道路探地雷达检测方法

道路探地雷达检测方法
道路探地雷达检测方法

道路探地雷达检测方法

1 检测仪器及设备

1.1 探地雷达主机技术指标应符合下列规定:

1 系统增益应不低于120dB;

2 信噪比应不低于60dB;

3 模数转换应不低于12位;

4 信号迭加次数应可选择;

5 采样间隔宜不大于0.5ns;

6 实时滤波功能可选择;

7 应具有点测与连续测量功能;

8 应具有手动或自动位置标记功能;

9 应具有现场数据处理功能。

1.2 探地雷达天线可采用不同频率的天线组合,技术指标应符合下列规定:

1 应具有屏蔽功能;

2 最大探测深度应大于2m;

3 垂直分辨率应高于2cm。

1.3 探地雷达工作环境应符合下列规定:

1 工作环境温度-10℃~+40℃;

2 工作环境湿度<90%。

2 现场检测

2.1 检测前的准备应符合下列规定:

1 检测前应对被检工程进行现场调查,搜集设计、施工资料,了解工作条件及环境安全状况。

2 应调查施工过程中特殊施工段,记录结构物位置和影响检测工作障碍物和电磁干扰源的位置。

3 应调查已发病害,并记录其位置和类型。

4 检测前应正确连接雷达系统,并在检测前进行试运行。

5 检测前应准确标记检测里程桩号及测线位置。

6 测量轮连续采集时应保持测量轮随检测距离运转良好,计程准确。

7 在不间断通行道路检测时,检测仪器车后应跟保通警示车辆,检测车内应有专人负责安全。

2.2测线布置应符合下列规定:

1 测线布置应以纵向布线为主,横向布线为辅。

2 每车道应布设一条纵测线。应选取有代表特征部位布设部分横测线,对于重点病害异常区段宜进行加密测线,必要时应根据缺陷目标体形状布置横向测线。

3 测线每1km应有一个里程标记,标记应清晰。

2.3 介质参数标定应符合下列规定:

1 检测前应对道路结构层的介电常数或电磁波速做现场标定,每同类道路结构层宜不少于3处,取平均值为该类道路结构层的介电常数或电磁波速。当检测长度大于10km时应适当增加标定点数。

2 标定宜采用钻孔实测方法,标定记录中的界面反射信号应清晰、准确。

3 标定结果应按下列公式计算:

(2.3-1)

(2.3-2)

式中:ε—相对介电常数;

v—电磁波速(m/s);

t—双程旅行时间(ns);

d—标定目标体厚度或距离(m)。

2.4现场参数应根据检测目标体特征而设定,检测参数应包括中心频率、时窗、采样率、测点点距等。现场检测参数设定应符合下列规定:

1 天线中心频率应按下列公式选定:

(2.4-1)

式中:f —天线中心频率(MHz );

x—要求的空间分辨率;

ε—相对介电常数。

2 时窗应按下列公式确定:

(2.4-2)

式中:ΔT—时窗长度(ns);

d—目标体厚度或距离(m);

v—电磁波速(m/s)。

3 采样率应满足Nyquist采样定律,采样率宜不小于天线中心频率的6倍。

4 测量点距应保证每个目标体有不少于5条以上的扫描道通过。

5 距离记录方式宜采用测量轮连续测量采集方式,特殊情况可采用点测方式。

6 当使用分离式天线时,天线间距应按下列公式计算:

(2.4-3)

式中:s —天线间距(MHz ) ;

d—目标体厚度或距离(m);

ε—相对介电常数。

2.5 现场检测应符合下列规定:

1 检测时应保证检测天线平稳匀速直线行进,减少天线晃动,避免不必要的绕行。

2 检测时移动速度应控制在不丢失采集数据为准,不宜太快。

3 应密切注意雷达图像的变化,对图像异常段做好记录,必要时进行复检或加密检测。

4 应随时记录可能对测量产生电磁影响的物体形态及其位置。

5 检测记录应包括测线位置、编号、天线移动方向、标记间隔、天线类型以及异常描述等。

3 数据处理

3.1 原始数据处理前应检查原始数据是否完整,信号是否清晰,里程记录是否正确。不合格的原始数据不得进行处理与解释。

3.2 外业原始记录有下列情况之一者,资料应作废重新采集:

1 测点、测线、里程桩号混淆不清;

2 干扰背景强烈,妨碍有效波的识别;

3 不能可靠采集有效波。

3.3 数据处理与解释软件应使用正式认证的软件或经鉴定合格的软件。

3.4 应正确选择处理参数,处理参数应能有效压制干扰信号、提高信噪比、真实反映地下介质的情况、获取清晰的处理剖面。

3.5 处理后的资料应确保里程桩号和位置标记准确、无误。

4 资料解释

4.1 资料解释应在掌握测区内物性参数和道路结构层的基础上,按由已知到未知和定性指导定量的原则进行。

4.2 应根据现场记录,分析可能存在的干扰体位置与雷达记录中异常的关系,准确区分有效异常与干扰异常。

4.3 应准确读取双程旅行时的数据。

4.4 道路结构层界面应根据反射信号的强弱、频率变化及延伸情况确定。

4.5 雷达数据解释完后,须现场打孔验证。

4.6 解释结果和成果应符合道路质量检测要求。

5 评价报告

5.1 检测工作完成后,应编制隧道雷达检测报告。报告应由说明书、图件和附件组成。

5.2 检测报告应准确、完整,数据应真实、齐全。内容应包括:检测项目、检测方法、采用的仪器和设备、工作布置和工作量、检测数量、抽验地段及结果、资料处理和解释、验证结果分析、结论等。

5.3 报告主要图表应包括如下内容:

1 测线布置图,含测线的位置、方向和里程等;

2 探地雷达时间剖面图像;

3 探地雷达深度剖面图像;

4 综合解释断面图;

5 病害检测结果及评价表;

6 病害分布统计表。

5.4 报告附件应包括如下内容:

1 原始记录;

2 原始数据(仪器原始数据应转换为标准物探格式);

3 检测影像资料及电子文档等。

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

隧道检测报告

目录 第一章概述 (3) 1.1 工程、地质概况 (3) 1.2 隧道设计及施工完成情况 (3) 1.3 检测内容 (4) 1.4 检测依据及评定标准 (4) 1.5 检测仪器设备 (5) 第二章隧道施工质量检测技术 (7) 2.1 检测方法及原理 (7) 2.1.1 锚杆、小导管及管棚的施工质量检测 (7) 2.1.2 锚杆拉拔试验检测 (7) 2.1.2 初衬喷射混凝土强度、厚度及缺陷检测 (7) 2.1.3 初衬后隧道断面净空量测 (9) 2.1.4 初衬钢支撑榀数及间距 (9) 2.2 隧道施工质量检测项目检测频率汇总 (9) 第三章隧道施工质量检测结果 (10) 3.1 锚杆及管棚的施工质量检测 (10) 3.1.1 锚杆数量检测 (10) 3.1.2 管棚数量检测 (11) 3.1.3 锚杆施工质量检测 (11) 3.1.3 锚杆抗拔力试验检测 (13) 3.2 初衬喷射混凝土强度、厚度及缺陷检测 (14) 3.2.1 初衬喷射混凝土强度检测 (14) 3.2.2 初衬喷射混凝土厚度及缺陷钻孔检测 (16) 3.2.3 初衬喷射混凝土缺陷雷达检测 (18) 3.3 钢支撑榀数及间距检测 (18) 3.4 隧道初衬断面检测 (19) 第四章检测结论与建议 (23) 4.1 检测结论 (23)

4.2 建议 (27)

第一章概述 1.1 工程、地质概况 1.1.1地质概况 ***隧道以白云质灰岩为主,少量第四系残破积碎石土,碎石土厚度不大,结构松散,围岩稳定性一般。岩层产状较平缓,风化中等,节理裂隙发育,岩层较破碎,岩质较软。坡面现状基本稳定,洞口开挖后,岩层易产生垮塌、掉块等现象。 地处云贵高原向湘西丘陵、四川盆地过渡的斜坡地带,属于亚热带季风气候。隧区地形较简单,为单座山丘,山体总体呈向北东走向,属丘陵地貌。 测区中风化基岩出露情况较差,大部分地区被第四系地层及全、强风化岩层所覆盖。地层主要为第四系粉质黏土、碎石土,元古界板溪群变余粉砂岩。 隧道穿越区无断层,但隧道进洞口以南约240m发育有红石-太平区域性大断层,出口西北约20m沟谷间发育有局部断层。受断层构造影响,隧道区节理裂隙较发育。地下水为第四系空隙睡及风化裂隙水为主,水量受大气降水影响明显,围岩富水性不均一,含水性中等,隧道开挖时呈点滴或淋雨状出水。丰水期易涌水。 1.2 隧道设计及施工完成情况 1.2.1 隧道围岩支护设计

探地雷达操作规程

探地雷达操作规程 (文件编号:****-010) 共1页第1页版本/版次:D/ 0 生效日期:2016-01-01 1. 目的 为了使检测员更好地熟悉和掌握检测仪器的操作方法,保证检测数据的科学、公正和准确性,特制定本规程。 2. 适用范围 适用于探地雷达仪器 3 操作步骤 3.1测试前的安装准备 检查所有部件是否带齐,包括:电池、雷达主机、数据线、处理器电源线、信号线、工具箱、备件、固定用绑扎带、记录本; 3.2试验/检测的工作程序 (1)测试连接。将地质雷达天线通过支架安装。 (2)在扫描前调试主机并对主机进行参数设置。 (3)打开电源,控制天线移动的人员根据操作主机的人员口令,将天线紧贴待测界面上匀速移动。 (4)测试结束。按下stop结束测试点,保存文件并退出; (5)拆除信号线,拆除天线,支架。 3.3扫描之前的仪器调试和参数设置 (1)菜单系统—>设置—>调用,选择所用的天线。 (2)系统—>单位垂直刻度设为时间,单位为ns (3)测程:900M天线探测混凝土的量程约为15纳秒,为使所有有效信号完全显示,一般设置为20ns (4)采样点数:一般设为512或1024 采样点数越多,扫描曲线越光滑,垂直分辨率越好。但是采样点数增大,使得扫 描速率下降 (5)每秒扫描数:64 (6)增益点数:2 (7)垂向高通滤波器:225MHz

(8)垂向低通滤波器:2500MHz (9)数据位:16位 (10)发射率:100 KHz,发射功率越高,采集速度越快,但若采集过高,易损坏雷达系统 (11)信号位置设为手动 (12)表面设为0 (13)调出完整的直达波(首波),调整延时参数 若检测结构与上次相同,可不再次设置以上参数,系统默认上次检测参数。 (14)增益设置为自动,增益函数手动设置,可以改变增益点数多少、并且可以调整各增益点的函数大小,进而调整信号强度。增益函数调整过大,在探测资料中可能 人为造成假象。设置方法为先设为手动,再设为自动。 编制/日期:批准/日期:

基于卡尔曼滤波器的雷达目标跟踪(完整资料).doc

此文档下载后即可编辑 随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日

大连理工大学Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB 仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、β α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪理论中占据了主导地位。

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

隧道雷达检测正式结果报告

建设单位: 委托单位: 设计单位: 监理单位: 施工单位: 检测单位: 主要检测人: 审核人: 批准人: 检测单位地址: 电话(传真): 邮政编码: 目录 一、前言....................................... 错误!未定义书签。 二、工程地质概况................................. 错误!未定义书签。 三、检测项目及测线布置........................... 错误!未定义书签。 四、检测仪器设备、基本原理和标准................. 错误!未定义书签。 五、隧道设计资料................................. 错误!未定义书签。 六、检测结果..................................... 错误!未定义书签。

七、检测结论..................................... 错误!未定义书签。 八、检测的不确定因素............................. 错误!未定义书签。 一、前言 受××××委托,XXXXX有限公司于2012年××月××日对×××隧道进行衬砌质量检测。检测目的是探明混凝土衬砌厚度、衬砌背后密实、脱空程度及衬砌钢筋情况。 本次检测的位置为××××隧道,检测×条测线,起讫里程为××××××××。隧道的衬砌基本参数详见设计图纸。 二、工程地质概况 介绍该结构工程名称,工程部位,结构混凝土强度设计等级,施工日期。地质概况详见地质勘察报告。 三、检测项目及测线布置 1、检测项目 ⑴二次衬砌厚度; ⑵衬砌背后是否存在脱空或不密实; ⑶仰拱厚度; ⑷钢架及钢筋排布; 2、测线布置 根据检测部位的不同布置不同的测线 图1 隧道测线布置图 四、检测仪器设备、基本原理和标准 1、仪器设备 检测仪器设备采用××生产的××地质雷达。

雷达微弱目标检测的有效方法[1]

49642009,30(21)计算机工程与设计Computer Engineering and Design 0引言 复杂背景下低信噪比运动目标的检测和跟踪是雷达信号处理系统的关键技术之一。在微弱运动目标检测和跟踪的应用中,雷达接收的远距离目标回波强度非常弱,信噪比很低,目标易被噪声淹没,单个脉冲回波的信噪比甚至是负的,若仅对单帧图像处理,不能可靠地检测目标。在预警雷达应用中,由于运动目标距离雷达较远,又处在强杂波环境中,对微弱运动目标的检测与跟踪是雷达信号处理的一个重要课题。早期算法主要有Kalman滤波等方法,主要采用检测后跟踪(detect before track,DBT)方法,这类方法在信噪比较高时可以取得很好的效果,否则不能检测出目标。要想对微弱目标进行有效的检测及跟踪,除了抑制杂波和降低系统噪声等方法外,一种有效的方法是检测前跟踪(track before detect,TBD)方法,即对单次观测信号先不进行判断,而是结合雷达图像特点,对目标进行多次观测,计算出目标在各帧图像之间的移动规律,预测目标在下一帧图像的可能位置,同时在帧与帧之间将多次扫描得到的数据沿着预测轨迹进行几乎没有信息损失的相关处理,从而改善目标的信噪比,提高检测性能,在得到检测结果的同时获得目标航迹。 目前,用于微弱目标检测的TBD方法主要有极大似然法、粒子滤波法、动态规划(dynamic programming,DP)法、Hough变换法,等[1-2]。其中,Hough变换法对检测沿径向做匀速直线运动的目标具有较好的检测性能,目标在直线轨迹上的能量集中在Hough变换后的单点上,目标轨迹的能量远大于其它点的能量,但计算量和存储量都较大[3],难以实现。动态规划算法对目标信噪比要求较低,可以探测各种运动形式的目标[4-5]。 动态规划算法是美国Y.Barniv于1985年提出的,利用动态规划的分段优化思想,将目标轨迹搜索问题分解为分级优化的问题[6]。将其应用到雷达微弱目标检测中,可将雷达回波信号在多普勒频率和距离二维方向的幅度排列成图像,在多帧相继的图像序列中,运动目标轨迹可看作是一条连续变化的曲线,利用动态规划算法,检测是否存在着这样一条曲线,从而判断目标是否存在。 基于动态规划的检测前跟踪的关键在于沿目标运动航迹积累能量[7-8],可以看出,搜索目标航迹的计算量非常大,在实际应用中存在不足。在预警雷达中,来袭目标比远离雷达的目标更具有威胁性,更需早期发现和预防,所以单独针对来袭目标进行探测,可以大大减少动态规划法搜索的运算量,提高预警雷达的探测能力。本文针对动态规划算法计算量大的缺 收稿日期:2009-02-26;修订日期:2009-06-10。

【CN110133630A】一种雷达目标检测方法及应用其的雷达【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910344449.2 (22)申请日 2019.04.26 (71)申请人 惠州市德赛西威智能交通技术研究 院有限公司 地址 516006 广东省惠州市仲恺高新区和 畅五路西8号投资控股大厦 (72)发明人 孙靖虎 曾迪 黄力 温和鑫  盘敏容 蒋留兵  (74)专利代理机构 惠州创联专利代理事务所 (普通合伙) 44382 代理人 韩淑英 (51)Int.Cl. G01S 13/02(2006.01) G01S 13/08(2006.01) G01S 13/58(2006.01) G01S 7/41(2006.01) (54)发明名称 一种雷达目标检测方法及应用其的雷达 (57)摘要 本发明涉及一种雷达目标检测方法。本发明 提供了一种运行速度快、探测精度高的雷达目标 检测方法,本发明中,雷达的一帧检测中第二发 射波的发射次数可与第一发射波不同,可通过设 置较少的第二发射波的发射次数来缩短雷达的 检测帧周期;本发明中第二发射波只需要进行一 次一维FFT而无需进行二维FFT,降低了计算复杂 度, 提高了数据处理速度。权利要求书2页 说明书7页 附图4页CN 110133630 A 2019.08.16 C N 110133630 A

1.一种雷达目标检测方法,其特征在于,包括以下步骤: 步骤一、发射K1次周期为T1、的第一发射波,所述第一发射波被目标反射后被天线接收得到第一回波; 步骤二、对每个周期的第一回波进行N点采样一维FFT变换得到第一回波一维FFT结果; 步骤三、对所述第一回波一维FFT结果进行二维FFT变换得到坐标对应第一距离单元号、第一模糊速度号的距离多普勒谱,其中第一距离单元号为对单个周期的第一回波进行一维FFT采样的序号,第一模糊速度号为所述第一发射波的发射周期的序号;根据第一回波的目标检测距离、目标检测模糊速度与所述距离多普勒谱的峰值的对应关系求第一回波的目标检测距离及目标检测模糊速度; 步骤四、发射K2次与所述第一发射波频率互质的周期为T2的第二发射波,所述第二发射波被目标发射后被所述天线接收得到第二回波,对每个周期的第二回波进行N点采样一维FFT变换得到对应不同第二距离单元号、第二模糊速度号的第二回波一维FFT结果,其中第二距离单元号为对单个周期的第二回波进行一维FFT采样的序号,第二模糊速度号为所述第二发射波的发射周期的序号; 步骤五、根据步骤三得到的第一回波的目标检测模糊速度与目标真实速度可能值之间的关系求目标真实速度可能值的速度旋转因子,并将该速度旋转因子与步骤四得到的第二回波一维FFT结果形成关联,然后对该关联结果进行解模糊,再根据解模糊的结果对步骤2求得的第一回波的目标检测距离、目标检测模糊速度进行修正从而求得目标真实速度及目标真实距离;以及 步骤六、输出步骤四获得的目标真实速度及目标真实距离。 2.根据权利要求1所述的一种雷达目标检测方法,其特征在于,步骤三中求第一回波的目标检测距离及目标检测模糊速度方法为: 在所述距离多普勒中寻找峰值,该峰值对应的距离单元号、模糊速度号即为目标所处 的第一距离单元号 第一模糊速度号 再根据目标所处的第一距离单元号电磁波的传播速度C、第一发射波的射频带宽B1计算第一回波的目标检测距离以及 根据目标所处的第一模糊速度号所述天线中心频率对应的波长λ、步骤1中所述第一发射波的发射次数K1及周期T1计算第一回波的目标检测模糊速度 3.根据权利要求2所述的一种雷达目标检测方法,其特征在于,所述步骤五具体包括: 定义目标真实速度可能值的速度旋转因子V DFT : 式中V r为目标真实速度可能值;z为所述第二模糊速度号; 将第一回波的目标检测模糊速 度与目标真实速度可能值V r之间的关 系代入步骤4.1中目标真实速度可能值的速度旋转因子V DFT的定义公式中, 式中m为取值范围为[-d,d]的模糊数单元号,其中d为正整数,从而求得目标真实速度可能值的速度旋转因子; 权 利 要 求 书1/2页 2 CN 110133630 A

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。 0 引言 目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系

统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。 1用扩展卡尔曼滤波算法预测机动目标轨迹 首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况: 其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。 然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为: 式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。 由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

探地雷达应用于隧道检测技术的波形识别

探地雷达应用于隧道检测技术的波形识别 发表时间:2019-05-31T14:19:42.327Z 来源:《防护工程》2019年第5期作者:张儆 [导读] 合理开发与利用林业资源,提高木材的利用率,建立完善的生态保护系统,维持生态平衡,保证林区资源的可持续发展。 摘要:隧道工程的建设受到地质条件、地理位置等因素的影响,尤其隧道建设的地质情况比较复杂的情况下更容易影响质量,因此,隧道检测技术的应用非常重要。在隧道检测中运用探地雷达技术对衬砌不会造成任何损害而且可以准确探知衬砌缺陷的实际状况,具有实时高效的优点,它特别广泛地用于隧道检测,确定隧道缺陷的基本依据是识别相应的波形。 关键词:探地雷达;衬砌缺陷;波形识别 1 探地雷达检测原理 探地雷达是一种物理探测仪器,主要用于工程建设的质量检测。它通过天线向待检测介质发射脉冲形式的高频电磁波,当高频电磁波在介质中传播时,遇到差异的物理接口自然会产生反射【1】。就可以得到探测介质在一定范围内的剖面图像。这种方法在我国隧道工程中早已广泛的应用于检测衬砌结构质量,不过因隧道本身环境就比较复杂,而且施工人员在解读检测资料方面的能力也存在或多或少的差异,因而对检测结果的判释也各不相同。故而更对隧道运用探地雷达技术检测衬砌结构质量进行进一步研究的意义就变得非常重要。 传播速度 v 可表示如下: (1) 式中的符合ε1跟ε2 分别表示 2 种传播介质各自的介电常数。 也就是说,反射信号的雷达波强弱与介质本身的介电常数有关,相邻两种传播介质各自的介电常数之间存在的差异越大,接收到的反射雷达波信号也就越强,如果差异很小,反射信号也相对很弱。 2 隧道检测要点 隧道往往包括洞门、仰拱、衬砌结构以及附属设施等几个部分,衬砌结构是隧道结构中的主要承重体,其质量状况对隧道工程施工能否安全和隧道项目能否顺利运营有直接影响,因此衬砌结构的质量状况必须经过严格检测,并由检测部门出具正式的检测合格报告一份。 在现场测试隧道衬砌质量时,应根据检测的实际情况选择传输频率,得到的图像的分辨率会更高,但相应的穿透介质的深度会变小,传输频率越小,所得图像的分辨率将较低,但穿透介质的深度将变得非常大。故而,在施工现场对衬砌质量进行检测时,不管是选择什么样的发射频率,都要保证数据的精度足够,图像分辨率足以准确识别衬里结构中存在的疾病缺陷。故而,在施工现场对衬砌质量进行检测时,不管是选择什么样的发射频率,都要保证数据的精度足够,图像分辨率足够,才能将衬砌结构中存在的病害缺陷准确的识别出来。 隧道衬砌结构质量的常规检测要求在隧道内布置纵向测线5 条见图 2,也就是拱顶设置测线一条,左、右拱腰上各设置测线一条,左、右边墙上各设置测线一条。测线数量也可以按照现场的具体要求适当进行加、减,尤其是对于存在显著异常的段落进行检测时,应当在横向上也适当的布设测线,确保将存在于隧道内的所有异常的规模大小和位置所在一一查清。

探地雷达毕业报告

地球物理与空间信息学院应用地球物理系 毕业实习报告 题目:探地雷达实习报告 姓名:胡浩 班级:061071-22 学号:20071002609 指导教师:邓世坤 二○一一年四月二十二日

前言 探地雷达是利用超高频脉冲电磁波探测地下介质分布的一种地球物理勘探方法。实践证明,它可以分辨地下1m尺度的介质分布,因此探地雷达方法以其特有的高分辨率在浅层于超浅层地质调查中有着极其广阔的应用前景。 探地雷达利用一个天线发射高频宽带电磁波,另一个天线接收来自地下介质界面的反射波。电磁波在介质中传播的时,其路径、电磁场强度于波形将随所通过介质的电性质及几何形态而变化。因此,根据接收到的波的旅行时间、幅度、与波形资料,可推断介质的结构。 第一章探地雷达的探测原理 探地雷达探测是一种快速、连续、非接触电磁波探测技术,具有采集速度快、分辨率高的特点。探地雷达向地下发送脉冲形式的高频宽带电磁波,电磁波在地下介质传播的过程中,当遇到存在电性目标体时,如空洞、分界面时,电磁波便会发生反射,返回到地面时由接收天线所接收;对接收到的电磁波进行信号处理与分析,根据信号波形、强度、双程走时等参数来推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标体的探测。 如图A所示,由发射天线向地下介质中发射一定中心频率的电磁脉冲波,电磁波在地下介质中传播时,遇到介质中的电磁性(电阻率、介电率及磁导率)差异分界面发生反射和透射等现象;被反射的电磁波传回地表,由接收天线接收;通过电脑进行操作和控制;接收天线所接收的地下反射回波信号经由光纤传输到仪器控制台,转换成时间序列信号;这种时间序列即构成每一测点上的雷达波形记录道,它包含该测点处所接收到的雷达波的幅度、相位及旅行时间等信息。由电脑收集并存储每一测点上雷达波形序列,形成一个由若干记录道构成的雷达剖面(见图B)。通过对地质雷达剖面进行处理与推断解释,便可获得探测剖面线下方有关的地质特征与信息(或地下目标体的内部结构特征信息)。

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

宜张高速隧道雷达检测报告

宜张高速公路隧道地质雷达 检测报告 宜张高速公路总监办中心试验室 二○一四年十一月

根据宜张高速公路总监办及合同要求,中心试验室于2014年11月5日~7日对土建2标的丁家坪隧道、灯盏窝隧道、长岭岗隧道砼衬砌质量采用地质雷达仪进行了质量抽检。 一、检测内容 根据隧道结构受力的特点,本次隧道砼衬砌质量检测采用对两侧拱腰及拱顶三条线检测,检测内容为:砼衬砌(二衬)质量、厚度及初衬后缺陷情况。 二、检测仪器设备 本次工作使用仪器设备如下: 雷达:瑞典产RAMAC/GPR地质雷达,选用500MHz屏蔽天线。 采集软件:RAMAC GroundVision V1.4.4版 1、仪器介绍 RAMAC/GPR地质雷达是一种宽带高频电磁波信号探测方法,它是利用电磁波信号在物体内部传播时电磁波的运动特点进行探测的。雷达组成及探测方法如下: 地质雷达系统主要由以下几部分组成(如下图所示):

雷达系统组成示意图 ①、控制单元:控制单元是整个雷达系统的管理器,计算机(32位处理器)对如何测量给出详细的指令。系统由控制单元控制着发射机和接收机,同时跟踪当前的位置和时间。 ②、发射机:发射机根据控制单元的指令,产生相应频率的电信号并由发射天线将一定频率的电信号转换为电磁波信号向地下发射,其中电磁信号主要能量集中于被研究的介质方向传播。 ③、接收机:接收机把接收天线接收到的电磁波信号转换成电信号并以数字信息方式进行存贮。 ④、电源、光缆、通讯电缆、触发盒、测量轮等辅助元件。 2、雷达检测基本原理 探地雷达(Ground Penetrating Radar,简称GPR)依据电磁波脉冲在地下传播的原理进行工作。发射天线将高频(106~109Hz或更高)

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法 (合肥工业大学计算机与信息学院,安徽合肥20009) 摘要:近些年了来随着科技的进步、人们生活水平的提高,为满足生产和生活的需求各种交通工具应用而生。车型和车速的不断提高给道路交通管制带来了许多的不便和麻烦,因此基于交通测速雷达的多目标分辨领域的研究至关重要,能更好的对道路交通进行管理,在跟踪目标,对超速车辆的查找以及统计各类型车辆数量、缓解交通压力等方面有很大的用途。 本文在多普勒雷达的基础上研究发展而来的基于测速雷达的多目标分辨算法。首先介绍了雷达测速的研究背景及意义,多普勒雷达的测速原理,目前的发展状况以及传统雷达的不足之处。接着介绍了多目标分辨的理论依据,也就是本论文主要讲解的超速雷达的多目标分辨。 关键词:多普勒雷达、多目标分辨、频谱分析、幅度比较 一、研究背景 21世纪以来,人类生产力大解放。科技的蓬勃发展,工业革命的不断推进,无论是生产还是生活人类发生了翻天覆地的变化。其中最明显的便是交通运输工具的变化。随着道路基础设施建设水平的提高,人们生活质量的提高促使家庭小汽车的不断增加,同时为满足生产力发展的需求,各种交通工具应用而生。公路交通运输业是推动国民经济发展,促进经济社会繁荣的主动力。为实现对道路交通的有效管制以及行车速度测量及对超速车辆的实时监测控制对道路上的多目标进行分辨至关重要。 从雷达早期出现用于对空中金属物体的探测,到二战以来出现的雷达对空对地的火力控制等,雷达主要应用于军事领域。随着科技的进步,雷达技术的不断发展,雷达不再是一种单纯的军事雷达,其应用领域不断增加,功能不断增强出现了各种各样的雷达,比如气象雷达,道路交通测速雷达等。雷达测速是利用多普勒效应,通过多普勒频移计算目标的速度。雷达测速因其准确性高,速度快,稳定性好,探测距离远,可移动测速,能更好的抑制地无干扰等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给监测控制带来了困难。国内现有超速测量抓拍系统在多车并行时,由于仅能检测出有车辆超速,无法分辨超速车辆,为避免误判只能放弃抓拍,无形中增加了交通事故隐患,严重影响了现代交通的严格法制化管理进程。因此多目标分辨雷达的研究和制造有着非常重要的作用。同时不仅可应用于超速雷达的探测,在对车型检测,缓解交通压力等方面都发挥很大的作用。 二、交通测速雷达发展状况 目前,美国联邦电讯委员会规定警用测速频道为Xband,Kband,Kaband三种,它们对应的微波频率分别为10.525GHZ,24.150GHZ,33.40-36.00GZH。Xband雷达形状为圆型,无法在车阵中锁定超速车辆只能在车阵中检测第一辆车的速度。K band测速雷达为手持式的雷达,国内警方绝大多数使用这种雷达。Ka band雷达与K band雷达相似,由于其微波频率更高,测速范围更加集中,所以不容易被干扰,目前国内基本局限于一般性测量且测量结果较粗糙,在先进技术方面还有很大差距,因此对多目标分辨的研究至关重要,对提高国内雷达水平,方便道路超速车辆管理有重要的作用。 三、多普勒雷达的作用原理 多普勒雷达,又名脉冲多普勒雷达,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。1842年,奥地利物理学家J·C·多普勒发现,当波源和观测者有相对运动时,观测者接受到的波的频率和波源发来的频率不同,这种现象被称为多普勒效应。波是由频率和振幅所构成,而无线电波是随着物体而移动的,当无线电波在行进的过程中,碰到物体

相关文档
最新文档