伺服阀原理

伺服阀原理
伺服阀原理

300MW汽轮机电液控制系统技术改造

2007-11-13 00:19:16 作者:heixue671023 来源:热电联盟浏览次数:155 文字大小:【大】【中】【小】

一、项目提出的背景

1.1 300MW汽轮机电液控制系统

洛阳首阳山电厂二期2x300MW汽轮机为日立公司TCDF-33.5亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于1995年12月和1996年3月投产。汽轮机调节系统为数字电液调节(D—EHG),采用低压汽轮机油电液调节。执行机构的设置为1个高压油动机带动4个高压调速汽门,2个中压油动机带动2个中压调速汽门。每个油动机由一个电液伺服阀控制,1台汽轮机的3个油动机(CV、左右侧ICV)的电液伺服阀均为日本制造的Abex415型电液伺服阀。控制油和润滑油均采用同一油源即主油箱内的N32号防锈汽轮机油,在控制油路上安装一精密滤网(精度为51μm)。

1.2 存在问题

首阳LU电厂3、4号机组从1995年试运开始,机组启动冲转过程中经常出现油动机突然不动的现象,经检查控制系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调节系统恢复正常。机组在带负荷稳定运行和中压调节门活动试验日寸,也出现油动机不动的情况及油动机全开或全关的现象,

检查均为伺服阀故障。

伺服阀出现故障必须进行更换,而这种调节系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂3、4号机组由于伺服阀原因造成的停机:2000年分别为8次、5次,2001年分别为1次、2次;截止到2002年6月仅3号机组由于伺服阀原因造成的停机就达4次。对拆下来的故障伺服阀进行检查,发现其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级控制压力过低,不能控制伺眼阀的第2级滑阀运动,致使油动机拒动(对控制信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要原因,油质污染造成伺阀卡涩的故障占伺服阀故障的85%[1]。

1.3 油质状况及防止伺服阀卡涩的措施

由于3、4号机组试运时就经常发生伺服阀卡涩,移交生产后首阳山电厂对油质就非常重视,1996年成立了滤油班加强滤油管理,提高油质清洁度。伺服阀卡涩频率比试运时降低了许多,但次数还比较多。

日立《汽轮机维护手册》标明,伺服阀可在等于或低于NASl638第7级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的控制油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。根据旧的《电厂用运行中汽轮机油质量标准》[2]中对油中机械杂质的要求是外观目视无杂质,1996年至今,每周化验3、4号机润滑油,油样透明、无杂质(有一段时间含少量水分,极少检查有杂质)。新的《电厂用运行中汽轮机油质量标准》[3]除要求外观目视油中无机械杂质

外,对油质提出了更高要求:250MW及以上机组要求测试颗粒度,参考国外标准极限值NASl638规定8-9级或MOOG规定6级;有的300MW汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂提供的指标,测试周期为每6个月1次。2001年对3、4号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表1)。

伺服阀卡涩引起停机,对机组安全性影响非常大,且伺服阀卡涩引起机组非计划停运影响电厂的经济性。首阳山电厂采取了以下临时措施:

(1)定期更换伺服阀,超过3个月后遇到机组停机进行更换;(2)定期切换控制油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。

从运行看,因伺服阀卡涩引起停机次数有所减少。但尚无从根本上解决问题,为此经分析、研究提出一系列改造设想,如“采用独立的控制油源”、“不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不可行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的DDV 阀的方案。

二、Abex415型电液伺服阀

2.1 工作原理

电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,控制调速汽门的阀位。它的性能优劣对电液调节系统影响很大,是电液调节系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是控制进出液压系统的油量,使其与输入的电信号成比例,主要由阀体、转距电动机(线圈、电枢)、永久性磁铁、第1级射流管、压力反馈弹簧、第2级滑阀、“O”形环、外壳等组成(见图1)。

其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最后从喷油嘴流出。从喷嘴出来的油喷到2根集油管上,2根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生一定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上出现压差,引起滑阀向左移动。滑阀一直向左移动直到回位弹簧产生的反力与力矩马达产生的力相等为止。这时滑阀处于一新的平衡位置。第2级电流成正比。如电流极性相反,则滑阀移到另一侧。

2.2 主要特点

(1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高分辨率;(3)灵敏度高,线性好且控制精度高;(4)控制油采用润滑油同一油源即主油箱内的N32号防锈汽轮机油,对油质要求高且抗污染能力差。

2.3 主要技术规范

伺服阀的型号、参数见表2。

三、DDV伺服阀技术介绍

3.1 工作原理

DDV伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图2)。其工作原理为:一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达产生一个脉宽调制(PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输出给力矩马达,力矩马达驱动阀芯,一直使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量Q是阀芯位置与通过阀芯计量边的压力降的函数。

永磁直线马达结构见图3。其工作原理:直线马达是一个永磁的差动马达,永磁提供部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因

为它一偏离中位就会产生力和行程,力和行程与电流成正比,,自线马达在向外伸出的过程巾必须克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯提供了附加的驱动力,因此使DDV伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机情况下,伺服阀均能自行回中,无需外力推动。

3.2 主要特点

DDV阀是MOOG公司最新研制成功的新型电液伺服阀,目前已由MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电路实现阀芯位置的闭环控制。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行控制。

DDV阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;

(2)用大功率的直线力马达替代丁小功率的力矩马达;(3)用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的分辨率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对控制油质抗污染能力大大提高;(7)降低运行维护成本。

3.3 主要技术参数

DDV伺服阀的型号、参数(D633系列)见表3。

四、技术改造方案及设备安装调试

通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不改变调节系统的调节特性;(3)具有

高的可靠性、安全性;(4)改造量小。

改造方案:(1)将汽轮机的CV、左右侧ICV伺服阀均改为DDV型伺服阀。(2)机械方面:因2种伺服阀形状、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受HITASS的D-EHG控制信号(±8mA)和2路220V交流电源(一路UPS,一路保安段),将控制信号(±8mA)变为电压信号(±10V)作为DDV的控制信号,交流220V转换为直流24V作为DDV的电源。

通过静止试验表明,调节系统静态特性达到与改型前试验数值基本一致,表明伺服阀改为DDV阀后,整个控制系统调节方法、调节性能无变化。改型前后静态试验数据见表4、5。

为检验伺服阀改为DDV阀后是否安全,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。

五、运行实践及经济分析

4号机组自2001年9月运行至今,机组启停多次,调节系统可靠稳定,没有发生一次因伺服阀卡涩而造成机组的非计划停运。

技术改造后对机组安全、经济方面的影响。安全性:避免了伺服阀卡涩,极大地提高了机组的安全性、可靠性且机组非计划停运次数大大减少;经济性:技术改造除增加发电量外,每年约可节约费用7 4万元。技术改造费为每台机20万元,2台机组共40万元。1台机组1年就可收回2台机组的全部投资,经济效益显著。

六、结论

实际运行情况表明:该项技术改造在于汽轮机电液控制系统与润滑油系统同用一个油源,提高了适用性及抗污染能力,解决了电液伺服阀卡涩问题,大大减少了机组非计划停运次数,有明显的经济效益。可在同类日立00MW汽轮机的电液控制系统推广、实施。

目前国内机组电液控制系统工作液采用磷酸酯抗燃油的较多,而磷酸酯抗燃油与透平油相比理化性能要求严格、价格昂贵且维护复杂,尤其是磷酸酯抗燃油废液目前不能处理,其污染等同核污染,对人体健康有一定的危害。考虑到这些因素,机组电液控制系统工作液由抗燃油向汽轮机油系统发展是大趋势。

虽然DDV阀对油质污染的敏感性大为降低,但油质清洁度下降,会降低伺服阀计量边使用寿命,所以加强油质化学监督一点也不能放松。同时建议机组进行一次甩负荷试验,以进一步检验DDV阀的甩负荷特性。

伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

换向阀工作原理

换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。 按阀芯相对于阀体的运动方式:滑阀和转阀 按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等 按换向阀所控制的通路数不同:二通、三通、四通和五通等。 1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。 2、换向阀的结构 1)手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。 2)机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。 3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口 P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图 4-9b为其图形符号。 4)液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当 K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。 5)电液换向阀 由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。 3、换向阀的性能和特点 1)滑阀的中位机能 各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“O”型、“H”型、“P”型、K”型、“M”型等。 分析和选择三位换向阀的中位机能时,通常考虑: (1)系统保压 P口堵塞时,系统保压,液压泵用于多缸系统。 (2)系统卸荷 P口通畅地与T口相通,系统卸荷。(H K X M型) (3)换向平稳与精度 A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T口,换向平稳,但精度低。 (4)启动平稳性阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。

液压伺服阀结构及工作原理

液压伺服阀结构及工作原理 一、滑阀式伺服阀: 采用动圈式力马达,结构简单,功率放大系数较大,滞环小和工作行程大;固定节流口尺寸大,不易被污物堵塞;主滑阀两端控制油压作用面积大,从而加大了驱动力,使滑阀不易卡死,工作可靠。 喷嘴挡板式伺服阀: 该伺服阀,由于力反馈的存在,使得力矩马达在其零点附近工作,即衔铁偏转角θ很小,故线性度好。此外,改变反馈弹簧杆11的刚度,就能在相同输入电流时改变滑阀的位移。 该伺服阀结构紧凑,外形尺寸小,响应快。但喷嘴挡板的工作间隙较小,对油液的清洁度要求较高。 射流管式伺服阀: 对油液的清洁度要求较低。缺点是零位泄漏量大;受油液粘度变化影响显著,低温特性差;力矩马达带动射流管,负载惯量大,响应速度低于喷嘴挡板阀。 滑阀式伺服阀 由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压桥路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。 输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其位移量与动圈电流成正比。前置级阀心(控制阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口·面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心(主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某一位置。在此位置上,前置级滑阀副的两个可变节流控制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使功率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成正比。 二、喷嘴挡板式伺服阀 图中上半部为衔铁式力马达,下半部为喷嘴挡板式和滑阀式液压放大器。衔铁与挡板和弹簧杆连接在一起,由固定在阀体上的弹簧管支承。弹簧杆下端为一球头,嵌放在滑阀的凹槽内,永久磁铁和导磁体形成一个固定磁场。当线圈中没有电流通过时,衔铁和导磁体间的四个气隙中的磁通相等,且方向相同,衔铁与挡板都处于中间位置,因此滑阀没有油输出。当有控制电流流入线圈时,一组对角方向的气隙中的磁通增加,另一组对角方向的气隙中的磁通减小,于是衔铁在磁力作用下克服弹簧管的弹性反作用力

电液伺服阀基础知识介绍

电液伺服阀基础知识介绍 射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。博格公司的DSHR一级先导就是射流管阀,而派克公司的TDL一级先导就是喷嘴挡板阀,下面对两种阀的结构、工作原理及特点作个比较与介绍。并着重分析了射流管式伺服阀在可靠性及工作性能方面的一些优势。 工作原理: ★喷嘴挡板式伺服阀的原理:TDL 图1 为喷嘴挡板式伺服阀的原理图。它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。挡板的偏移将一侧喷嘴挡板可变节流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。于是,阀芯停留在某一位置。在该位置上,反馈杆的力矩等于输入控制 电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。 图1双喷嘴挡板式力反馈电液流量伺服阀

★射流管式伺服阀的原理: 图2 为射流管式伺服阀的原理图。力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。前置级为射流放大器,它由射流管与接受器组成。当马达线圈输入控制电,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。经过喷嘴的高速射流的偏转,使得接受器一腔压力升高,另一腔压力降低,连接这两腔的阀芯两端形成压差,阀芯运动直到反馈组件产生的力矩与马达力矩相平衡,使喷嘴又回到两接受器的中间位置为止。这样阀芯的位移与控制电流的大小成正比,阀的输出流量就比例于控制电流。 图2 射流管式力反馈电液流量伺服阀 ★两种阀的主要特点: 射流管式与喷嘴挡板式最大差别在于喷嘴挡板式以改变流体回路上所通过的阻抗来进行力的控制。相反,射流管式是靠射流喷嘴喷射工作液,将压力能变成动能,控制两个接受孔获得能量的比例来进行力的控制。这种方式的阀与喷嘴挡板式相比因射流喷嘴大,由污粒等工作液中杂物引起的危害小,抗污染能力强。且射流管式液压放大器的压力效率及容积效率高,一般为70%以上,有时也可达到90%以上的高效率。输出控制力(滑阀驱动力)大,进一步提高了抗污染能力。同样其灵敏度、分辨率及低压工作性能大大优于喷嘴挡板阀。另外,由于射流管式由于在喷嘴的下游进行力控制,当喷嘴被杂物完全堵死时,因两个接受孔均无能量输入,滑阀阀芯的两端面也没有油压的作用,反馈弹簧的弯曲变形力会使阀芯回到零位上,伺服阀可避免过大的流量输出,具有“失效对中”能力,并不会发生所谓的“满舵”现象。但射流管式液压放大器及整个阀的性能不易理论

伺服阀的工作原理及运行维护

穆格伺服阀的工作原理及运行维护 穆格电液伺服阀是电液转换元件,它能把微小的电气信号转换成大功率的液压输出。其性能的优劣对电液调节系统的影响很大,因此,它是电液调节系统的核心和关键。为了能够正确使用电液调节系统,必须了解电液伺服阀的工作原理。 1、电液伺服阀的分类 1)按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。 2)按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。 3)按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式。 4)按电机械转换装置可分为动铁式和动圈式。 5)按输出量形式分为流量伺服阀和压力控制伺服阀。 2、穆格电液伺服阀结构及工作原理(以双喷嘴挡板为例) 双喷嘴挡板式力反馈二级电液伺服阀由电磁和液压两部分组成。电磁部分是永磁式力矩马达,由永久磁铁,导磁体,衔铁,控制线圈和弹簧管组成。液压部分是结构对称的二级液压放大器,前置级是双喷嘴挡板阀,功率级是四通滑阀。画法通过反馈杆与衔铁挡板组件相连。 力矩马达把输入的电信号(电流)转换为力矩输出。无信号时,衔铁有弹簧管支撑在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通是相同的力矩马达无力矩输出。此时,挡板处于两个喷嘴的中间位置,喷嘴两侧的压力相等,滑阀处于中间位置,阀无液压输出;若有信号时控制线圈产生磁通,其大小和方向由信号电流决定,磁铁两极所受的力不一样,于是,在磁铁上产生磁转矩(如逆时针),使衔铁绕弹簧管中心逆时针方向偏转,使挡板向右偏移,喷嘴挡板的右侧间隙减小而左侧间隙增大,则右侧压力大于左侧压力,从而推动滑阀左移。同时,使反馈杆产生弹性形变,对衔铁挡板组件产生一个顺时针方向的反转矩。当作用在衔铁挡板组件上的电磁转矩、弹簧管反转矩反馈杆反转矩等诸力矩达到平衡时,滑阀停止移动,取得一个平衡位置,并有相应的流量输出。 滑阀位移,挡板位移,力矩马达输出力矩都与输出的电信号(电流)成比例变化。 3、穆格电液伺服阀的常见故障 1)力矩马达部分 a.线圈断线:引起阀不动,无电流。 b.衔铁卡住或受到限位:原因是工作气隙内有杂物,引起阀门不动作。 c.球头磨损或脱落:原因是磨损,引起伺服阀性能下降,不稳定,频繁调整。 d.紧固件松动:原因是振动,固定螺丝松动等,引起零偏增大。 e.弹簧管疲劳:原因是疲劳,引起系统迅速失效,伺服阀逐渐产生振动,系统震荡,严重的管路也振动。 f.反馈杆弯曲:疲劳或人为损坏,引起阀不能正常工作,零偏大,控制电流可能到最大。 2)喷嘴挡板部分 a.喷嘴或节流孔局部或全部堵塞:原因是油液污染。引起频响下降,分辨降率低,严重的引起系统不稳定。

卸荷阀、伺服阀原理

汽门的位置状态决定于卸荷阀的工作状态。卸荷阀的结构原理见图 在该阀的A 口和X 口之间,有一内部节流孔。当汽机正常运行时,有一稳定的小流量液流从A 口径节流口到X 口,再经单向阀到AST 总管后流向紧急遮断电磁阀块中的二个串联节流孔并排入无压力回油DV 总管,因此,在X 口处形成一个稍低于A 口压力的压力,这是个用来控制阀状态的压力,称为AST 压力。 见图1-2,卸荷阀的主阀芯为杯状滑阀。X 口处的AST 压力通过主阀体内的 上行通道和先导阀体内的右行通道及下行节流孔作用于阀芯的上腔,由于阀芯的上腔作用面积大于其下端的作用面积,AST 压力和A 口压力对阀芯产生的净力是向下的,它能关紧阀芯,AB 两口是隔断的,当紧急遮断装置在DEH 的指令下使AST 压力卸去,本机构中的AST 单向阀打开,X 口处泄压,阀芯上腔失压,阀芯打开,AB 两口通,油缸两腔通,汽门在弹簧力的作用下快关。

它由电磁和液压两部分组成。电磁部分是永磁式力矩马达,由永久磁铁、导磁体、衔铁、控制线圈和弹簧管所组成。液压部分是结构对称的两级液压放大器,前置级是双喷嘴挡板阀,功率级是四通滑阀。滑阀通过反馈杆与衔铁挡板组件相连。 力矩马达把输入的电信号(电流)转换为力矩输出。无信号电流时,衔铁由弹簧管支承在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通фg 是相同的,力矩马达无力矩输出。此时,挡板处于两个喷嘴的中间位置,喷嘴挡 板阀输出的控制压力p1p=p2p,滑阀在反馈杆小球的约束下也处于中间位置,阀无液压信号输出。若有信号电流输入时,控制线圈产生控制磁通φc,其大小与方向由信号电流所决定。如图5 所示,在气隙b、c中,φc与φg方向相同,而在气隙a、d中,φc与φg方向相反。因此,气隙b、c中的合成磁通大于a、d中的合成 磁通,于是,在衔铁上产生逆时针方向的力矩,使衔铁绕弹簧管中心逆时针方向偏转。同时,使挡板向右偏移,喷嘴挡板的右间隙减小而左间隙增大,控制压力 p2p增大p1p减小,推动滑阀左移。同时,使反馈杆产生弹性变形,对衔铁挡板组 件产生一个顺时针方向的反力矩。当作用在衔铁挡板组件上的磁力矩、弹簧管反力矩、反馈杆反力矩等诸力矩到平衡时,滑阀停止运动,取得一个平衡位置,并有相应的流量输出。滑阀位移、挡板位移、力矩马达输出力矩都依次与输入信号电流成比例地变化,如负载压差不变时,阀的输出流量也与信号电流成比例。当输入信号电流反向时,阀的输出流量也反向。所以这是一种流量控制电液伺服阀。从上述原理可知,滑阀位置是通过反馈杆变形力反馈到衔铁上使诸力平衡而决定的,所以亦称为力反馈式电液伺服阀。因为采用两级液压放大,所以又称力反馈两级电液伺服阀,我们所用就是这种型式。 该阀有四个油口,P、T、A、B,分别通供油、回油和执行器的两腔。在本 系统,调节汽阀执行机构和抽气调节汽阀执行机构中的油缸都是单侧供油的,故 B口是封闭不用的。

CSDY1射流管电液伺服阀产品说明书

CSDY1射流管电液伺服阀 产品说明书 编制: 校对: 审核: 审定: 九江仪表厂 一九八九年十二月

CSDY1射流管电液伺服阀产品说明书 一、概述: CSDY1系列射流管电液伺服阀是力反馈型两级流量伺服控制阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的控制。 二、结构原理: 图1是CSDY1系列射流管电液伺服阀的原理图,力矩马达采用永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps通过滤油器及固定节流孔,到射流管喷嘴向两个接受孔喷射,接受孔分别与阀芯两端控制腔相通。 当力矩马达线圈组件输入控制电流时,由于控制磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个接受孔腔产生压差引起阀芯位移,且一直持续到由反馈弹簧组件弯曲产生的反馈力矩与控制电流产生的控制力矩相平衡为止。 由于阀芯位移与反馈力矩成比例,控制力矩与控制电流成比例,伺服阀的输出流量与阀芯位移成比例,所以伺服阀的输出流量与输入的指令控制电信号亦成比例,若给伺服阀输入反向电控信号,则伺服阀就有反向流量输出。 三、技术性能指标:

1、供油压力范围(MPa) 2.1~31.5 2、额定供油压力(MPa)20.6 3、额定流量(L/min)2—40(按用户要求) 4、滞环(%)≤3 ≤5(用于低频控制系统) 5、分辨率(%)≤0.25 6、线性度(%)≤7.5 7、对称度(%)≤10 8、压力增益(%Ps/1%In)≥30 9、静耗流量(L/min)≤0.45+3%Qn 10、零偏(%)≤2 11、幅频宽(-3Db)(HZ) ≥70 ≥40(用于低频控制系列) 12、相频宽(-90°)(HZ)≥90 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及控制电流的极性等参照下表和射流管电液伺服阀安装图(图2)

液压伺服工作原理

液压伺服工作原理 1.1 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值 x i 。对应给定值x i ,有一定的电压输给放大器7,放大器将电压信号转换为电流 信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v 。阀开口x v 使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸 活塞杆也带动电位器6的触点下移x p 。当x p 所对应的电压与x i 所对应的电压相 等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反

REXROTH伺服阀的原理

REXROTH伺服阀的原理 我司在德国、美国都有自己的公司,专业从事进口贸易行业,以下是我司的专业人士为大家所做的报告,具体请看下面描述: REXROTH伺服阀它在接受电气模拟信号后,相应输出调制的流量和压力。它既是电液转换元件,也是功率放大元件,它能够将小功率的微弱电气输入信号转换为大功率的液压能(流量和压力)输出。在电液伺服系统中,它将电气部分与液压部分连接起来,实现电液信号的转换与液压放大。电液伺服阀是电液伺服系统控制的核心。 REXROTH伺服阀的产品描述: 4WS(E)2EM 6-2X / ... 这种类型的阀门是电动的2级定向伺服阀,其端口模式符合ISO 4401-03-02-0-05。它们主要用于控制位置,力,压力或速度。 这些阀门由一个机电转换器(力矩电机)(1),一个液压放大器(原理:喷嘴挡板)(2)和一个套管(第二级)中的控制阀芯(3)组成。扭矩马达通过机械反馈。 扭矩电动机的线圈(4)处的电输入信号借助于作用在电枢(5)上的永磁体产生力,并且与扭矩管(6)连接产生扭矩。这使得通过螺栓连接到扭矩管(6)的挡板(7)从两个控制喷嘴(8)之间的中心位置移动,并且在控制阀芯的前侧产生压差。(3)。压差导致阀芯改变其位置,这导致压力端口连接到一个致动器端口,同时另一个致动器端口连接到回流端口。 控制阀芯通过弯曲弹簧(机械反馈)(9)连接到挡板或扭矩马达。改变阀芯的位置,直到弯曲弹簧上的反馈扭矩和扭矩马达的电磁扭矩平衡,并且喷嘴挡板系统处的压差变为零。 控制阀芯的行程以及因此伺服阀的流量与电输入信号成比例地控制。必须注意的是,流量取决于阀门压降。 外部控制电子装置(伺服放大器)用于操作阀门,放大模拟输入信号(指令值),以便通过输出信号,伺服阀以流量控制的形式启动。 REXROTH伺服阀的特征: 阀门控制位置,力,压力或速度 带机械反馈的2级伺服阀

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。

伺服阀的动作原理

电液伺服阀的工作原理 ?电液伺服阀由力矩马达和液压放大器组成。 力矩马达工作原理 磁铁把导磁体磁化成N、S极,形成磁场。衔铁和挡板固连由弹簧支撑位于导磁体的中间。挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。弹簧管弯曲产生反力矩,使衔铁转过θ角。电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。 前置放大级工作原理 压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。 功率放大级工作原理 当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。 电液伺服阀的分类 ? 1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。 2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射 流管式和偏转板射流式。 3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式 等。 4 按电机械转换装置可分为动铁式和动圈式。 5 按输出量形式可分为流量伺服阀和压力控制伺服阀。 电液伺服阀运转不良引起的故障 ? 1 油动机拒动 在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。尽管在机组启动前已进行油循环且油质化验也合格,但由于系统中的各个死角的位置不可能完全循环冲洗,所以一些颗粒可能在伺服阀动作过程中卡涩伺服阀。 2 汽门突然失控

伺服阀工作原理

(1)电液伺服阀的组成 伺服阀由力矩马达、液压放大器、反馈机构三部分组成 (2)力矩马达的工作原理 力矩马达的作用是把输入的电气控制信号转换为力矩。它由永久磁铁、上导磁体、下导磁体、衔铁、控制线圈、弹簧管等组成。衔铁固定在弹簧管上端,由弹簧管支承在上、下导磁体的中间位置,可绕弹簧管的转动中心作微小的转动。 永久磁铁将上、下导磁体磁化,一个为N级,另一个为S级。无信号电流时,衔铁在上、下导磁体的中间位置,由于力矩马达结构是对称的,使磁铁两端所受的电磁力相同,力矩马达无力矩输出。当有信号电流通过线圈时,控制线圈产生控制磁通,其大小和方向取决于信号电流的大小和方向电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例。

力矩马达磁路原理图 对于上图的磁路分析: 对分支点A 和B 应用磁路基尔霍夫第一定律可得衔铁磁通 12a φφφ=- 整理后得到 g 2g 2()2l 1()l g c a x x φφφ+=- 由于2g (x/l )1 《,上式化简a g 2l c g g x N i R φφ=+?,考虑到x a θ≈,上式写成 a g 2l c g g a N i R φφθ=+? 由控制磁通和极化磁通的相互作用在衔铁上产生电磁力矩d 14=2a(F -F )T ,考

虑到衔铁转角θ很小,故有,,x tg x a a θθθ=≈≈则上式可写成: 2 2222g 22g (1)(1)l (1)l c t m g d x K i K T x φθφ+?++=-, 式中t K 为力矩马达的中位电磁力矩系数,g 2l t c g a K N φ= m K 为力矩马达的中位磁弹簧刚度,22g 4()l m g g a K R φ= 由上式可以看出,力矩马达的输出力矩具有非线性。为了改善线性度和防 止衔铁被永久磁铁吸附,力矩马达一般都设计成g x/l <1/3,即2g (x/l )1 《和2(/) 1c g φφ《。则接着化简成: t d m T K i K θ=?+ 上式中,t i K ?是衔铁在中位时,由控制电流i ?产生的电磁力矩,称为中位电磁力矩。m K θ是由于衔铁偏离中位时,气隙发生变化而产生的附加电磁力矩,它使衔铁进一步偏离中位。这个力矩与转角成比例,相似于弹簧的特性,称为电磁弹簧力矩。 (3) 液压放大器 液压放大器的运动去控制液压能源流向液压执行机构的流量或压力。力矩马达的输出力矩很小,在阀的流量比较大时,无法直接驱动功率级阀运动,此时需要增加液压前置级,将力矩马达的输出加以放大,再去控制功率级阀,功率级阀采用三位四通滑阀,这就构成了电液伺服阀。 三级电液伺服阀实质上是由通用型双喷嘴力反馈两级伺服阀和第三级滑阀组成,第三级滑阀的阀芯位移由电反馈来实现闭环控制。 伺服射流管先导阀主要由力矩马达、喷嘴挡板和接收器组成。当线圈中有电流通过时,产生的电磁力使挡板偏离中位。这个偏离和特殊形状的喷嘴设计使得当挡板偏向一侧时造成先导阀的接收器产生偏差。此压差直接导致阀芯两侧驱动

气比例阀伺服阀的工作原理

气比例阀伺服阀的工作 原理 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对 反馈信号和电压差U的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量 Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器 Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁铁产生的 Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。 Ue=Uf=KfX(Kf为位移传感器增益) 上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移一定距离。 阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口开口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。 这类阀的优点是线性度好,滞回小,动态性能高。 二、滑阀式二级方向伺阀 下图所示为一种动圈式二级方向伺服阀。它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀式气动放大器、反馈弹簧等组成。喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。 这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。在喷嘴气流作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力几乎与大气压相同。滑阀阀芯被装在两侧的反馈弹簧5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。

伺服阀工作原理

下面介绍两种主要的伺服阀工作原理。 1.力反馈式电液伺服阀 力反馈式电液伺服阀的结构和原理如图28所示,无信号电流输入时,衔铁和挡板处于中间位置。这时喷嘴4二腔的压力pa=pb,滑阀7二端压力相等,滑阀处于零位。输入电流后,电磁力矩使衔铁2连同挡板偏转θ角。设θ为顺时针偏转,则由于挡板的偏移使pa>pb,滑阀向右移动。滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。因此其变形,也就是滑阀离开零位的距离和电磁力矩成正比。同时由于力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是通过滑阀的流量与输入电流成正比,并且电流的极性决定液流的方向,这样便满足了对 图28 力反馈式伺服阀的工作原理 1—永久磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁 电液伺服阀的功能要求。由于采用了力反馈,力矩马达基本上在零位附近工作,只要求其输出电磁力矩与输入电流成正比(不象位置反馈中要求力矩马达衔铁位移和输入电流成正比),因此线性度易于达到。另外滑阀的位移量在电磁力矩一定的情况下,决定于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了方便。采用了衔铁式力矩马达和喷嘴挡板使伺服阀结构极为紧凑,并且动特性好。但这种伺服阀工艺要求高,造价高,对于油的过滤精度的要求也较高。所以这种伺服阀适用于要求结构紧凑,动特性好的场合。力反馈式电液伺服阀的方框图如图29。

电液伺服阀工作原理

汽轮机调速系统中的电液伺服阀工作原理:电液伺服阀是油动机的核心部件,靠它来接收电信号并控制进入油缸油流的多少。电液伺服阀安装在MSV,GV 和ICV的阀门油动机上,RSV的油动机没有安装电液伺服阀。通过向油动机的油缸供应高压油而将蒸汽阀门打开,而通过其将油缸的高压油泄去并靠弹簧力将蒸汽阀门关闭。电液伺服阀是由电磁部分(永久磁铁、导磁体、衔铁、线圈),两级液压放大器(挡板、软管、喷嘴、油路、四通滑阀、反馈弹簧)和过滤器(可更换过滤器和内置过滤器)等组成, 如图

所示。衔铁与挡板通过软管连接在一起,挡板下部连有一个反馈弹簧,弹簧的另一端为一球头,嵌放在滑阀的凹槽内。永久磁铁和导磁体形成一个固定磁场,当线圈中没有电流通过时,导磁体和衔铁间4个气隙中的磁通都是一样的且方向是相同的,衔铁处于中间位置。当有控制电流通过线圈时,一组对角方向的气隙中的磁通增加,另一组对角方向的气隙中的磁通减小,于是衔铁就在磁力作用下克服弹簧的弹性反作用力而偏转一角度,并偏转到磁力所产生的转矩与弹性反作用力所产生的反转矩平衡时为止。同时挡板因随衔铁偏转而发生挠曲,改变了它与两个喷嘴间的间隙,一个间隙减小,一个间隙加大。高压油从供油口进入伺服阀并且引入到四通滑阀的两端下面,经过过滤器以及孔板后,一路流向喷嘴和挡板,并通向回油;另一路流到四通滑阀的两端端面以形成对四通滑

阀的推力。当挡板挠曲,出现上述喷嘴与挡板的两个间隙不相等的情况时,两喷嘴后侧的压力就不相等,它们作用在滑阀的左右两端端面上,使滑阀向相应方向移动一段距离,压力油就通过四通滑阀的控制油口输向油缸或者使油缸的工作油通过滑阀的一个凸肩流出并通向回油。滑阀移动时,反馈弹簧下端球头跟着移动。在衔铁挡板组件上产生了一个转矩,使衔铁向相应方向偏转,并使挡板在两喷嘴间的偏移量减少,这就是反馈作用。反馈作用的后果就是使滑阀两端的差压减小。在接受一个正向电流指令信号时,这时滑阀的一个凸肩打开了EH油的供油口,油动机进油,蒸汽阀门打开,蒸汽阀门的LVDT输出的反馈信号增大,指令与反馈信号的偏差在不断减少,至伺服阀的开阀驱动指令也在不断减小,当伺服阀的输出指令与弹簧的反作用力平衡时,挡板回到中间位置,滑阀处于平衡状态,油动机此时停止进油,蒸汽阀门位置保持不变。电液伺服阀是有机械零偏的,而机械零偏是借助于滑阀一个端面上装设的一个机械偏置弹簧来实现的。其主要作用是当伺服阀失去控制信号或线圈损坏时,靠它的机械偏置使滑阀移动而打开泄油孔,使油动机油缸和回油相通,蒸汽阀门的弹簧力使油动机全关,确保机组安全。如果机械偏置为零或为正,

伺服阀与比例阀原理介绍

电液伺服阀的原理和性能介绍 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中,伺服阀价格高且对过滤精度要求也高,比例阀广泛用于要求对液压参数进行连续控制或程序控制但对控制精度和动态特性要求不太高的液压系统中。 另外,1.伺服阀中位没有死区,比例阀有中位死区; 2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz; 3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。 比例伺服阀性能介于伺服阀和比例阀之间。 比例换向阀属于比例阀的一种,用来控制流量和流向。 伺服阀跟比例阀的本质区别就是他有两横 1、伺服阀和比例阀上下都有两横; 2、比例阀两边都有比例电磁铁,而且有比例电磁铁的符号上都箭头。但是伺服阀确是只有一边有力马达,要强调的是只有一边有。 比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出; 伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。 区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安; 比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高

一个粗液压缸一个细液压缸长短样怎么同步升起 最简单的就是在细油缸的进油口加一个节流阀,控制一下进入油缸的流量使细油缸慢下来。但节流阀的节流效果受负载和液压油粘度的影响比较大,如果负载变化大,你得经常调整。 不用节流阀,用调速阀也可以,不受负载影响,但有发热的趋势。 也可以用分流阀,但分流阀的分流比是确定的,通常是1:1或1:2。粗细油缸的面积比不一定合适。 最贵的方案就是带有长度传感器的伺服缸和比例阀或者伺服阀,在计算机控制下,能达到液压系统能达到的最高精度。但价格很难接受。 |评论 同步精度要求不高的话,直接用个同步分流阀就行了。有负载补偿的 建议用分流集流阀,好一些的阀,精度可以达到正负3% 尽可能用机械同步。分流阀不用试,一定失败。原因是流量太小,形成不了压差。马达式同步有机会成功,但要选排量非常小的。算手泵流量时把人算100瓦的功率。 如果能做到机械式同步,那是最好不过的了,如果没条件,在同步精度要求较低的情况下,可以用同步阀(分流-集流阀),精度要求再高点的话,可以用同步马达。再高点,就无法达到了,因为要用伺服阀,但现场无法用电 分流阀在负载相同时效果非常好,但负载偏差严重时同步效果大打折扣,建议用同步马达或 同步缸,同步精高时不妨用传感器 油缸不大的话用同步缸要好点,油缸大的话用同步马达应该可以满足 流马达又叫同步马达,一般为齿轮的,与多联齿轮泵的外形有点象,就是两组或两组以上的齿轮马达串联在一起,转速一致,按一定比例分配液压泵提供来的油液供执行元件使用,不

电液伺服阀的应用及发展趋势

电液伺服阀的应用及发展趋势 摘要:电液伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电业转换和功率放大作用。具体地说,系统工作时,他直接接收系统传递来的电信号,并把电信号转换成具有相应极性的、成比例的、能够控制电液伺服阀的负载流量或负载压力的信号,从而使系统输出较大的液压功率,用以驱动相应的执行机构。电液伺服阀的性能和可靠性可以直接影响系统的性能和可靠性,是电液伺服控制系统中引人注目的关键元件。 关键字:电液伺服阀;现状;发展趋势;应用;展望 引言:电液伺服阀是一种变电气信号为液压信号以实现流量或压力控制的转换装置。它充分发挥了电气信号传递快、线路连接方便,适于远距离控制,易于测量、比较和校正的有点,和液压输出力大、惯性小、反应快的优点。这两者的结合使电液伺服阀成为一种反应灵活、精度高、快速性好、输出功率大的控制元件。[1] 一、电液伺服阀研究现状 群控系统(DNC)和柔性制造系统(FMS)等新工艺装备的使用,计算机辅助设计(CAD)和计算机辅助测试(CAT)的广泛应用,为我们进一步简化伺服阀结构,完善设计,降低工艺制造成本和管理费用,提高产品性能,稳定产品质量,增加产品可靠性和延长使用寿命创造了极其有利的条件。 1、伺服阀的结构改进 (1)在电液伺服阀的部分结构上,主要从余度技术、结构优化和材料的更替等方面进行改造,以提高相关性能。采用三余度技术的电液伺服作动系统[1]将伺服阀的力矩马达、喷嘴挡板阀、系统的反馈元件等做成一式三份,若伺服阀线圈有一路断开,而系统仍能够正常工作,且有系统动态品质性能基本不变,从而提高了伺服作动系统的可靠性和容错能力。在结构的改进上,针对阀出现的故障提出改进措施,进行结构优化,以满足其相关性能的要求。从材料方面考虑,阀的某些元件采用了强度、塑性、韧性、硬度等机械性能优良的材料,既可以减少故障,又让阀具备良好的动态性能。 (2)从阀芯和阀套磨配加工工艺的改进上,采用不同的磨配原理,如磁力研磨法等原理来提高阀的工作性能。阀芯和阀套组成的滑阀副是伺服阀的核心,阀套窗口棱边的几何精度决定了阀的工作性能。在阀芯加工最后磨配端面时,不能直接获得尖锐的棱边,而是在棱边处产生“毛刺”,然后采取措施加以去除。上海交大的陈鹏研制了智能化、全自动的伺服阀配磨系统,以计算机为核心,能自动测量阀的输出特性,并给出配磨参数,从而使阀芯、阀套的制造简便、迅速。1992年由美国某公司在加州制造了一台加工阀芯棱边的CNC液压磨床,由另一公司制造了一台配合磨床的液压测试台,二者结合起来就是自动化流量磨削系统,使产品的完好率从50%提高到85%~90%,生产阀芯的时间缩减75%~80%,制造厂称加工精度可达±015μm,性能相当优良。[2]

相关文档
最新文档