向排列(如图),在2,3,5,7,10……等位置转弯,则第50次转弯处的数是___________. 得分二、选择题:(每小题2分,共20分) 12. 投掷3次硬币,有2次正面朝上,1次反面朝上,那么投掷第4次反面朝上的可能性是() A.1 B. C. D. 13.一个长方体的长、宽、高分别是a米、b米和h米,如果高增加4米,体积增加() A.4bh B.4abh C.4ab D.ab(h+4)

五年级数学特色课程方案

五年级数学特色课程方案 -----自制学具 素质教育是当前教育改革的主旋律,而课堂教学是实施素质教育的主渠道,如何使学生及学到知识又得到能力的培养呢?我认为自制学具在数学教学中有重要地位。因为,充分利用自制学具进行实际操作,可以激活学生的头脑,激活学生手脚,激活学生的思维。因此,我们组把自制学具作为我们年级的特色课程。 一、利用自制学具,可以激发学生的学习兴趣。 对于小学生来说,兴趣是学习的直接动力。浓厚的兴趣会使人乐此不疲。在课堂教学中,成功地应用学生看得见、摸得着的自制学具,可激发学生的学生兴趣,所以在教学中根据教材内容有目的的安排学生利用自制学具动手操作,可以使抽象的问题具体化,枯燥的问题趣味化,静止的问题动态化,复杂的问题简单化。从而调动学生的积极性和主动性,使学生会学、乐学。因为小学生本身就具有喜爱动手摆弄、尝试的生理特点。如:在教学《轴对称图形》一课时,课前剪好一些戏脸、蜻蜓、蝴蝶等图片,先让学生欣赏,顿时学生的兴趣就产生了:“老师,你是怎么做的?这么漂亮!能教我们吗?”在学生的好奇心的驱使下,进一步学习该课的内容,待学完该课后,让学生在已有的知识经验下,动手剪、画一些轴对称图形。这样理论和实践相结合,是学生达到学以致用的目的。 二、自制学具,使学生在课堂上有了展示自我的空间。 大多数小学生好强,喜欢得到老师和同学的表扬。把学生亲自动手制作的学具展示在课堂上,那真是体现“仁者见仁,智者见智”的特点。虽然是同一种类型的学具,可看出学习认真的学生在选材、做工、粘贴、裁剪、设计上做的美观、精细、结实。不认真的学生胡乱找些材料做的粗糙、简单,仅限于应付。通过展示、比拼后,这些学生下次就会用心去自制学具,而不是应付了。教师还通过自制学具让学生谈谈做得好的好在哪里?做得差的差在哪里?如学完《轴对称图形》后,有少数学生在剪衣服时剪成两个半边了,有点剪成一边大,一边小,让其他学生指出他们失败的原因,使学生对轴对称图形的特点有了更进一步的理解,学生在自制的作品中,审美能力得到了提高。 三、自制学具是学生对数学知识的难点便于理解 听见的容易忘记,看见的容易记得,亲手做过的才能真正理解。心理学家皮亚杰提出:“思维是从动作开始的,切断了动作和思维间的联系,思维就得不到发展。”如一个长方形木框,被压扁成平行四边形后,面积会怎样?周长会怎样?对这一知识点许多学生在理解上有困

一年级数学思维训练教案

一 年 级 数 学 思 维 教 案 执教者: 班级:

第一课:介绍数学 介绍自己 了解学生 教学目标 : 1.了解学生。 2.学生了解数学,培养兴趣。 3.了解学生后,把学生分成2个队伍 教学内容:介绍数学这门课。 课时安排:1课时 教学过程: 1、主要以老师与学生的交流为主。 2、讲趣味数学小故事。 《如果我输了,就做你的夜宵》 “什么游戏?”,小猫很好奇,“快点讲!” “一个简单的数字游戏”,老鼠说,“第一个人说一个1到10的数,第二个人再加一个 1到10的数,先喊到100的人获胜”。 “我先说”,小猫嘿嘿笑道,“你这次输定了。” 第一次,小猫输了。 第二次,小猫又输了。 …… 最后,老鼠得意扬扬地跑了。 沮丧的小猫回到了家. “看吧!早都告诉过你”,猫妈妈说,“学好数学有多重

要!” “那为什么老鼠总能获胜?”小猫疑惑地问到。 小朋友们,你知道答案吗?

第二课:趣味故事 一、故事《棒棒过生日》。 以故事内容激起学生对数的兴趣教学生认识1到10让学生学 会点数即一一对应的识数方法。二、游戏及练习。 1、正确认读10以内的阿拉伯数字指导学生背诵式记数110 2、能从周围生活中发现多种有趣的数字初步了解数字在人们 生活中的实际意义。 3、感受数字的丰富变化体验观察、思考的乐趣。 活动准备: 1、反映故事内容的图片。 2、5组电话号码及5个不同动物的家。 三、活动过程 1、故事《棒棒过生日》引出110的数字。 2、说数字歌找数字。 1像铅笔细长条2像鸭子水上漂。3像 耳朵听声音4像红旗迎风飘。5像秤钩来卖菜6像哨子笛笛 响。7像镰刀割青草8像麻花拧一道。9像勺子来盛菜10像灯 笼挂得 3、做拍手歌游戏。你拍一我拍一,一只孔雀穿花衣你拍二我 拍二,两只小鸭上河沿你拍三我拍三,三只大雁飞上天你拍四 我拍四,四只熊猫吃竹子你拍五我拍五,五只小猫抓老鼠你拍 六我拍六,六只小猴打悠悠你拍七我拍七,七朵红花真美丽你 拍八我拍八,八只青蛙叫呱呱你拍九我拍九,九只公鸡齐步走

五年级数学思维训练题与答案集锦

五年级数学思维训练100题及解答 1.765×213÷27+765×327÷27 解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300 2.(9999+9997+...+9001)-(1+3+ (999) 解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000) =4500000 3.19981999×19991998-19981998×19991999 解:(19981998+1)×19991998-19981998×19991999 =19981998×19991998-19981998×19991999+19991998 =19991998-19981998 =10000 4.(873×477-198)÷(476×874+199) 解:873×477-198=476×874+199 因此原式=1 5.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1 解:原式=1999×(2000-1998)+1997×(1998-1996)+… +3×(4-2)+2×1 =(1999+1997+…+3+1)×2=2000000。 6.297+293+289+…+209 解:(209+297)*23/2=5819 7.计算: 解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/99 8.

解:原式=(1*2*3)/(2*3*4)=1/4 9. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再 去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。 解: 7*18-6*19=126-114=12 6*19-5*20=114-100=14 去掉的两个数是12和14它们的乘积是12*14=168 10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个 数的平均数是33。求第三个数。 解:28×3+33×5-30×7=39。 11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的 平均数是8。问:第二组有多少个数? 解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。 12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分? 解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。 13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示) 解:每20天去9次,9÷20×7=3.15(次)。 14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。 解:以甲数为7份,则乙、丙两数共13×2=26(份) 所以甲乙丙的平均数是(26+7)/3=11(份) 因此甲乙丙三数的平均数与甲数之比是11:7。 15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

相关文档
最新文档