数学建模拟合与差分习题答案

数学建模拟合与差分习题答案
数学建模拟合与差分习题答案

第一题

解:由题意可设

2

123()s t a t a t a =++

中的A=(1a ,2a ,3a )使得:

2

6

1

[()]i

i

i s t s =-∑最小

用多项式拟合的命令 输入以下命令:

输出结果:A =

2() 2.2488t 11.0814t 0.5834f x =+-

第二题

输入以下命令:

>> x=[19 25 31 38 44]; >> y=[ ];

>> A=polyfit(x,y,2)

>> z=polyval(A,x); >> plot(x,y,'k+',x,z,'r')

输出结果:A =

6882.00193.00497.0)(2++=x x x f

因为2

b )(x a x f +=,所以2

0497.06882.0)(x x f +=

草图

>> x=1200:400:4000; >> y=1200:400:3600;

>> height=[1130 1250 1280 1230 1040 900 500 700;

1320 1450 1420 1400 1300 700 900 850; 1390 1500 1500 1400 900 1100 1060 950; 1500 1200 1100 1350 1450 1200 1150 1010; 1500 1200 1100 1550 1600 1550 1380 1070; 1500 1550 1600 1550 1600 1600 1600 1550; 1480 1500 1550 1510 1430 1300 1200 980]; >> mesh(x,y,height) >>

双三次差值

输入命令

>> x=1200:400:4000;

>> y=1200:400:3600;

>> height=[1130 1250 1280 1230 1040 900 500 700;

1320 1450 1420 1400 1300 700 900 850;

1390 1500 1500 1400 900 1100 1060 950;

1500 1200 1100 1350 1450 1200 1150 1010;

1500 1200 1100 1550 1600 1550 1380 1070;

1500 1550 1600 1550 1600 1600 1600 1550;

1480 1500 1550 1510 1430 1300 1200 980]; >> xi=1200:100:4000;

>> yi=1200:100:3600;

>> zi=interp2(x,y,height,xi',yi,'cubic');

>> mesh(xi,yi,zi)

最邻近差值

继续输入命令

>> xi=1200:100:4000;

>> yi=1200:100:3600;

>> zi=interp2(x,y,height,xi',yi,'nearest'); >> mesh(xi,yi,zi)

双线性插值

继续输入命令

>>xi=1200:100:4000;

>>yi=1200:100:3600;

>>zi=interp2(x,y,height,xi',yi,'lineart');

>>mesh(xi,yi,zi)

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模1例题解析

1.贷款问题 小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。目前,银行的利率是%/月。他们采用等额还款的方式(即每月的还款额相同)偿还贷款。 (1)在上述条件下,小王夫妇每月的还款额是多少共计付了多少利息 (2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清 (3)如果在第6年初,银行的贷款利率由%/月调到%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少 (4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。但条件是: (i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2; (ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。 试分析,小王夫妇是否要请这家借贷公司帮助还款。 解答: (1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即。 利用式子 (元),即每个月还款元,共还款(元),共计付利息元。 (2)贷款5年(即5*12=60个月)后的欠款额为, 利用公式:, 所以,

(元) (3)元,即第六年初,贷款利率,所以余下的15年,每个月还款额为:(元) (4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的,付款的时间缩短,但是前17年的付款总额不变。帮忙提前三年还清需要资金数: 。 对于条件(ii)佣金数: 分析:因为预付佣金20000元,按照银行存款利率/月,17年的存款本息为 即在第17年需要给付借贷公司的钱少于给付银行的钱。所以建议请这家借贷公司帮助还款。 2.冷却定律与破案 按照Newton冷却定律,温度为T的物体在温度为的环境中冷却的速度与温差成正比。用此定律建立相应的微分方程模型。 凌晨某地发生一起凶杀案,警方于晨6时到达案发现场,测得尸温26℃,室温10℃,晨8时又测得尸温18℃。若近似认为室温不变,估计凶杀案的发生时间。 解答: 根据Newton冷却定律,可知温度T的微分方程为:

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明,结果很 可能是否定的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设 条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图 所示,方桌的四条腿分别在A、B、C、D 处,A、、D的初始位置在与x轴平行,再 假设有一条在x轴上的线,则也与A、B,C、D平行。当方桌绕中心0旋转时,对角线与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令() fθ为A、B离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3) ,三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =(0)0g >(若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,与互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 10; 10=235/1000;

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

数学建模10种常用算法

数学建模10种常用算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行

编程的话,那一些数值分析中常用的算法比如方程组 求解、矩阵运算、函数积分等算法就需要额外编写库 函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关, 即使与图形无关,论文中也应该要不乏图片的,这些 图形如何展示以及如何处理就是需要解决的问题,通 常使用Matlab进行处 参数估计 C.F. 20世纪60年代,随着电子计算机的 。参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。在一定条件下,后面三个方法都与极大似然法相同。最基本的方法是最小二乘法和极大似然法. 基本介绍 参数估计(parameter 尽可能接近的参数 误差 平方和  θ,使已知数据Y 最大,这里P(Y│θ)是数据Y P(Y│θ)。在实践中这是困难的,一般可假设P(Y│θ

数学建模插值及拟合详解

插值和拟合 实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。 实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。 实验内容: 一、插值 1.插值的基本思想 ·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生; ·构造一个相对简单的函数y=P(x); ·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ; ·用P (x)作为函数f ( x )的近似。 2.用MA TLAB作一维插值计算 yi=interp1(x,y,xi,'method') 注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 练习1:机床加工问题 每一刀只能沿x方向和y方向走非常小的一步。 表3-1给出了下轮廓线上的部分数据 但工艺要求铣床沿x方向每次只能移动0.1单位. 这时需求出当x坐标每改变0.1单位时的y坐标。 试完成加工所需的数据,画出曲线. 步骤1:用x0,y0两向量表示插值节点; 步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline'); 步骤3:plot(x0,y0,'k+',x,y,'r') grid on 答:x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15; y=interp1(x0,y0,x,'spline'); plot(x0,y0,'k+',x,y,'r') grid on

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分 段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数学建模试题

2012-2013第一学期 《数学建模》试题卷 班级:2010级统计 姓名:石光顺 学号:20101004025 成绩:

一、用Matlab 求解以下优化问题(10分) 用Matlab 求解下列线性规划问题: 解:首先化Matlab 标准型,即 123min 3w x x x =-++ 123121114123x x x ?? -??????≤??????---???? ???? , [][]1 2 32011T x x x -?= 然后编写Matlab 程序如下: f=[-3,1,1]; a=[1,-2,1;4,-1,-2]; b=[11,-3]; aeq=[-2,0,3]; beq=1; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1)); x,y=-y 运行结果: x = 0.0000 2.3333 0.3333 y = -2.6667 即当1230, 2.3333,0.3333x x x ===时,max 2.6667z =-。

二、求解以下问题,列出模型并使用Matlab求解(20分) 某厂生产三种产品I,II,III。每种产品要经过A, B两道工序加工。设该厂有两种规格的设备能完成A工序,它们以A1, A2表示;有三种规格的设备能完成B工序,它们以B1, B2, B3表示。产品I可在A, B任何一种规格设备上加工。产品II可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工;产品III 只能在A2与B2设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如表1,求安排最优的生产计划,使该厂利润最大。 表1 解:(1)根据题意列出所有可能生产产品I、II、III的工序组合形式,并作如下假设: x ; 按(A1,B1)组合生产产品I,设其产量为 1 x; 按(A1,B2)组合生产产品I,设其产量为 2 x; 按(A1,B3)组合生产产品I,设其产量为 3 x; 按(A2,B1)组合生产产品I,设其产量为 4 x; 按(A2,B2)组合生产产品I,设其产量为 5

2013年数学建模数据拟合方法

数据拟合 问题的提出及最小二乘原理 取 x 的n 个不全相同的值n x x x ,,,21 作独立试验,得到样本 ()11,y x ,()22,y x ,…,()n n y x ,,则 i i i bx a y ε++=, 设()2 ,0~σεN i ,各 i ε 相互独立 于是 () 2 ,~σi i bx a N y +, n i ,,2,1 =。且由 n y y y ,,,21 的独立性,知n y y y ,,,21 的联合概率密度为 ()?? ? ?? ?---??? ??=∑=n i i i n bx a y L 12 2 21exp 21σπσ (1) 现用最大似然估计法来估计未知参数 b a ,。对于任意一组观察值 n y y y ,,,21 ,(1)式就是样本的似然函数。显然,要L 取最大值, 只需函数 ()() ∑=--=n i i i bx a y b a Q 12 , 取最小值。 如果 y 不是正态变量,则直接用(1)式估计b a ,使 y 的观察值 i y 与 i bx a + 偏差的平方和 ()b a Q , 为最小。这种方法叫最小二乘法。 如果y 是正态变量,则最小二乘法与最大似然估计法给出相同的结果。 取 ()b a Q ,分别关于b a ,的偏导数,并令它们等于0,得到b a ,

应满足方程 ()()???????=---=??=---=??∑∑==020211n i i i i n i i i x x b a y b Q x b a y a Q (2) (2)式称为正规方程组。解此方程组即可确定 b a ,,从而得到直线方程 bx a y +=*。 对一组测定数据用最小二乘原理找出其合适的数学公式,可以分以下几步: 1. 由观测数据作出散点图 2. 根据散点图确定近似公式的函数类 3. 用最小二乘原理确定函数中的未知参数 这一方法称为数据拟合法。 常用的曲线(函数类)有直线、多项式、双曲线、指数曲线等,实际操作中可以在直观判断的基础上,选几种曲线分别做拟合,然后比较看哪条曲线的最小二乘指标最小。 一. 多变量的数据拟合 若影响变量 y 的因素不只是一个,而是几个,譬如有 k 个因素 k x x x ,,,21 ,这时通过n 次实验可以得到数据表: 实验 1x 2x … k x y 1 11x 21x … 1k x 1y 2 12x 22x … 2k x 2y … … … … … … n n x 1 n x 2 … kn x n y

数学建模习题及问题详解

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模考试题(开卷)及答案

2010年上学期2008级数学与应用数学,信息与计算科学专业 《数学建模》课程考试供选试题 第1题 4万亿投资与劳动力就业: 2008以来,世界性的金融危机席卷全球,给我国的经济发展带来很大的困难。沿海地区许多中小企业纷纷裁员,造成大量的人员失业。据有关资料估计,从2008年底,相继有2000万人被裁员,其中有1000万人是民工。部分民工返乡虽然能够从一定程度上缓解就业压力,但2009年的600多万毕业大学生给我国就业市场带来巨大压力。但可喜的是,我国有庞大的外汇储备,民间资本实力雄厚,居民储蓄充足。中国还是发展中国家,许多方面的建设还处于落后水平,建设投资的潜力巨大。为保持我国经济快速发展,特别是解决就业问题带来希望,实行政府投资理所当然。在2009年两代会上,我国正式通过了4万亿的投资计划,目的就是保GDP增长,保就业,促和谐。但是有几个问题一直困扰着我们,请你运用数学建模知识加以解决。问题如下: 1、GDP增长8%,到底能够安排多少人就业?如果要实现充分就业,2009年的GDP到底要增长多少? 2、要实现GDP增长8%,4万亿的投资够不够?如果不够,还需要投资多少? 3、不同的产业(或行业)吸纳的劳动力就业能力不同,因此投资的流向会有所不同。请你决策,要实现劳动力就业最大化,4万亿的投资应该如何分配到不同的产业(或行业)里? 4、请你给出相关的政策与建议。 第2题 深洞的估算:假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG的石头,并准确的测定出听到回声的时间T=5S,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。 1、不计空气阻力; 2、受空气阻力,并假定空气阻力与石块下落速度成正比,比例系数k1=0.05; 3、受空气阻力,并假定空气阻力与石块下落速度的平方成正比,比例系数k2=0.0025; 4、在上述三种情况下,如果再考虑回声传回来所需要的时间。 第3题 优秀论文评选:在某数学建模比赛的评审过程中,组委会需要在一道题目的150 篇参赛论文中选择4 篇论文作为特等奖论文。评审小组由10 名评委组成,包括一名小组组长(出题人),4 名专业评委(专门从事与题目相关问题研究的评委),5 名普通评委(从事数学建模的教学和组织工作,参与过数学建模论文的评审)。组委会原先制定的评审步骤如下: step1:首先由普通评委阅读所有150 篇论文,筛选出20 篇作为候选论文。 Step2:然后由小组内的所有评委阅读这些候选论文,每人选择4 篇作为推荐的论文。 Step3:接着进入讨论阶段,在讨论阶段中每个评委对自己选择的 4 篇论文给出理由,大家进行讨论,每个评委对论文的认识都会受到其他评委观点的影响。 Step4:在充分讨论后,大家对这些推荐的论文进行投票,每个评委可以投出4票,获得至少6 票的论文可以直接入选,如果入选的论文不足,对剩余的论文(从20篇候选论文中除去已经入选的论文)重复step2至step4 步的评审工作。如果三轮讨论后入选的论文仍然不够,则由评选小组组长确定剩下名额的归属。 如果有超过4 篇的论文获得了至少6票,则由评选小组组长确定最终的名额归属。问题:

数学建模曲线拟合

曲线拟合 摘要 根究已有数据研究y关于x的关系,对于不同的要求得到不同的结果。 问题一中目标为使的各个观察值同按直线关系所预期的值的偏差平方和为最小,利用MATLAB中t lsqcurvefi函数在最小二乘法原理下拟合出所求直线。 问题二目标为使绝对偏差总和为最小,使用MATLAB中的fminsearch函数,在题目约束条件内求的最优答案,以此方法同样求得问题三中最大偏差为最小时的直线。 问题四拟合的曲线为二阶多项式,方法同前三问类似。 问题五为求得最佳的曲线,将之前的一次曲线换成多次曲线进行拟合得到新的结果。经试验发现高阶多项式的阶数越高拟和效果最好。 ) 关键词:函数拟合最小二乘法线性规划 | < ¥

一、问题的重述 已知一个量y 依赖于另一个量x ,现收集有数据如下: (1)求拟合以上数据的直线a bx y +=。目标为使y 的各个观察值同按直线关系所预期的值的偏差平方和为最小。 (2)求拟合以上数据的直线a bx y +=,目标为使y 的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。 (3)求拟合以上数据的直线,目标为使y 的各个观察值同按直线关系所预期的值的最大偏差为最小。 (4)求拟合以上数据的曲线a bx cx y ++=2,实现(1)(2)(3)三种目标。 } (5)试一试其它的曲线,可否找出最好的? 二、问题的分析 对于问题一,利用MATLAB 中的最小二乘法对数据进行拟合得到直线,目标为使各个观察值同按直线关系所预期的值的偏差平方和为最小。 对于问题二、三、四均利用MATLAB 中的fminsearch 函数,在题目要求的约束条件下找到最佳答案。 对于问题五,改变多项式最高次次数,拟合后计算残差,和二次多项式比较,再增加次数后拟合,和原多项式比较残差,进而找到最好的曲线。 ~

数学建模例题及解析

。 例1差分方程——资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a.明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为。所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2) 这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A。即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0 A。例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对夫妇每月可有节余900元,是否可以去买房呢?

数学建模课件--最小二乘法拟合.(优选)

26 / 11word. 4.最小二乘法线性拟合 我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。 最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。显然,关键是如何求出最佳的a 和b 。 (1) 求回归直线 设直线方程的表达式为: bx a y += (2-6-1) 要根据测量数据求出最佳的a 和b 。对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下: 111bx a y d --= 222bx a y d --= n n n bx a y d --= 显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。现在采取一种等效方法:当d 12+d 22+……+d n 2 对a 和b 为最小时,d 1、d 2、……、d n 也为最小。取(d 12+d 22+……+d n 2 )为最小值,求a 和b 的方法叫最小二乘法。 令 ∑== n i i d D 1 2=21 1 2][i i n i n i i b a y d D --== ∑∑== (2-6-2) D 对a 和b 分别求一阶偏导数为: ][21 1∑∑==---=??n i i n i i x b na y a D

数学建模习题集

数学建模 习 题

习题一 1.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。试构造模型并求解。 2.模仿1.4节商过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,并使渡河次数尽量地少。 3.利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型:(1)分段的指数增长模型。将时间分为若干段,分别确定增长率r 。 (2)阻滞增长模型。换一种方法确定固有增长率r 和最大容量m x 。 4.说明1.5节中Logistic 模型(9)可以表为) (01)(t t r m e x t x --+= ,其中0t 是人口增长出现拐点的时刻,并说明0t 与r, m x 的关系. 5.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+?t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。 6.某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。次日早8:00沿同一条路径下山,下午5:00回旅店。某乙说,甲必在二天中的同一时刻经过路径中的同一地点。为什么? 7.37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜

者及轮空者进入下一轮,直至比赛结束。问共需进行多少场比赛,共需进行多少轮比赛。如果是n支球队比赛呢? 8.甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。问开往甲乙两站的电车经过丙站的时刻表是如何安排的。 9.某人家住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家,一旦他提前下班搭早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常提前了10分钟。问他步行了多长时间? 10.一男孩和一女孩分别在离家2公里和1公里且方向相反的两所学校上学,每天同时放学后分别以4公里和2公里每小时的速度步行回家。一小狗以6公里/小时速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中。问小狗奔波了多少路程?

数学建模:最小二乘拟合实验

《数学建模期末实验作业》 院系:数学学院 专业:信息与计算科学 年级:2014级 试题编号:37 胡克定律得综合评价分析 背景摘要: 利用一个打蛋器与一个物理学公式,毁掉一面六英寸厚得承重墙,这么天方夜谭得事您能相信吗?但它却真得发生了! 《越狱》这一电视剧相信很多人都耳熟,即使没瞧过里面得内容,但应该都曾经听过它得大名.在《越狱》第一季第六集中,Michael要通过地下管道爬到医务室得下面,但就是一条重要通道就是被封死得,因此必须要把这个封死得墙破坏掉,由于就是混凝土结构,因此破坏起来很难,Michael从纹身上拓下魔鬼得画像,投影在掩住管道入口得墙上,用“胡克定律”计算出最佳位置,再用小巧得打蛋器在承重墙上钻出了几个小洞,最后借助这几个小洞毁掉了这堵承重墙。 相信大多数人都觉得很梦幻很不科学,但事实就就是这样得令人惊讶。搜狐娱乐曾经报道过,有《越狱》粉丝不相信这一情节,在现实生活中进行实验,结果真得重现了“胡克定律”凿墙这一情节。 胡克定律得表达式为F=k·x或△F=k·Δx,其中k就是常数,就是物体得劲度(倔强)系数。在国际单位制中,F得单位就是牛,x得单位就是米,它

就是形变量(弹性形变),k得单位就是牛/米.倔强系数在数值上等于弹簧伸长(或缩短)单位长度时得弹力。 弹性定律就是胡克最重要得发现之一,也就是力学最重要基本定律之一.在现代,仍然就是物理学得重要基本理论。胡克得弹性定律指出:弹簧在发生弹性形变时,弹簧得弹力Ff与弹簧得伸长量(或压缩量)x成正比,即F=-k·x.k就是物质得弹性系数,它由材料得性质所决定,负号表示弹簧所产生得弹力与其伸长(或压缩)得方向相反。 但当我们进行多次实验,便会发现随着F得逐步增大,便不再服从胡克定律.为此我们应当运用插值与拟合得内容,探索更加准确得公式。 一、建模问题 1、问题提出 1、1问题背景 弹簧在压力F 得作用下伸长x,一定范围内服从胡克定理:F与x成正比,即F=kx。现在得到下面一组F,x数据,并在(x,F)坐标下作图,可以瞧到当F大到一定数据值后,就不服从这个定律了。 表1—1 试根据上述所给出得数据及已知得胡克公式,解决一下问题: (1)试由数据确定k (2)给出不服从胡克定理时得近似公式 1、3 问题分析 这就是一道关于弹簧劲度系数得问题,对于此类建模有实际得价值,而且也可以让我们拓宽物理学习得视野,很有价值。 二、模型假设 通过阅读题目与查阅资料,我们可以发现,F得值就是随着X得改变而改变得,当X小于某一值时,F遵循胡克定律,而当X大于某一值时,F便不再遵循胡克定律,故我们可以提出以下假设。 假设1:当X<9时,F遵循胡克定律。 假设2:当X>9时,F不遵循胡克定律。

相关文档
最新文档