28nm制程引爆后 芯片设计公司将重新洗牌

28nm制程引爆后 芯片设计公司将重新洗牌

28nm 制程引爆后芯片设计公司将重新洗牌

集成电路产业的发展向来遵循摩尔定律,每十八个月芯片及元器件的

集成度和产品性能将增加一倍。2012年,随着技术的演进,全球半导体迎来了28nm制程的元年。赛灵思、Altera、高通等国际巨头领先量产28nm芯片,并

开始应用到终端产品上面。迅速膨胀的需求让全球最大的代工厂台积电一度产

能吃紧,但目前已增加产品线获得缓解。按目前的发展趋势看,2013年28nm 芯片将呈现爆发式增长,更有少数厂商将在2013年进入22nm和20nm时代。

工艺制程演进带来了高能效、低功耗,28nm级别将提升IC30%的效能,降低50%的功耗。高通某高管称,作为目前商用级别上最先进的工艺制程,

28nm工艺在频率调节、功耗控制能力、散热管理性能和尺寸压缩方面具有显

著的优势。

工艺制程的演进是必要的,MIPS中国市场营销总监费浙平表示,现代

高性能处理器设计的理论和方法,需要大规模的电路,比如更高的时钟主频、

更多的并行处理、更多数量的多核集成,只有在先进工艺的支持下才能实现。

28nm除了提高性能降低功耗,带给企业的利润也不容小觑。据Xilinx

统计,若借助28nm产品的拓展,FPGA市场在2014年可望达110亿美元的规模,但若仅靠40nm与过去的产品,在2014年仅可达70亿美元。近乎翻番的

利益驱动让巨头心动。

不过,利润可观但相应的资金投入也非常巨大。据记者了解,目前一个

32nm芯片的设计成本在7000万美元左右,而28nm会在1亿美元,而到20nm 估计要蹿升到1.2亿~1.5亿美元,没有一定资金实力的芯片厂商很难做出此项投入。

对于资金的挑战,费浙平称,昂贵的先进工艺增大了芯片公司的压力,

半导体行业:芯片设计企业的光罩成本大幅上升

半导体行业:芯片设计企业的光罩成本大幅上升 本周重点 面板级扇出型封装技术(FO on substrate)在异质整合趋势下的投资机遇 透过台积电看半导体趋势-成也萧何,败也萧何 核心观点 虽然SoC 将更多的功能整合到单颗芯片,在大幅提升芯片性能的同时降低了功耗,但是缺点就是需要更加先进制程工艺的支撑。随着芯片制程向 7nm,5nm 甚至3nm 发展,芯片设计企业的光罩成本大幅上升。而通过系统级封装技术如面板级扇出型封装可以在提升芯片性能的同时大大降低企业的设计 和制造成本,这种异质整合的封装技术有望成为芯片行业新的发展趋势。为了 满足电子产品轻薄短小的发展趋势,未来对于基板的要求更薄,因此封装材料中 的薄基板技术(coreless,ETS 和embedded)值得关注。另外在高性能性能的封装中会大量采用TSV(硅通孔)工艺,这种工艺在封装过程中芯片容易出现细微的 损坏,因此未来细微缺陷检测设备也是行业值得关注的一个发展方向在所有苹果产业链公司从去年11 月初陆续下修其营收预期后,台积电 终于挡不住大趋势,公布低于市场预期的一季度销售环比衰退21.9%-22.9%,43- 45%的毛利预期(vs. 市场预期的47.5%),及31-33%的营业利润率预期(vs. 市场预期的36.8%)。台积电提出2019 年全球晶圆代工达0%同比成长,我们预估证券分析师对世界先进,华虹,长电科技,通富微电,华天科技2019 年营收同比成长的预估将明显下修到0%,+/-5%。虽然7 纳米短期需求不振,但台积电公布其2019 资本开支同比持平,维持100-110 亿美元,其中80%是用在7/5/3 纳米(大多用在5 和3 纳米),另外超过10%用在光掩片及先进封装的投资,剩下的用在特 殊制程。这对全球及中国半导体设备大厂而言,相对有利。

产品工艺制程能力提升计划

工艺制程能力提升计划 一、水刺产品工艺生产流程: 二、工艺生产流程分析及关键工序流程工艺控制提升点: 纤维原料开松混合 1、纤维原料的混合开松,要求混合均匀、配比准确、预开松效果较好;为下道工序的梳理成网做准备。 2、原料的配比要求控制点,按照生产任务单上料记录核对签字确认;开松混合的关键工艺控制点,预开松的效果及连续顺畅供棉的能力。 3、开松混合工艺能力提升,开包机斜帘、均棉打手、剥棉打手速度合理配置优化和均棉打手隔距的要求合理;能够达到开松混棉的效果也能达到稳定供棉的能力。控制点,均棉打手的隔距在稳定供棉的前提下隔距收小;均棉打手的速度配合斜帘输送棉的速度合理

提升相对速度。混棉开松的标准要求开松出来的纤维松散均匀没有块状。 梳理成网 1、梳理成网,要求成网均匀、清晰、无棉结、克重均匀稳定;为下道产品加固定型(水刺缠结加固)做准备。 2、梳理成网的关键控制点,输出的纤维网均匀,无棉结,克重均匀稳定。 3、梳理成网的关键工艺控制点提升,梳理道夫成网布面均匀度纤维网质量的控制。道夫成网的克重稳定性控制前提,气压棉箱喂入部分棉层横向厚度密度的偏差;关键调整方法下棉箱调节挡板的可视化作业指导及最终产品的克重偏差测试数据对比调整。道夫成网均匀度棉结控制工艺提升点,梳理机主锡林和道夫之间隔距的合理性和调整隔距的偏差,校正的工具隔距片;校准的依据隔距紧凑无偏差;校准的周期每月一次,保障道夫成网速度质量不受运行中的气流影响。成网均匀度控制合理优化道夫的输出纤维网速度提升速度的同时稳定纤维质量减少防止纤维网棉结的产生。 水刺缠结 1、水刺缠结,要求缠结紧密、无水针痕、缠结加固平

LED芯片的制造工艺流程简介

LED芯片的制造工艺流程简介 LED 芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、构装工序(Packaging)、测试工序(Initial Test andFi nal Test)等几个步骤。其中晶圆处理工序和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段(Back End)工序。 1、晶圆处理工序 本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序 经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。 3、构装工序 就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。 4、测试工序 芯片制造的最后一道工序为测试,其又可分为一般测试和特殊测试,前者是将封装后的芯片置于各种环境下测试其电气特性,如消耗功率、运行速度、耐压度等。经测试后的芯片,依其电气特性划分为不同等级。而特殊测试则是根据客户特殊需

芯片制程表

单通道双通道单通道双通道单通道双通道单通道双通道Samsung SLC 16M K9F2808U0M/A/B/C 1Y Y Y Samsung SLC 16M K9F2816Q0C(x16)1Y Y 1.8v Samsung SLC 32M K9F5608U0M/A/B/C 1Y Y Y Samsung SLC 32M K9F5616U0C(x16)1Y Y Samsung SLC 32M K9F5616U0B(x16)1Y Y Samsung SLC 64M K9F1208U0M/A/B/C 1Y Y Y Samsung SLC 64M K9F1208Q0C 1Y Y Y 1.8v Samsung SLC 64M K9K1216U0C(x16)1Y Y Samsung SLC 64M K9k1216Q0C(x16)1Y Y 1.8v Samsung SLC 128M K9K1G08Q0A 1Y Y Y 1.8v Samsung SLC 128M K9K1G08U0M/A/B 1Y Y Y Samsung SLC 128M K9K1G16U0A(x16)1Y Y Samsung SLC 256M K9E2G08U0M 1Y Y Y Samsung SLC 256M K9E2G08U1M 2Y Y Y Samsung SLC 128M K9F1G08U0M/A 1Y Y Y Y Y Y Y Samsung SLC 128M K9F1G08R0M/A 1Y Y Y Y Y Y 1.8v Samsung SLC 256M K9K2G08U1A 2Y Y Y Y Y Y Y Samsung SLC 128M K9F1G16Q0M(x16)1Y Y Y 1.8v Samsung SLC 128M K9F1G16U0M(x16)1Y Y Y Y Samsung SLC 128M K9F1G08U0A 1Y Y Y Y Y Y Y Samsung SLC 128M K9F1G08R0A 1Y Y Y Y Y Y 1.8v Samsung SLC 256M K9K2G08Q0M/A 1Y Y Y Y Y Y 1.8v Samsung SLC 256M K9K2G08U0M/A 1Y Y Y Y Y Y Y Samsung SLC 512M K9W4G08U1M 2Y Y Y Y Y Y Y Samsung SLC 256M K9K2G16Q0M/A(x16)1Y Y Y 1.8v Samsung SLC 256M K9K2G16U0M/A(x16)1Y Y Y Y Samsung SLC 512M K9W4G16U1M(x16)2Y Y Y Y Samsung SLC 256M K9F2G08U0M 1Y Y Y Y Y Y Y Samsung SLC 256M K9F2G16U0M(x16)1Y Y Y Y Samsung SLC 512M K9K4G08U0M 1Y Y Y Y Y Y Y Samsung SLC 1G K9W8G08U1M 2Y Y Y Y Y Y Y Samsung SLC 128M K9F1G08U0B 1Y Y Y Y Y Y Y Samsung SLC 128M K9F1G16Q0B(x16)1Y Y Y 1.8v Samsung SLC 256M K9F2G08U0A 1Y Y Y Y Y Y Y Samsung SLC 256M K9F2G08R0A 1Y Y Y Y Y Y 1.8v Samsung SLC 512M K9F4G08U0M 1Y Y Y Y Y Y Y Samsung SLC 1G K9K8G08U1M 2Y Y Y Y Y Y Y Samsung SLC 1G K9K8G08U0M/A 1Y Y Y Y Y Y Y Samsung SLC 2G K9WAG08U1M/A 2Y Y Y Y Y Y Y Samsung SLC 4G K9NBG08U5M/A 4Y Y Y Y Y Y Y Samsung SLC 1G K9F8G08U0M 50nm 1Y Y Y Y Y Y CE Pin AU6985AU6987AU6981AU6983 UFD Controller Flash Support List (SZ 2010-11-02) Flash Controller 备注 Brand Type Capacity Flash Name 制程

制程工程师 PE相关说明

制程工程师英文Process Engineer简称PE, 制程工程师也叫工艺工程师。 制程工程师是制定整个生产流程,分配各个部门的任务,负责制造过程中的各个细节,并制定WI或OI(标准作业指导书)的制程文件,对制程进行管理和控制。制程工程师掌管整个生产各种装配元件及辅助材料的选型与验证,工治具的发明与制作。 制程工程师提高生产效率以及生产良率,降低报废率以及耗材与人力成本。属于整个制造过程的核心人物。 工作内容 一、制作及更新新产品的BOM,并为新产品准备相应的物料; 二、制作新产品的生产工艺流程,标准工时的计算帮助PES安装和调试新产品所需要的设备; 三、对IQC(进料检验)抽检不良的料件进行评审,然后对不良的料件或图纸提出ECR,并且对ECN的发行及追踪; 四、整机的安装,然后通过做各种评估测试(设备和物料方面),使其达到性能最佳; 五、不断改善工艺流程,提高产品的产量及质量,降低生产周期; 六、每天统计产品的良率,及时发现良率低的原因并提出解决方案; 七、各个部门进行沟通,了解产品的最新状况及各个部门遇到的问题,并帮助解决问题; 八、发明制作各种生产辅助工治具,提高作业效率良率。 九、撰写作业指导书(OI或WI),用以指导产线作业; 撰写SOP(标准作业程式)以及各类制程管控文件,用以明确生产流程步骤,保证稳定生产,逐步提高。 发展前景 一个好的PE是很需要耐心和吃苦精神的,当然,还有很多很基础的知识。如果一个公司正常的话,PE是很累的,很累的话也就意味着要解决很多问题,所以还是有很大的成长性的。 制程与工艺是PROCESS翻译成中文的两种不同说法,其实一样,不过涉及很多方面,从新产品导入,Bom与工艺文件制作,工艺的控制与改善,直到成品半成品的出货。应该说做这个职位能为以后更高层次的发展能够打下很好的基础,很多经理(Managers)都是从制程工程师(Process Engineer)出身的。

PCBA制程能力技术规范V1.0

PCBA制程能力技术规范 ____________________________________________________________________________________

修订信息表

目录 前言 (4) 1.目的 (5) 2.适用范围 (5) 3.引用/参考标准或资料 (5) 4.名词解释 (5) 4.1 一般名词 (5) 4.2 等级定义 (5) 5.规范简介 (6) 6.规范内容 (6) 6.1 通用要求 (6) 6.1.1 文件处理 (6) 6.1.2 工艺材料 (6) 6.1.2.1 指定材料 (6) 6.1.2.2 推荐材料 (7) 6.1.3 常规测试能力 (7) 6.1.4 可靠性测试能力 (7) 6.2 工序工艺能力 (8) 6.2.1 器件成型 (8) 6.2.2 烘板 (9) 6.2.3 印刷 (9) 6.2.4 点涂 (9) 6.2.5 贴片 (9) 6.2.6 自动插件 (11) 6.2.7 回流焊 (11) 6.2.8 波峰焊 (12) 6.2.9 手工焊 (14) 6.2.10 压接、铆接 (14) 6.2.11 超声波焊接 (14) 6.2.12 超声波清洗(可选) (14) 6.2.13 清洁 (14) 6.2.14 点固定胶 (14) 6.2.15 Bonding (14) 6.2.16 返修 (15) 6.2.17 表面涂覆 (15) 6.2.18 分板 (15) 6.2.19 灌封 (17) 6.2.20 磁芯粘结能力 (17) 6.2.21 检验 (18) 6.3 成品性能 (18) 6.3.1 抽样检验 (18) 6.3.2 技术指标 (18)

【半导体芯片制造】芯片生产工艺流程

芯片生产工艺流程 现今世界上超大规模集成电路厂(台湾称之为晶圆厂,为叙述简便,本文以下也采用这种称谓)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么直接实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、芯片生产工艺流程: 芯片的制造过程可概分为晶圆处理工序(WaferFabrication)、晶圆针测工序(WaferProbe)、构装工序(Packaging)、测试工序(InitialTestandFinalTest)等几个步骤。其中晶圆处理 1

工序和晶圆针测工序为前段(FrontEnd)工序,而构装工序、测试工序为后段(BackEnd)工序。 1、晶圆处理工序:本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序:经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。 2

LED芯片工艺流程

LED芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、构装工序(Packaging)、测试工序(Initial Test andFinal Test)等几个步骤。其中晶圆处理工序和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段(Back End)工序。 1、晶圆处理工序 本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序 经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。 3、构装工序 就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。 4、测试工序 芯片制造的最后一道工序为测试,其又可分为一般测试和特殊测试,前者是将封装后的芯片置于各种环境下测试其电气特性,如消耗功率、运行速度、耐压度等。经测试后的芯片,依其电气特性划分为不同等级。而特殊测试则是根据客户特殊需求的技术参数,从相近参数规格、品种中拿出部分芯片,做有针对性的专门测试,看是否能满足客户的特殊需求,以决定是否须为客户设计专用芯片。经一般测试合格的产品贴上规格、型号及出厂日期等标识的标签并加以包装后即可出厂。而未通过测试的芯片则视其达到的参数情况定作降级品或废品 LED芯片的制造工艺流程:

芯片制作工艺流程

芯片制作工艺流程 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反

制程能力(Cpk)分析教程.

.

(二數据分類与數据整理 數据可分為計量值數据和計數值數据兩類: 計量值數据是可以連續取值的:如長度,重量,溫度等. 計數值數据是不可以連續取值的:如不合格品數,缺陷數等. 數据的整理可分為兩種形式:1 整理成能夠反映某些信息的統計量 2整理成反映一定規律的圖形 第三章:統計量与統計圖 (一典型常用的統計量 (1 平均數 Xbar (2 極值 X max;Xmin (3 極差 R=X max-Xmin (4 標准偏差σ (二直方統計圖

直方圖是在統計數据頻率數的基礎上,用圖形表示數据分布情況的一种圖形化方法. (1 直方圖的作法 例:在1-50的范圍內,有如下一組數据(50PCS 文件編號 版本A 名稱日期02/08/02頁號章節 3.0 頁版本 A 小頁號 統計其頻數如下: 作其直方圖如下: (二.直方圖的觀察与分析 (1 對圖形形狀的分析:常見的直方圖有以下幾种 工程能力分析与控制 統計量与統計圖 42282726332918243214342230292224222848124293536303414423862832222536 39241828163836212026208181237 ¤à2?0~5

6~1011~1516~2021~2526~3031~3536~4041~4546~50-ó??1236 10 10 8 7 2 1 1 2 3 6 10 10 8 7 2 1 系列2 正常型

偏向型孤島型雙峰型 1正常型 2孤島型:說明在短時間內有异常因素在作用,如原材料發生變化,有不熟練工人替班等.3偏向型:說明加工中心發生了偏移4雙峰型:是由產品混批造成的 5造成這种情況不是生產上的問題,往往是由于測量誤差或分組不當造成的. 文件編號 版本A 名稱日期02/08/02頁號章節 4.0 頁版本 A 小頁號 (一正態分布( nomal distribution 在計量值數据中,應用最廣的一類連續形概率分布為正態分布.正態分布隨机變量X 的分布函數為 正態分布函數密度曲線為

《芯片制造-半导体工艺制程实用教程》学习笔记

《芯片制造-半导体工艺制程实用教程》 学习笔记 整理:Anndi 来源:电子胶水学习指南(https://www.360docs.net/doc/c813519300.html,) 本人主要从事IC封装化学材料(电子胶水)工作,为更好的理解IC封装产业的动态和技术,自学了《芯片制造-半导体工艺制程实用教程》,貌似一本不错的教材,在此总结出一些个人的学习笔记和大家分享。此笔记原发在本人的“电子胶水学习指南”博客中,有兴趣的朋友可以前去查看一起探讨之! 前言及序言(点击链接查看之)-----------------------------------1第1章半导体工业-----------------------------------------2—3第2章半导体材料和工艺化学品---------------------------4—5第3章晶圆制备-----------------------------------------------6第4章芯片制造概述---------------------------------------7—8第5章污染控制-------------------------------------------9—10第6章工艺良品率----------------------------------------11—12第7章氧化-----------------------------------------------13—14第8章基本光刻工艺流程—从表面准备到曝光------------15—17第9章基本光刻工艺流程—从曝光到最终检验------------18—20第10章高级光刻工艺-------------------------------------21—23第11章掺杂----------------------------------------------24—26第12章淀积----------------------------------------------27—29第13章金属淀积-----------------------------------------30—31第14章工艺和器件评估----------------------------------32—33第15章晶圆加工中的商务因素---------------------------34—35第16章半导体器件和集成电路的形成-------------------------36第17章集成电路的类型----------------------------------37—38第18章封装----------------------------------------------39—41 个人感慨----------------------------------------------------------41

工艺制程能力.doc

深圳市深联电路有限公司SHEN ZHEN SUN&LYNN CIRCUITS CO.,LTD.版本﹕C 修改号﹕00 页码﹕1 of 31 文件 名称 流程制作工艺能力

深圳市深联电路有限公司 SHEN ZHEN SUN&LYNN CIRCUITS CO.,LTD. 版 本﹕C 修 改 号﹕00 页 码﹕2 of 31 文件 名称 流程制作工艺能力 1.0目的: 总结本公司目前各流程的工艺能力,为PE 提供一个完整的制作工具和制作指示之相关标准,同时也为市场部提供一份公司生产能力的说明。 2.0 范围 本文件适用于PE 的生产前准备和QA 的审批标准,也可用于市场部接受订单的技术参考。 3.0开料 3.1开料房工艺能力: 3.1.1剪床剪板厚度:0.20mm —3.20mm ; 3.1.2分条机:剪板厚度:0.40mm —2.50mm ;生产尺寸:最大1250×1250mm,最小尺寸300×300mm 3.1.3圆角磨边:板厚范围:0.4-3.0mm ;生产尺寸:最大610*610mm,最小300*300mm (板板厚 ≤0.6mm 的板可不需磨边)。 3.2 经纬向 3.2.1芯板经纬方向识别方法:内层芯板的48.5”(或48”、49”)方向为纬向,另一方向为经向 (短边为经向,长边为纬向)。 3.2.2内层芯板,开料时需注意单一方向unit ,即开料后其各边经纬向应一致,或有标记区分。 3.3大料尺寸 3.3.1单、双面板大料尺寸: 1、常用大料:48”×42”、48”×40”、48”×36”; 2、不常用大料:48”×32” 、48”×30”; 3、非正常大料:48.5”×42.5”、48.5”×40.5”、48.5”×36.5”、48.5”×32.5”、 48.5”×30.5”、49”×43”、49 ”×41”、49”×37”、48”×70”、48”×71”、48”×72”、48”×73 “、48”×74”、48”×75”。 3.3.2多层板大料尺寸: 1、常用大料尺寸:48.5”×42.5”、48.5”×40.5”、48.5”×36.5” 2、不常用大料尺寸:49”×43”、49”×41”、49”×37”、48.5”×32.5”、48.5”× 30.5”、48.5”×70”、48.5”×71”、48.5”×72”、48.5”×73”、48.5”×74”、48.5”×75” 3.4控制最大厚度:3.2mm ;精度误差:±1mm 3.5烘板要求; 3.5.1不同Tg 多层板芯板烘板温度及时间规定如下:

芯片工艺流程图及说明

李经理: 请查看附件.环评要求你们的工艺流程及说明也要像附件中我们的芯片流程这样描述详细.(流程右边的代号是表示废水或废气,你可以用文字表述. 另外你们的原材料中有一种含氰的化学品,请你们说明其无害特点.如确实有害,则要说明处理方案. 上面的事很急,请你帮忙这两天就给出来. 芯片工艺流程图及说明 工艺流程图 红黄光芯片生产工艺流程及产污环节点见图4-2、

W 废水产出点 注:G 废气产出点 S 固废产出点 氢氟酸、S2-9、S2-7 、G 2-9 硫酸红、黄光外延片 金钛铝图4-2 红黄光芯片生产工艺流程及产污环节点

工艺流程说明 (1)外延片检测:用荧光测试仪快速测量外延片的光电参数。 (2)清洗:将外延生长好的外延片依次放入硫酸与双氧水的混合溶液、氨水与双氧水的混合溶液、异丙醇中对外延片表面进行清洗,每次清洗后使用纯水进行冲洗。此过程在通风柜里密闭进行,冲洗使用通风柜内的专用清洗槽,使用纯水进行漂洗直至槽中纯水达到工艺要求的较低离子浓度。 (3)蒸镀:清洗后的外延片放入密封蒸镀设备中,根据产品品种要求,蒸发上钛金或钛铝电极薄膜。 (4)光刻:将镀好金属的外延片在涂胶机上涂上光刻胶后,在曝光机上曝光,将光刻版上的图形转移到光刻胶上,再放入显影液中,溶解去曝过光的光刻胶,未经曝光的光刻胶保留下来,得到所需的电极图形。 (5)腐蚀:将光刻后的外延片依次采用磷酸、氢氟酸与硝酸的混合液来腐蚀钛、金和铝等金属,腐蚀后用纯水冲洗外延片携带的酸液、再用去胶液去除光刻胶,得到所需的金属电极。用纯水冲去外延片携带的去胶液。 (6)高温合金:腐蚀后的外延片放在合金炉中进行热处理,使金属层与外延层形成良好的欧姆接触,减低芯片正向电压。 (7)研磨:通过蜡将外延片粘接在研磨盘上,放入研磨机内,采用三氧化二铝研磨粉,通过机械研磨的方式,减薄衬底,使外延片易于切割,并降低芯片的热阻,提高器件的可靠性。 (8)研磨后清洗:研磨后的外延片先用去蜡液、丙酮和异丙醇去除蜡,再依次放入硫酸与双氧水的混合溶液、氨水与双氧水的混合溶液进行清洗、去蜡以及每次清洗后使用纯水进行冲洗。 (9)清洗干净后的外延片,放入密闭的蒸镀机内,根据产品需要蒸发上金、镍。 (10)高温合金:蒸镀后的外延片放在合金炉中再次进行热处理,使金属层与衬底形成良好的欧姆接触,减低芯片正向电压。 (11)半切:用切割机将制作好电极的外延片切至衬底,但不把整个衬底切穿。 (12)点测:将半切好的外延片放在芯片测试机上,测试每个芯片的光电参数,并对不符合要求的芯片点墨水做出标记。 (13)切穿:用切割机将测试过的外延片切穿,切成一个个芯片。 (14)目检:在显微镜下用真空吸笔将外观不合格和点墨水的芯片剔除掉。废芯片统一保存并交由固体废物处置公司处置。 (15)包装入库:将目检过的芯片用包装膜包装后,计数并贴上有光电参数、产品规格等的标签,再交由生管成品库入库。

LED芯片制程资料全

LED芯片制程 LED的发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子 (多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm) 式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

2.芯片: ⑴芯片的结构:芯片的结构为五个部分,分别为正电极、负电极、P 层、N 层和PN 结,如下图: 单電極 P 电极 P 层 P/N 结合层 N 层 N 电极 双电极 ⑵芯片的生产工艺: (1)长晶(CRYSTAL GROWTH ): 长晶是从硅沙中(二氧化硅)提炼成单晶硅,制造过 程是将硅石(Silica)或硅酸盐 (Silicate) 如同冶金一样,放入炉中熔解提炼,形成冶金级硅。冶金级硅中 尚含有杂质,接下来用分馏及还原的方法将其纯化,形成电子级硅。虽然电子级硅所含的電極 層 接合層 層 電極

晶圆(Wafer) 制程工艺学习

晶圆(Wafer)制程工藝學習 晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8吋硅晶棒,约需2天半时间长成。经研磨、拋光、切片后,即成半导体之原料晶圆片。 光学显影 光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。小尺寸之显像分辨率,更在 IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为黄光区。 干式蚀刻技术 在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。 电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。 晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。 基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行: 1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。 2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。 化学气相沉积技术 化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。 CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足够均匀。较为常见的CVD薄膜包括有: ■二气化硅(通常直接称为氧化层) ■氮化硅

制程能力

制程 目录 读音 释义 编辑本段读音 zhì chéng 编辑本段释义 专指:事物运作程序的处理过程。常指计算机芯片框架的运算速度量。 (process),指的是接受输入将它处理而转变成为输出的活动。 过程,是对整个生产流程的管理是制程人员最重要的能力。 中国人原先都叫工艺,业务流程重组(business process reengineering),ISO9000中的过程, 和生产中所讲的工艺和制程, 在英文中都叫process。 制程能力 所谓的制程能力是指工序在一定时间里,处于控制状态(稳定状态)的实际工作能力。制程能力指数是指制程能力满足产品质量标准要求(规格范围等)的程度,或是工序在一定时间里,处于控制状态(稳定状态)下的实际加工能力。它是工序固有的能力,或者说它是工序保证质量的能力。这里所指的工序,是指操作者、机器、原材料、工艺方法和生产环境等五个基本质量因素综合作用的过程,也就是产品质量的生产过程。产品质量就是工序中的各个质量因素所起作用的综合表现。对于任何生产过程,产品质量总是分散地存在着。若工序能力越高,则产品质量特性值的分散就会越小;若工序能力越低,则产品质量特性值的分散就会越大。 在管理状态的制程上,该制程具有达成品质的能力,称为制程能力。正确地维持作业的条件或标准且在计数上、经济上良好且安定的制程上,量测产品的品质特性,通常以或有时仅以6 来表示。 制程能力指标(process capability indices ( 与)):制程能力指标是一些简洁之数值,用来表示制程符合产品规格之能力。指标之值可视为

制程之潜在能力,亦即当制程平均值可调到规格中心或目标值时,制程符合规格之能力。指标之值与指标类似,但将制程平均值纳入考虑。 制程能力分析(process capability analysis):在产品生产周期内统计技术可用来协助制造前之开发活动、制程变异性之数量化、制程变异性相对於产品规格之分析及协助降低制程内变异性。这些工作一般称为制程能力分析(process capability analysis)。

半导体工艺流程中的前段

半导体工艺流程中的前段(F)后段(B)一般是如何划分的,为何要这样划分? 浏览次数:1016次悬赏分:10|解决时间:2009-5-14 12:37 |提问者: xiaoyz1986 工艺流程中的前段(F)后段(B)一般是如何划分的,为何要这样划分(注意,不是指bank前后 分2份runcard的前后段) 最佳答案 芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、 构装工序(Packaging)、测试工序(Initial Test and Final Test)等几个步骤。其中晶圆处理工序 和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段(Back End)工序。 1、晶圆处理工序:本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开 关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗, 再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等 反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序:经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便 于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后, 将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒 则舍弃。 3、构装工序:就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引 接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即 我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。 4、测试工序:芯片制造的最后一道工序为测试,其又可分为一般测试和特殊测试,前者是将封装 后的芯片置于各种环境下测试其电气特性,如消耗功率、运行速度、耐压度等。经测试后的芯片,

COB工艺制程简介

COB工艺制程简介 1.芯片的焊线连接: 1.1芯片直接封装简介: 现代消费性电子产品逐渐走向轻、薄、短、小的潮流下,COB(Chip On Board)已成为一种普遍的封装技术。COB的关键技术在于Wire Bonding(俗称打线)及Molding (封胶成型),是指对裸露的集成电路芯片(IC Chip),进行封装,形成电子组件的制程,其中IC藉由焊线(Wire Bonding)、覆晶接合(Flip Chip)、或卷带接合(Tape Automatic Bonding;简称TAB)等技术,将其I/O经封装体的线路延伸出来。 集成电路芯片必须依照设计和外界的电路连接,方能成为具有一定功能的电子组件就如我们所看到的"IC"就是这种已封装好、有外引脚的封装的集成电路。 1.2芯片的焊线连接方式简介: IC芯片必须与封装基板完成电路连接才能发挥既有的功能,现时市面上流行的焊线连接方式有三类 :打线接合(Wire Bonding)、卷带自动接合(Tape Automated Bonding,TAB)与覆晶接合(Flip Chip,FC),分述如下: 1.2.1打线接合(Wire Bonding) 打线接合是最早亦为目前应用最广的技术,此技术首先将芯片固定于导线架上,再以细金属线将芯片上的电路和导线架上的引脚相连接。而随着近年来其它技术的兴起,打线接合技术正受到挑战,其市场占有比例亦正逐渐减少当中。但由于打线接合技术之简易性及便捷性,加上长久以来与之相配合之机具、设备及相关技术皆以十分成熟,因此短期内打线接合技术似乎仍不大容易为其它技术所淘汰。 图1.2a打线接合的示意图

1.2.2卷带式自动接合(Tape Automated Bonding,TAB) 卷带式自动接合技术首先于1960年代由通用电子(GE)提出。卷带式自动接合制程,即是将芯片与在高分子卷带上的金属电路相连接。而高分子卷带之材料则以polyamide为主,卷带上之金属层则以铜箔使用最多。卷带式自动接合具有厚度薄、接脚间距小且能提供高输出/入接脚数等优点,十分适用于需要重量轻、体积小之IC产品上。 图1.2a 卷带式基本架构 1.2.3覆晶接合(Flip Chip) 覆晶式接合为IBM于1960年代中首先开发而成。其技术乃于晶粒之金属垫上生成焊料凸块,而于基版上生成与晶粒焊料凸块相对应之接点,接着将翻转之晶粒对准基版上之接点将所有点接合覆晶接合具有最短连接长度、最佳电器特性、最高输出/入接点密度且能缩小IC尺寸,增加单位晶圆产能,已被看好为未来极具潜力之封装方式。 图1.2b 覆晶接合技术示意图 1.3芯片的焊线连接的应用和优点: 封装是指电子产品的生产过程中,将各种电子组件,依需要组装接连的所有制程,其功能在于电源分布,讯号分布,散热功能,保护功能并提供足够的机械强度.

棕化、层压工艺规范标准

1、目的:规层压工序制程能力的管控。 2、围:适用于层压工序制程能力的管控。 3、职责: 3.1层压工序工艺工程师按规要求管控该工序制程能力; 3.2技术中心负责该规的编制与更新。 5、制程目标 5.1产品能力:详见附件三《层压工序产品能力参数表》 5.2设备能力:详见附件二《层压工序设备能力参数表》 5.3制程能力:详见附件四《层压工序制程能力参数表》 6、工序资源 6.1设备资源:详见附件六《层压工序设备列表》 6.2物料资源:详见附件五《层压工序物料列表》 7、基本原理 7.1棕化 层芯板经过棕化处理后,在铜面形成一层均匀的棕色有机金属膜,可增强铜面与半固化片的结合力,同时在高温压合过程中,阻止铜与半固化片的氨基发生反应。产品实现的基本原理有药水作用原理、设备作用原理等。 7.1.1棕化反应机理 7.1.1.1酸洗 酸洗的主要作用是去除铜表面氧化物,中和残余退膜液,粗化铜面,保证稳定的微蚀、成膜及着色。酸洗段的主要成分为过硫酸钠(NaPS)、H2SO4。其反应机理如下: Cu+CuO+H2SO4+Na2S2O8→2CuSO4+Na2SO4+H2O 影响酸洗效果的因素及影响趋势如下:

7.1.1.2碱洗 碱洗的主要作用是去除铜表面的油污、手指印、轻微氧化物及抗蚀剂残渣。碱式除油剂主要成分为NaOH和H2O。其反应过程是利用热碱溶液对油脂的皂化作用和乳化作用来进行除油。 7.1.1.3水洗 棕化线在酸洗、碱洗、棕化之后均有水洗段,主要目的是去除酸洗、碱洗、棕化缸在板面残留的药水,避免污染下一道工序。 7.1.1.4预浸 预浸的主要作用是活化铜表面以利于棕化处理快速均匀,增强结合力。预浸段的主要成分为活化剂(成分为苯并三唑,乙二醇单异丙基醚和水)。

相关文档
最新文档