串口异步通信

串口异步通信
串口异步通信

微机原理与接口课程设计报告课程设计题目:DOS功能调用-串口异步通信学号:08113217

学生姓名:苏林坡

班级:081132

专业:信息工程

指导教师:谌洪茂

一软件的功能

随着计算机的不断普及,在我们的周围可能会同时出现多台微型计算机,而且这些计算机的牌号,后型号不同,而且有的格式不兼容。于是利用单片机串行口实现不同计算机之间的相互通信,以达到信息或程序的共享是非常有用的。另一方面,在某计算机的软磁盘驱动器万一出现故障的情况下,也可以通过它将计算机硬盘的数据或程序拷贝出来。

文件传输程序可以用来在两个计算机之间传输任何类型的文件(包括二进制文件),对于那些有不同类型的计算机特别有用。

网络的发展,局域网的建立,使得一个文件服务器以及允许其他计算机从服务器中装入文件或将它们存入文件服务器也可以通过串口来实现。

二软件设计

2.1设计简单介绍

本系统的软件设计流程图参见附录部分(图2)。

系统设计代码分为以下几个部分:初始化8251A、发送数据、接收数据、键盘输入、数值转换、LED显示。

2.2 模块设计详细分析

1. 初始化8251A:

8251A工作在同步方式下,方式选择控制字为00H,工作命令控制字为40H.

代码如下:

KEYLED: MOV AL,00H

OUT DX,AL

OUT DX,AL

OUT DX,AL

MOV AL,40H

OUT DX,AL

MOV AL,4EH

OUT DX,AL

MOV AL,27H

OUT DX,AL

2. 键盘输入

键盘的输入由8279控制,再输入之前要现判断键盘是否允许按键,则只需读取8279的状态即可;通过数据口读取键值。然后对输入的数据进行判断,若为数字键,只需判断其高四位,高四位为零,则为数字键;不为零则不是数字键;再判断是否为EXEC键,此时只需和10H比较,相同则为EXEC键。

KEY0: MOV DX,CONTPORT ;读8279状态

IN AL,DX

TEST AL,07H ;判断是否有键按下

JZ KEY0

MOV CX,0FFFH

DELAY1: LOOP DELAY1

MOV DX,DATAPORT ;读取键值

IN AL,DX

MOV DI,AX

AND AL,0F0H ; 判断是否为数字键

JZ KEY1

MOV AX,DI

CMP AL,10H ; 判断是否为EXEC键

JNZ KEY0

CMP WORD PTR DS:[0601H],0000H ;判断按EXEC键前是否按过数字键

JZ SERERR1

MOV SI,DATA3

CALL LEDDISP

3. 数值转换

数值转换就是将输入的键值转换成发送代码。

转换代码实现部分:

CONVERS:MOV BH,0H

MOV AX,DI

AND AL,0FH

MOV BL,AL

MOV AL,CS:[BX+DATA4]

MOV BYTE PTR DS:[0602H],AL

RET

4. 发送数据

1号机用于键盘的控制以及数据的发送。

首先判断1号机器键盘的状态,由8279控制,则只需读取8279的状态即可;再判断按键值,若为数字键,则计算次数,

再将按键值转换为显示代码;若为EXEC键,再判断按此键之前是否按过数字键,若没按过,则调用显示,显示Errl,若按过再将按键值转换为显示代码。接下来就是判断是否允许发送数据了,发送数据由8251控制,则只需读取8251的状态。允许发送就开始发送数据。

部分代码如下:

WATTXD: MOV DX,SECOPORT

IN AL,DX ;读取8251状态

TEST AL,01H ;判断是否允许发送

JZ WATTXD

MOV AL,BYTE PTR DS:[0602H] ;显示代码送给AL

MOV DX,SEDAPORT ;发送显示代码

OUT DX,AL

MOV CX,0FFFFH

DELAY2: LOOP DELAY2

JMP KEY0

SEREND: JMP SEREND

5. 接收数据并显示

2号机用于接受1号机发送的数据并将其显示出来。数据接收由8251控制,则先判断其状态,允许接收则转入接收程序,从数据口读取数据,然后将接收到的数据存入到RAM区暂存。再将数据发送到控制口进行显示。

接收数据部分代码如下:

WATRXD:MOV DX,SECOPORT ;读取8251状态

IN AL,DX

TEST AL,02H ;判断是否允许接受

JZ WATRXD

MOV DX,SEDAPORT ;接受数据

IN AL,DX

MOV BYTE PTR DS:[0600H],AL ;将接受的数据存入RAM区 MOV AL,90H

MOV DX,CONTPORT

OUT DX,AL

MOV AL,BYTE PTR DS:[0600H] ;从RAM区取出数据?

MOV DX,DATAPORT

OUT DX,AL ;显示接受的数据

MOV AL,00H

OUT DX,AL

JMP WATRXD

详见源程序清单及注释附录部分。

三操作说明

1、准备2台本系统,确定1号为发送,2号为接收。

2、将1号RXD插孔和2号的TXD插孔相连。

3、将1号TXD插孔和2号的RXD插孔相连。

4、将1号GND插孔和2号的GND插孔相连(共地)。

5、先运行2号机,显示器显示“8251-2”,进入等待接收状态。

6、再运行1号机,显示器显示“8251-1”,进入串行发送状态。。

7、在1号机的键盘上输入数字键,在2号机显示器上显示对应数字值。

8 、输入数字键后再按EXEC 键,1号机显示“8251 good”。如果不输入数字键直接按EXEC键,则显示“Err”,如果双机通信不能正常进行,也显示“Err1”。

四总结

设计体会和收获:

最初选择串行通信这个实验时,由于从未接触过这类设计,感到新鲜的同时不乏焦虑。现在终于将它完成了,感到受益颇多。第一,这是一份考验我们自觉性、动手能力与协作意识的任务。在长达一个月的时间里,我们不断发现自身不足也不断自我完善。第二,未知并不可怕,可怕的是因未知而止步。我们在课堂上所学的知识是非常有限的,这次的课程设计就是个很好的体现。很多函数的运用我们还没掌握,一些简单的循环语句都可能出错。实践后才能真的知道我们真正掌握了多少。第三,团结就是力量一点都不假,三个臭皮匠顶一个诸葛亮。在团组合作时我们更便于互相取长补短,相互讨论,效果很好。

附:

1、程序流程图

开始

调用显示“8251——1”子程序

读取键盘状态

判有键按下否?

延时

读取键值

是数字键?

判是MON键?

按MON键前未按过数字键?

显示“Err”

结束

结束

显示8251good

键值转换成显示代码

读取串行口状态

判允许发送否?

发送键值所对应的显示

代码

读取串行口状态

判允许接收否?

从串行口读数据

判接收到的数据是

否和

刚才发送的数据相

显示“Err”

结束

N

Y

N

N

N

Y

Y

Y

N

Y

N

Y

Y

N

按键次数加1

发送数据:接收数据:

开始

调用显示“8251——2”子程

读取串行口状态

判允许接收否?读取串行口数据存入RAM

读取串行口状态

判允许发送否?取刚才接收的数据发送

显示刚才接收的数

N

N

Y

Y 2、源程序清单及注释

Send程序段代码

CODE SEGMENT

ASSUME CS:CODE

START: JMP SERIAL

CONTPORT EQU 00DFH ;8279端口地址DATAPORT EQU 00DEH ;8279端口地址SECOPORT EQU 0051H ;8251端口地址SEDAPORT EQU 0050H ;8251端口地址DATA0 EQU 0500H

DATA1 EQU 0508H

DATA2 EQU 0510H

DATA3 EQU 0518H

DATA4 EQU 0520H

SERIAL: CALL FORMAT

MOV SI,DATA2

CALL LEDDISP ;显示8251-2

MOV BYTE PTR DS:[0601H],0H

MOV WORD PTR DS:[0602H],0H

CLD

MOV DI,0602H ;

MOV CX,08H

XOR AX,AX

REP STOSW

MOV DX,SECOPORT

MOV AL,00H ;初始化8251

OUT DX,AL

OUT DX,AL

OUT DX,AL

MOV AL,40H

OUT DX,AL

MOV AL,4EH

OUT DX,AL

MOV AL,27H

OUT DX,AL

KEY0: MOV DX,CONTPORT ;读8279状态IN AL,DX

TEST AL,07H ;判断是否有键按下

JZ KEY0

MOV CX,0FFFH

DELAY1: LOOP DELAY1

MOV DX,DATAPORT ;读取键值

IN AL,DX

MOV DI,AX

AND AL,0F0H ; 判断是否为数字键

JZ KEY1

MOV AX,DI

CMP AL,10H ; 判断是否为EXEC键

JNZ KEY0

CMP WORD PTR DS:[0601H],0000H ;判断按EXEC键前是否按过数字键

JZ SERERR1

MOV SI,DATA3

CALL LEDDISP

JMP SEREND

SERERR1:MOV SI,DATA1

CALL LEDDISP ;显示Err1

JMP SEREND

KEY1: CALL CONVERS ;键值转换成显示代码WATTXD: MOV DX,SECOPORT

IN AL,DX ;读取8251状态

TEST AL,01H ;判断是否允许发送

JZ WATTXD

MOV AL,BYTE PTR DS:[0602H] ;显示代码送给AL

MOV DX,SEDAPORT ;发送显示代码

OUT DX,AL

MOV CX,0FFFFH

DELAY2: LOOP DELAY2

JMP KEY0

SEREND: JMP SEREND

KEY2: CALL LEDDISP

ADD BYTE PTR DS:[0601H],01H

JMP KEY0

CONVERS:MOV BH,0H

MOV AX,DI

AND AL,0FH

MOV BL,AL

MOV AL,CS:[BX+DATA4]

MOV BYTE PTR DS:[0602H],AL

RET

LEDDISP:MOV AL,90H

MOV DX,CONTPORT

OUT DX,AL

MOV BYTE PTR DS:[0600H],00

LED1: CMP BYTE PTR DS:[0600H],07H JA LED2

MOV BL,DS:[0600H]

MOV BH,0H

MOV AL,CS:[BX+SI]

MOV DX,DATAPORT

OUT DX,AL

ADD BYTE PTR DS:[0600H],01H

JNZ LED1

LED2: RET

LEDDISPD:MOV AL,90H

MOV DX,CONTPORT

OUT DX,AL

MOV BYTE PTR DS:[0600H],00 LEDD1: CMP BYTE PTR DS:[0600H],07H JA LEDD2

MOV BL,DS:[0600H]

MOV BH,0H

MOV AL,DS:[BX+0602H]

MOV DX,DATAPORT

OUT DX,AL

ADD BYTE PTR DS:[0600H],01H

JNZ LEDD1

LEDD2: RET

FORMAT: MOV BX,0

MOV WORD PTR DS:[BX+0500H],5050H ;ERR2显示代码ADD BX,2

MOV WORD PTR DS:[BX+0500H],0079H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],0000H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],0000H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],503FH ;ERR1显示代码ADD BX,2

MOV WORD PTR DS:[BX+0500H],7950H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],0000H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],0000H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],405BH ;8251---1显示代码

ADD BX,2

MOV WORD PTR DS:[BX+0500H],4040H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],6D06H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],7F5BH

ADD BX,2

MOV WORD PTR DS:[BX+0500H],5C5EH ;8251good显示代码

ADD BX,2

MOV WORD PTR DS:[BX+0500H],6F5CH

ADD BX,2

MOV WORD PTR DS:[BX+0500H],6D06H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],7F5BH

ADD BX,2

MOV WORD PTR DS:[BX+0500H],063FH ;0-F显示代码ADD BX,2

MOV WORD PTR DS:[BX+0500H],4F5BH

ADD BX,2

MOV WORD PTR DS:[BX+0500H],6D66H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],077DH

ADD BX,2

MOV WORD PTR DS:[BX+0500H],6F7FH

ADD BX,2

MOV WORD PTR DS:[BX+0500H],7C77H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],5E39H

ADD BX,2

MOV WORD PTR DS:[BX+0500H],7179H

RET

CODE ENDS

END START

Recive程序段代码

CODE SEGMENT

ASSUME CS:CODE

CONTPORT EQU 00DFH ;8279控制口DATAPORT EQU 00DEH ;8279数据口SECOPORT EQU 0051H ;8251端口地址SEDAPORT EQU 0050H ;8251端口地址

ORG 1800H

START: JMP KEYLED

KEYLED: MOV AL,00H ;初始化8251 OUT DX,AL

OUT DX,AL

OUT DX,AL

MOV AL,40H

OUT DX,AL

MOV AL,4EH

OUT DX,AL

MOV AL,27H

OUT DX,AL

WATRXD:MOV DX,SECOPORT ;读取8251状态

IN AL,DX

TEST AL,02H ;判断是否允许接受

JZ WATRXD

MOV DX,SEDAPORT ;接受数据

IN AL,DX

MOV BYTE PTR DS:[0600H],AL ;将接受的数据存入RAM区 MOV AL,90H

MOV DX,CONTPORT

OUT DX,AL

MOV AL,BYTE PTR DS:[0600H] ;从RAM区取出数据?

MOV DX,DATAPORT

OUT DX,AL ;显示接受的数据

MOV AL,00H

OUT DX,AL

JMP WATRXD

CODE ENDS

END START

参考文献

1《C语言程序设计》清华大学出版社;谭浩强主编 1999.12 2《C语言程序设计技巧及应用》上海科学普及出版社;陈进编著 1992.6

3《微型计算机原理与应用》(第二版)西安电子科技大学出版社;王永山,杨宏五,杨婵娟编著 1999.12

4《单片机原理及应用教程》北京大学出版社;范立南,谢子殿编著 2007.8

东华理工大学软件学院

课程设计评分表

学生姓名:苏林坡班级: 081132 学号:08113217

课程设计题目:DOS功能调用-串口异步通信

项目内容满分实评

选题能结合所学课程知识、有一定的能力

训练。符合选题要求

(5人一题)

10工作量适中,难易度合理10

能力水平能熟练应用所学知识,有一定查阅文

献及运用文献资料能力

10理论依据充分,数据准确,公式推导

正确

10能应用计算机软件进行编程、资料搜

集录入、加工、排版、制图等

10

能体现创造性思维,或有独特见解10

成果质量总体设计正确、合理,各项技术指标

符合要求。

10说明书综述简练完整,概念清楚、立

论正确、技术用语准确、结论严谨合

理;分析处理科学、条理分明、语言

流畅、结构严谨、版面清晰

10

设计说明书栏目齐全、合理,符号统

一、编号齐全。 格式、绘图、表

格、插图等规范准确,符合国家标准

10有一定篇幅,字符数不少于500010

总分100

指导教师评语:

指导教师签名:

年月日

c语言串口通信范例

一个c语言的串口通信程序范例 分类:技术笔记 标签: c语言 串口通信 通信程序 it 最近接触一个项目,用HL-C1C激光位移传感器+易控组态软件完成生产线高度跳变检测,好久没有接触c c#,一些资料,找来做个记录,也许大家用的着 #include #include #include #include #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20 static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)();

static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; f=(Baud/100); f=1152/f; High=f/256; Low=f-High*256; outp(ComPortAddr+3,0x80); outp(ComPortAddr,Low); outp(ComPortAddr+1,High); Data=(Data-5)|((Stop-1)*4); if(Parity==2) Data=Data|0x18; else if(Parity==1) Data=Data|0x8; outp(ComPortAddr+3,Data); outp(ComPortAddr+4,0x0a);

串行通信接口典型应用举例

串行通信接口典型应用举例 SCI_FLAG .usect ".data0",1 ;SCI标志寄存器 TXD_PTR .usect ".data0",8 ;发送的数据存放区 RXD_PTR .usect ".data0",8 ;接收到的数据存放区 .include "F2407REGS.H" ;引用头部文件 .def _c_int0 ;(1)建立中断向量表 .sect ".vectors" ;定义主向量段 RSVECT B _c_int0 ;PM 0 复位向量 1 INT1 B GISR1 ;PM 2 中断优先级1 4 INT2 B PHANTOM ;PM 4 中断优先级2 5 INT3 B PHANTOM ;PM 6 中断优先级3 6 INT4 B PHANTOM ;PM 8 中断优先级4 7 INT5 B PHANTOM ;PM A中断优先级5 8 INT6 B PHANTOM ;PM C 中断优先级6 9 RESERVED B PHANTOM ;PM E (保留位) 10 SW_INT8 B PHANTOM ;PM 10 用户定义软件中断— … SW_INT31 B PHANTOM ;PM 3E 用户定义软件中断— ;中断子向量入口定义pvecs .sect ".pvecs" ;定义子向量段 PVECTORS B PHANTOM ;保留向量地址偏移量0000h B PHANTOM ;保留向量地址偏移量0001h … B PHANTOM ;保留向量地址偏移量0005h B SCI_RX_ISR ;保留向量地址偏移量0006h SCI接收中断 B PHANTOM ;保留向量地址偏移量0007h … B PHANTOM ;保留向量地址偏移量0041h ;(2)主程序: .text _c_int0 SETC INTM CLRC SXM CLRC OV M CLRC CNF 214

串口协议

串口协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。(5)进行TTL 与EIA电平转换:CPU 和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C 接口标准所要求的信号线:远距离通信采用MODEM 时,需要9根信号线;近距离零MODEM 方式,只需要3 根信号线。这些信号线由接口电路提供,以便与MODEM 或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL 电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的串行通信接口基本任务的大部分工作,且都是可编程的。才用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。

上位机与51单片机串口通信

上位机与51单片机串口通信 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六 进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

//参考源程序 #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义

串口通信协议

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的串行通信接口基本任务的大部分工作,且都是可编程的。才用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。 3.有关串行通信的物理标准 为使计算机、电话以及其他通信设备互相沟通,现在,已经对串行通信建立了几个一致的概念和标准,这些概念和标准属于三个方面:传输率,电特性,信号名称和接口标准。 1、传输率:所谓传输率就是指每秒传输多少位,传输率也常叫波特率。国际上规定了一个标准波特率系列,标准波特率也是最常用的波特率,标准波特率系列为110、300、600、1200、4800、9600和19200。大多数CRT终端都能够按110到9600范围中的任何一种波特率工作。打印机由于机械速度比较慢而使传输波特率受到限制,所以,一般的串行打印机工作在110波特率,点针式打印机由于其内部有较大的行缓冲

VC++_串口上位机编程实例

VC++串口上位机简单例程(源码及详细步骤) (4.33MB) VC++编写简单串口上位机程序 2010年4月13日10:23:40 串口通信,MCU跟PC通信经常用到的一种通信方式,做界面、写上位机程序的编程语言、编译环境等不少,VB、C#、LABVIEW等等,我会的语言很少,C语言用得比较多,但是还没有找到如何用C语言来写串口通信上位机程序的资料,在图书管理找到了用VC++编写串口上位机的资料,参考书籍,用自己相当蹩脚的C++写出了一个简单的串口上位机程序,分享一下,体验一下单片机和PC通信的乐趣。 编译环境:VC++6.0 操作系统:VMWare虚拟出来的Windows XP 程序实现功能: 1、PC初始化COM1口,使用n81方式,波特率57600与单片机通信。PC的COM口编号可以通过如下方式修改: 当然也可以通过上位机软件编写,通过按钮来选择COM端口号,但是此次仅仅是简单的例程,就没有弄那么复杂了。COM1口可用的话,会提示串口初始化完毕。否则会提示串口已经打开Port already open,表示串口已经打开,被占用了。 2、点击开始转换,串口会向单片机发送0xaa,单片机串口中断接收到0xaa后启动ADC转

换一次,并把转换结果ADCL、ADCH共两个字节的结果发送至PC,PC进行数值转换后在窗口里显示。(见文章末尾图) 3、为防止串口被一只占用,点击关闭串口可以关闭COM1,供其它程序使用,点击后按钮变为打开串口,点击可重新打开COM1。 程序的编写: 1、打开VC++6.0建立基于对话框的MFC应用程序Test,

2、在项目中插入MSComm控件:工程->增加到工程->Components and Controls->双击Registered ActiveX Controls->选择Microsoft Communications Control,version6.0->Insert,按

通信协议简介及区别(串行、并行、双工、RS232等)

基本的通讯方式有并行通讯和串行通讯两种。 并行通讯:一条信息的各位数据被同时传送的通讯方式称为并行通讯。 并行通讯的特点是:各数据位同时传送,传送速度快、效率高,但有多少数据位就需多少根数据线,因此传送成本高,且只适用于近距离(相距数米)的通讯。 串行通讯:一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。 串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢。串行通讯的距离可以从几米到几千米。 根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。信息只能单向传送为单工;信息能双向传送但不能同时双向传送称为半双工;信息能够同时双向传送则称为全双工。 而按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种方式。 异步通信:接收器和发送器有各自的时钟; 同步通信:发送器和接收器由同一个时钟源控制。 1、异步串行方式的特点 所谓异步通信,是指数据传送以字符为单位,字符与字符间的传送是完全异步的,位与位之间的传送基本上是同步的。异步串行通信的特点可以概括为: ①以字符为单位传送信息。 ②相邻两字符间的间隔是任意长。 ③因为一个字符中的比特位长度有限,所以需要的接收时钟和发送时钟只要相近就可以,不需同步。 ④异步方式特点简单的说就是:字符间异步,字符内部各位同步。 2、异步串行方式的数据格式 异步串行通信的数据格式如图1所示,每个字符(每帧信息)由4个部分组成: ①1位起始位,规定为低电0; ②5~8位数据位,即要传送的有效信息; ③1位奇偶校验位; ④1~2位停止位,规定为高电平1。 3、同步串行方式的特点 所谓同步通信,是指数据传送是以数据块(一组字符)为单位,字符与字符之间、字符内部的位与位之间都同步。同步串行通信的特点可以概括为: ①以数据块为单位传送信息。 ②在一个数据块(信息帧)内,字符与字符间无间隔。 ③因为一次传输的数据块中包含的数据较多,所以接收时钟与发送进钟严格同步,通常要有同步时钟。 4、同步串行方式的数据格式 同步串行通信的数据格式如图2所示,每个数据块(信息帧)由3个部分组成: ①2个同步字符作为一个数据块(信息帧)的起始标志; ②n个连续传送的数据 ③2个字节循环冗余校验码(CRC) 图1 异步串行数据格式图2 同步串行数据格式

51单片机与PC机通信资料

《专业综合实习报告》 专业:电子信息工程 年级:2013级 指导教师: 学生:

目录 一:实验项目名称 二:前言 三:项目内容及要求 四:串口通信原理 五:设计思路 5.1虚拟串口的设置 5.2下位机电路和程序设计 5.3串口通信仿真 六:电路原理框图 七:相关硬件及配套软件 7.1 AT89C51器件简介 7.2 COMPIN简介 7.3 MAX232器件简介 7.4友善串口调试助手 7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计 九:proteus仿真调试 十:总结 十一:参考文献 一:实验项目名称:

基于51单片机的单片机与PC机通信 二:前言 在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。 目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。 为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。 用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。MCS-51系列单片机,由于内部带有一个可用于异步通讯的全双工的穿行通讯接口,阴齿可以很方便的构成一个主从式系统。 串口是计算机上一种非常通用的设备通讯协议,大多数计算机包容两个基于RS232的串口。串口同时也是仪器仪表设备通过用的通讯协议,很多GPIB兼容的设备也带有RS-232口。同时串口通讯协议也可以用于获取远程采集设备数据。所以,深入的理解学习和研究串口通信相关知识是非常必要的。此次毕业设计选题为“PC机与MCS-51单片机的串口通讯”,使用51单片机来实现一个主从式

AB DF1串口通讯协议API接口

Fax: 1-703-709-0985 https://www.360docs.net/doc/c79140294.html, Allen-Bradley DF1 Serial Communication Interface API The DASTEC Corporation Allen-Bradley DF1 Serial Communication Interface API allows the user to implement bi-directional serial communications to exchange data between applications running on a Windows/WinCE-based system with other devices supporting the Allen-Bradley DF1 full-duplex serial protocol. The devices can be AB devices, other host computers or even other system applications using the API. The Allen-Bradley DF1 Serial Communication Interface API enables a system to acts as a client device to other Allen-Bradley peer devices, initiating read and write operations on behalf of the system applications. The API also allows the system to emulate an Allen-Bradley PLC to respond to read and write requests and thus acts as a “virtual PLC” to other AB peers. The API is available for different Windows/WinCE-based systems/platforms and can be used with C/C++ or Visual Basic. The API consists of two component functionalities, client side and server side. The client side functionality is implemented with a single API DLL. Server side functionality is implemented with a DLL/executable pair. Together these components manage all aspects of the protocol and data exchange including responding to peers with proper acknowledgements, error/success codes and protocol data byte ordering. The system application need only to deal with the data values exchanged in native byte order. The user can employ either the API’s client, server or both functionalities with minimal code implementation.

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.360docs.net/doc/c79140294.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

CSharp串口通信

using System; using System.Collections.Generic; using https://www.360docs.net/doc/c79140294.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.IO.Ports; namespace SerialPorts { public partial class frm_Main : Form { #region Public Enumerations public enum DataMode { Text, Hex } public enum LogMsgType { Incoming, Outgoing, Normal, Warning, Error }; #endregion private Color[] LogMsgTypeColor = { Color.Orange, Color.Green, Color.Black, Color.Blue, Color.Red }; //禁用和启用程序中各控件的状态 private void EnableControls() { // 基于串口的打开与否,设置控件状态 gbPortSettings.Enabled = !ComPort.IsOpen; btns.Enabled = btnstop.Enabled = txtSendData.Enabled = btnSend.Enabled = ComPort.IsOpen; if (ComPort.IsOpen) btnOpenPort.Text = "关闭串口"; else btnOpenPort.Text = "打开串口"; } //初始化组件的数据,为串口提供相关参数 private void InitializeControlValues() { cmbParity.Items.Clear(); cmbParity.Items.AddRange(Enum.GetNames(typeof(Parity))); cmbStopBits.Items.Clear(); cmbStopBits.Items.AddRange(Enum.GetNames(typeof(StopBits))); cmbPortName.Items.Clear(); foreach (string s in SerialPort.GetPortNames()) cmbPortName.Items.Add(s); cmbPortName.Text = cmbPortName.Items[0].ToString(); cmbParity.Text = cmbParity.Items[0].ToString(); cmbStopBits.Text = cmbStopBits.Items[0].ToString(); cmbDataBits.Text = cmbDataBits.Items[0].ToString(); cmbParity.Text = cmbParity.Items[0].ToString(); cmbBaudRate.Text = cmbBaudRate.Items[0].ToString(); EnableControls(); } //十六进制转换字节数组 private byte[] HexStringToByteArray(string s)

串口通信协议

串口通信协议 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。 什么是RS-232 RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。用于驱动和连线的改进,实际应用中RS-232的传输长度或者速度常常超过标准的值。RS-232只限于PC串口和设备间点对点的通信。RS-232串口通信最远距离是50英尺。 DB-9针连接头 9针串口连接口顺序图 从计算机连出的线的截面。 RS-232针脚的功能: 数据: TXD(pin 3):串口数据输出(Transmit Data) RXD(pin 2):串口数据输入(Receive Data) 握手: RTS(pin 7):发送数据请求(Request to Send) CTS(pin 8):清除发送(Clear to Send) DSR(pin 6):数据发送就绪(Data Send Ready) DCD(pin 1):数据载波检测(Data Carrier Detect) DTR(pin 4):数据终端就绪(Data Terminal Ready) 地线: GND(pin 5):地线 其他 RI(pin 9):铃声指示 什么是RS-422 RS-422(EIA RS-422-AStandard)是Apple的Macintosh计算机的串口连接标准。RS-422使用差分信号,RS-232使用非平衡参考地的信号。差分传输使用两根线

51单片机串口通信异常的调试一例

51单片机串口通信异常的调试一例 单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。 在进行串口通信的实验时,预期功能不能实现。实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。 程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。 对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。 对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。 问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。编译通过后,将程序烧写到单片机。使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:

串口通讯协议

串口通讯协议 波特率9600,数据位8位,起始位1位,停止位2位,校验采用16位CRC校验,校验包括头部信息和数据。 帧定义: 主机发送事件数据定义

u16 const crc_table[256] = { 0x0000U, 0x1021U, 0x2042U, 0x3063U, 0x4084U, 0x50a5U, 0x60c6U, 0x70e7U, 0x8108U, 0x9129U, 0xa14aU, 0xb16bU, 0xc18cU, 0xd1adU, 0xe1ceU, 0xf1efU, 0x1231U, 0x0210U, 0x3273U, 0x2252U, 0x52b5U, 0x4294U, 0x72f7U, 0x62d6U, 0x9339U, 0x8318U, 0xb37bU, 0xa35aU, 0xd3bdU, 0xc39cU, 0xf3ffU, 0xe3deU, 0x2462U, 0x3443U, 0x0420U, 0x1401U, 0x64e6U, 0x74c7U, 0x44a4U, 0x5485U, 0xa56aU, 0xb54bU, 0x8528U, 0x9509U, 0xe5eeU, 0xf5cfU, 0xc5acU, 0xd58dU, 0x3653U, 0x2672U, 0x1611U, 0x0630U, 0x76d7U, 0x66f6U, 0x5695U, 0x46b4U, 0xb75bU, 0xa77aU, 0x9719U, 0x8738U, 0xf7dfU, 0xe7feU, 0xd79dU, 0xc7bcU, 0x48c4U, 0x58e5U, 0x6886U, 0x78a7U, 0x0840U, 0x1861U, 0x2802U, 0x3823U, 0xc9ccU, 0xd9edU, 0xe98eU, 0xf9afU, 0x8948U, 0x9969U, 0xa90aU, 0xb92bU, 0x5af5U, 0x4ad4U, 0x7ab7U, 0x6a96U, 0x1a71U, 0x0a50U, 0x3a33U, 0x2a12U, 0xdbfdU, 0xcbdcU, 0xfbbfU, 0xeb9eU, 0x9b79U, 0x8b58U, 0xbb3bU, 0xab1aU, 0x6ca6U, 0x7c87U, 0x4ce4U, 0x5cc5U, 0x2c22U, 0x3c03U, 0x0c60U, 0x1c41U, 0xedaeU, 0xfd8fU, 0xcdecU, 0xddcdU, 0xad2aU, 0xbd0bU, 0x8d68U, 0x9d49U, 0x7e97U, 0x6eb6U, 0x5ed5U, 0x4ef4U, 0x3e13U, 0x2e32U, 0x1e51U, 0x0e70U, 0xff9fU, 0xefbeU, 0xdfddU, 0xcffcU, 0xbf1bU, 0xaf3aU, 0x9f59U, 0x8f78U, 0x9188U, 0x81a9U, 0xb1caU, 0xa1ebU, 0xd10cU, 0xc12dU, 0xf14eU, 0xe16fU, 0x1080U, 0x00a1U, 0x30c2U, 0x20e3U, 0x5004U, 0x4025U, 0x7046U, 0x6067U, 0x83b9U, 0x9398U, 0xa3fbU, 0xb3daU, 0xc33dU, 0xd31cU, 0xe37fU, 0xf35eU, 0x02b1U, 0x1290U, 0x22f3U, 0x32d2U, 0x4235U, 0x5214U, 0x6277U, 0x7256U, 0xb5eaU, 0xa5cbU, 0x95a8U, 0x8589U, 0xf56eU, 0xe54fU, 0xd52cU, 0xc50dU, 0x34e2U, 0x24c3U, 0x14a0U, 0x0481U, 0x7466U, 0x6447U, 0x5424U, 0x4405U, 0xa7dbU, 0xb7faU, 0x8799U, 0x97b8U, 0xe75fU, 0xf77eU, 0xc71dU, 0xd73cU, 0x26d3U, 0x36f2U, 0x0691U, 0x16b0U, 0x6657U, 0x7676U, 0x4615U, 0x5634U, 0xd94cU, 0xc96dU, 0xf90eU, 0xe92fU, 0x99c8U, 0x89e9U, 0xb98aU, 0xa9abU, 0x5844U, 0x4865U, 0x7806U, 0x6827U, 0x18c0U, 0x08e1U, 0x3882U, 0x28a3U, 0xcb7dU, 0xdb5cU, 0xeb3fU, 0xfb1eU, 0x8bf9U, 0x9bd8U, 0xabbbU, 0xbb9aU, 0x4a75U, 0x5a54U, 0x6a37U, 0x7a16U, 0x0af1U, 0x1ad0U, 0x2ab3U, 0x3a92U, 0xfd2eU, 0xed0fU, 0xdd6cU, 0xcd4dU, 0xbdaaU, 0xad8bU, 0x9de8U, 0x8dc9U, 0x7c26U, 0x6c07U, 0x5c64U, 0x4c45U, 0x3ca2U, 0x2c83U, 0x1ce0U, 0x0cc1U, 0xef1fU, 0xff3eU, 0xcf5dU, 0xdf7cU, 0xaf9bU, 0xbfbaU, 0x8fd9U, 0x9ff8U, 0x6e17U, 0x7e36U, 0x4e55U, 0x5e74U, 0x2e93U, 0x3eb2U, 0x0ed1U, 0x1ef0U }; u16 crc16(u16 crc,const u8 *data, u32 len )len可以为u8,u16,u32 { while (len--) crc = crc_table[(crc >> 8 ^ *(data++)) & 0xffU] ^ (crc << 8); return crc; } 例:u8 *buf=”123456789”;

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

异步串行通信协议的设计与实现

10 | 电子制作 2018年10月 时传送;串行通信,即数据一位一位顺序传送。串行通信能够节省传输线,特别是数据位数很多和远距离数据传送时,这一优点更为突出。现在流行的高级语言一般都支持对串口的直接操作,常用的单片机也把串行通讯口作为一个标准接口集成在单片机内,串行通讯接口的开发具有开发周期短,开发简单等特点。目前异步串行通信已广泛用于微机之间的通信、工业控制系统中的数据采集与控制、远程数据的传送等方面。 1 串口通信的基本原理 串口在嵌入式系统当中是一类重要的数据通信接口,其本质功能是作为CPU和串行设备间的编码转换器。当数据从CPU经过串行端口发送出去时,字节数据转换为串行的位;在接收数据时,串行的位被转换为字节数据。应用程序要使用串口进行通信,必须在使用之前向操作系统提出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。 典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送数据线,(3)接收数据线。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:波特率是一个衡量通信速度的参数,它表示每秒钟传送的bit的个数;数据位是衡量通信中实际数据位的参数,当计算机发送一个信息包,标准的值是5、7和8位。如何设置取决于你的需求;停止位用于表示单个包的最后一位,典型的值为1,1.5和2位,停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会;奇偶校验位是串口通信中一种简单的检错方式,有四种检错方式——偶、奇、高和低,也可以没有校验位。做出统一规定。 在控制系统中,单片机间通信一般采用异步串行通信,传统的异步串行通信协议一般采用如图1所示的命令格式,命令消息包括帧头(命令码)、数据帧、校验帧;响应消息为ACK信号(ACK取不同的值,例如:正确响应 ACK = 0x55;错误响应 ACK = 0xAA)。由于在串口通信中还存在很多不可靠的因素,例如由于电磁干扰造成的帧字节丢失、传输误码,以及因主从单片机处理繁忙而造成的响应延迟等。传统的通信协议难以克服由于单片机处理繁忙而造成的响应延迟现象。如图2所示,当主芯片发送[命令1]后,当超过响应等待时间而没有得到ACK时,主芯片发[命令2],而此时在下一个响应等待时间内收到两次[ACK],这时将导致主芯片做出错误判断,调用并非本意的程序执行,严重影响系统的正常运行。因此,本文在通信协议的设计中,采用响应消息加权的方法,提高了通信的可靠性,保证系统正常运行。 图1 通信命令格式 图2 通信时序 本响应消息加权式通信协议,实现方式如下:通信协议

相关文档
最新文档