一类线性双曲型偏微分方程的有限差分格式求解

一类线性双曲型偏微分方程的有限差分格式求解
一类线性双曲型偏微分方程的有限差分格式求解

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程 的分类 本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.

13.1 基本概念 (1)偏微分方程含有未知多元函数及其偏导数的方程,如 22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y ??????????????=??????其中(,,)u x y ???是未知多元函数,而,,x y ???是未知变量;,,u u x y ???????为u 的偏导数. 有时为了书

写方便,通常记 2 2,,,,x y xx u u u u u u x y x ???==???=??????(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.

(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程. (5)准线性方程一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.

例13.1.2:方程的通解和特解概念 二阶线性非齐次偏微分方程2xy u y x =?的通解为 2 21(,)()()2u x y xy x y F x G y =?++其中(),()F x G y 是两个独立的任意函数.因为方程为 例13.1.1:偏微分方程的分类(具体见课本P268)

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

大连理工大学 高等数值分析 偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+ ??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2 22122212212C u C C u C C u C u ??+???+???+??= 22 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

抛物型方程差分方法

偏微分方程数值解复习提纲 一.基本内容:(1)椭圆型方程差分方法;(2)抛物型方程差分方法;(3)双曲型方程差分方法;(4)椭圆型方程的有限元方法. 二.基本概念: (1)显式和隐式差分格式,网格比和加密路径; (2)差分格式的截断误差、相容性、稳定性、收敛性、逼近精度阶和收敛阶; (3)双曲型方程(组)的特征与Riemann不变量,差分格式的依赖区域和CFL条件; (4)差分格式的增长因子和增长矩阵、振幅误差与相位误差、耗散与色散、群速度; (5)双曲守恒方程的弱解与激波传播速度; (6)守恒性与守恒型差分格式、有限体积法; (7)差分格式的Fourier分析与L2稳定性、最大值原理与L∞稳定性、实用稳定性和强稳 定性、网格的P`e clet数; (8)椭圆边值问题的变分形式与弱解、强制边界条件与自然边界条件; (9)Galerkin方法与Ritz方法,协调与非协调有限元方法; (10)有限元与有限元空间,有限元插值算子与插值函数,有限元方程与有限元解; (11)有限元的仿射等价与等参等价,有限元剖分的正则性和拟一致性. 三.基本方法与技巧: (1)比较函数与利用最大值原理的误差分析; (2)Taylor展开、Fourier分析、最大值原理; (3)修正方程分析、能量法分析; (4)充分利用解的守恒性和特征,以及适当处理初始条件与边界条件; (5)Sobolev空间及其基本性质,如嵌入定理、迹定理,Poincar′e-Friedrichs不等式; (6)仿射等价、多项式不变算子、商空间与商范数、Sobolev空间半范数的关系; (7)Aubin-Nische技巧,bramble-Hilbert引理,双线性引理. 四.基本格式: (1)二维Poisson方程的五点差分格式; (2)抛物型方程的显式差分格式、隐式差分格式、Crank-Nicolson格式和θ-方法; (3)具有热守恒性质的格式; (4)ADI格式与LOD格式; (5)双曲型方程的迎风格式、Lax-Wendro?格式、盒式格式和蛙跳格式;

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

双曲方程基于matlab的数值解法

双曲型方程基于MATLAB 的数值解法 (数学1201,陈晓云,41262022) 一:一阶双曲型微分方程的初边值问题 0,01,0 1.(,0)cos(),0 1.(0,)(1,)cos(),0 1. u u x t t x u x x x u t u t t t ππ??-=≤≤≤≤??=≤≤=-=≤≤ 精确解为 ()t x cos +π 二:数值解法思想和步骤 2.1:网格剖分 为了用差分方法求解上述问题,将求解区域{}(,)|01,01x t x t Ω=≤≤≤≤作剖分。将空间区间[0,1]作m 等分,将时间[0,1]区间作n 等分,并记 1/,1/,,0,,0j k h m n x jh j m t k k n ττ===≤≤=≤≤。分别称h 和τ为空间和时 间步长。用两簇平行直线,0,,0j k x x j m t t k n =≤≤=≤≤将Ω分割成矩形网格。 2.2:差分格式的建立 0u u t x ??-=?? 2.2.1:Lax-Friedrichs 方法 对时间、空间采用中心差分使得 2h 11 111)(2 1u u x u u u u u t u k j k j k j k j k j k j -+-++-= +=-=????τ τ 则由上式得到Lax-Friedrichs 格式 1 11111()202k k k k k j j j j j u u u u u h τ+-+-+-+-+=

截断误差为 ()[]k k k j h j j R u L u Lu =- 1 11111()22k k k k k k k j j j j j j j u u u u u u u h t x τ+-+-+-+-??=+-+?? 23222 3 (),(0,0)26k k j j u u h O h j m k n t x ττ??= -=+≤≤≤≤?? 所以Lax-Friedrichs 格式的截断误差的阶式2()O h τ+ 令/s h τ=:则可得差分格式为 1111 11(),(0,0)222 k k k k k j j j j j s s u u u u u j m k n +--++=-+++≤≤≤≤ 0cos()(0)j j u x j m π=≤≤ 0cos(),cos(),(0)k k k m k u t u t k n ππ==-≤≤ 其传播因子为: ()()()e e G h i h i s h i h i σσσστσ---=-+e e 221, 化简可得: ()()()()()h s G h is h G στσσστ σsin 11,sin cos ,2 2 2--=-= 所以当1s ≤时,()1,≤τσG ,格式稳定。 * 2.2.2:LaxWendroff 方法 用牛顿二次插值公式可以得到LaxWendroff 的差分格式,在此不详细分析,它的截断误差为() h 2 2 +O τ ,是二阶精度;当2s ≤时,()1,≤τσG , 格式稳定。在这里主要用它与上面一阶精度的Lax-Friedrichs 方法进行简单对比。 2.3差分格式的求解

一阶线性偏微分方程

第七章一阶线性偏微分方程 7-1求下列方程组的通积分及满足指定条件的解。 dx dt dy dt 空2z dt 解之得 所以,方程组的通积分为 1 1 2t 1(t,x, y ) (x y -t -)e G , 2 4 z C 1e 2t 即得一个首次积分为 1 (t, x, y) (x 1t 2 1 y 2t 1 4)e 2t C 1。 方程组的两式相减,得 d (x y ) dt 解之得另一个首次积分为 2(t, x, y ) 1 t 1 2 2 C 2。 易验证det x det 0。 因此,1(t,x, y) C 1和 2 (t,x, y ) C 2是两个独立的首次积分, 1) 2) 3) dx dt dy dt dx 1) 2y dy x z ,当 t 0 时,x y 1 dz d(x y) dt x y ,上方程化为一阶线性方程 方程组的两式相加,得 2(x y ) t 。

从中可解得通解为 即 i (t,x,y) (x y)2 y 2 C ;。 给方程组第一式乘以 y ,第二式乘以x ,再相减得 yx yy xy yy 2 2 (x y) y yx yy xy yy 1 1 (x y) y 两边积分,得另一个首次积分为 y 2 (t,x, y) arctan t C 2, x y 2 易验证 i (t,x, y) C i 和 2(t,x,y) C 2是两个独立的首次积分, 222 y 所以,方程组的通积分为 (x y) y C i ,arctan t C 2, x y x (C 2 CJcost (C 2 C i )si nt ,其中 C I C i si nc 2,C 2 C 1 cosC 2。 y C 1 cost C 2 si nt C 2 1 2 1 1 t -t — 4 4 8 C 2 1 2 1 1 -t -t 4 4 8 dx x 2y dy x y 2ydy ydx xdy 0, x C i e 2t y C i e 2t 2)方程组的两式相比,得 变形得恰当方程 xdx 容易得满足t 0时,x y 1的解为 x cost sint y cost 3) 三个分式相加,得 d(x y z) dy x z dz y x 解之得一个首次积分为 2 2 x 2y 2xy C 1, yx xy (x 2 2y 2 2xy) [(x y)2 y 2], 通解为

阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y Λ, ( ) 在变换 ()1'12,,,,n n y y y y y y -===L ( ) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=??L L M M M M L ( ) 在第三章中,已经介绍过方程组( )通解的概念和求法。但是除了常系 数线性方程组外,求一般的( )的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( )的问题。先看几个例子。 例1 求解微分方程组 ()()22221, 1.dx dy y x x y x y x y dt dt =-+-=--+- ( ) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( ) 1C 为积分常数。( )叫做( )的首次积分。

二阶线性偏微分方程的分类与小结

二阶线性偏微分方程的分类与小结

————————————————————————————————作者: ————————————————————————————————日期:

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中 f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数, 假设它们的一阶偏 导数在某平面区域D 内都连续,而且 221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

求解偏微分方程的几种特殊方法

求解偏微分方程的几种特殊方法 程哲 PB06001070 (中国科学技术大学数学系, 合肥, 230026) 摘要:经过一个学期偏微分方程课程的学习,我们掌握了几种求解初等拟(半)线性方程,特别是三种典型方程的方法,如特征曲线法、反射法、降维法、分离变量法、特征函数展开法、求解非齐次方程的Duhamel 原理等。此外,我们通过学习还掌握了求解波动方程的D'Alembert 公式,求解高维波动方程的Kirchhoff 公式和Poisson 公式,求解位势方程的Green 公式等等。这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的。本文还将总结作者了解的几种求解偏微分方程的特殊方法,它们是:级数法,Laplace 变换法,Fourier 变换法。 关键词:偏微分方程 级数法Laplace 变换 Fourier 变换 1. 级数法求解偏微分方程 1.1 波动方程Cauchy 问题的级数解法 1.1.1 问题引入 我们以三维波动方程的初值问题(P)为例: 2()0,(1)()(,,,0)(,,),(,,,0)(,,) tt xx yy zz t u a u u u P u x y z x y z u x y z x y z ??++=??=Φ=Ψ?? 由叠加原理易知问题(P)可分解为两个问题的叠加: 2()0,()(,,,0)0,(,,,0)(,,) tt xx yy zz t u a u u u I u x y z u x y z x y z ??++=??==Ψ?? 2()0,()(,,,0)(,,),(,,,0)0 tt xx yy zz t u a u u u II u x y z x y z u x y z ??++=??=Φ=??

微分方程数值解II

微分方程数值解II 主要内容: 第一章有限差分法的理论基础 1. 构造差分格式的主要方法; 2. 差分格式的一般性要求; 3. Lax等价性定理; 4. 差分格式的von Neumann稳定性分析方法; 5. 差分格式的修正方程。 第二章线性抛物型方程的差分方法 1. 扩散方程的显式格式; 2. 扩散方程的隐式格式; 3. 线方法; 4. 多维抛物型方程的ADI方法; 5. 分数步法; 6. Burgers方程的差分法和网格雷诺数。 第三章一维线性双曲型方程的数值方法 1. 线性双曲型系统的特征和Riemann问题; 2. 守恒律的有限体积法; 3. Lax-Friedriches格式、Lax-Wendroff格式、特征线法差分格式; 4. 双曲型方程的迎风格式、CIR格式、Godunov 方法; 5. 二阶Godunov格式、总变差概念及限制器函数; 6. 双曲型方程及变系数双曲型方程的高分辨率(TVD)波传播格式。 第四章一维非线性双曲型守恒律的数值方法 1. 非线性双曲型守恒律的间断解、弱解、熵条件; 2. 标量守恒律的Riemann问题解及Godunov格式; 3. 熵修正、数值粘性、Osher格式及高分辨率波传播格式; 4. 守恒型与Lax-Wendroff定理、离散熵条件、非线性稳定性及收敛性; 5. 典型守恒律方程组的Godunov间断分解方法及Godunov格式; 6. 守恒律方程组的MUSCL格式。 第五章多维双曲型守恒律的高分辨率格式 1. 多维方程组的双曲性; 2.Lax-Wendroff方法、Runge-Kutta推进的半离散方法、维数分裂方法; 3. 标量方程的LW方法、Godunov 格式、方向迎风及角迎风格式; 4. 多维标量方程的高分辨率格式; 5. 多维方程组的高分辨率格式。 第六章双曲型守恒律的其它高分辨率方法 1. ENO与WENO格式;

第一章--偏微分方程定解问题

第一章 偏微分方程定解问题 引言:在研究、探索自然科学和工程技术中,经常遇到各种微分方程。 如 牛顿定律 22d x dt m g = ------(1) 波动方程 222222222(,,,)f t x y z u u u u a t x y z ?? ? ???+????=++????------(2) 热传导方程 2222222(,,,)f t x y z u u u u a t x y z ?? ? ??? +????=++???? ------(3) 静电场位方程 2222 222(,,)f x y z u u u a x y z ?? ?=- ??? ???++??? ------(4) 激波方程 0u u u t x ??+=?? ------(5) 等等。 其中(1)为一维常微分方程;(2)----(4)为三维偏微分方程;(5)为一维偏微分方程。 这些数学中的微分方程均来自物理问题,有着各自的物理背景,从数量关系上反映着相应的物理规律,称为数学物理方程,简称数理方程。 数学物理方程是数学与物理学的交叉分支学科。从物理上讲它是理论物理的基本工具;在数学上属于应用数学的(偏)微分方程分支。 本课程主要研究和讨论三类数理方程(2),(3),(4)的建立(导出)以及几种常用的典型的求解方法。 为了下面研究和讨论的方便,先引入有关微分方程的几个基本概念

(术语)。 1. 常,偏微分方程 只含一个自变量,关于该变量的未知函数,以及未知函数对该变量的导数的微分方程为常微分方程,如(1)。 含有多个自变量,关于这些变量的未知函数,以及未知函数对这些变量的偏导数的微分方程为偏微分方程,如(2)----(5)。 2. 阶 上述(1)----(5)均可改写成如下形式 220d x m g dt -= ------(1’) 222 30u t a u f -???-= -------(2’) 230u t a u f -???-= ------(3’) 230a u f ?+= ------(4’) 0u u t x u +????= ------(5’) 其中 222 3222x y z ????=++???,x=x(t),u=u(t,x,y,z)或u(x,y,z),f=f(t,x,y,z) 或f(x,y,z)。 这些方程可归纳为如下形式 12 121212,,,,,,,,,,n m n m m m n n u u u u F x x x u x x x x x x ?? ? ?? ? ?????????????????????????=0, 其中12n m m m m =++???+为导数的最高阶数,成为方程的阶。 3. 线性、非线性偏微分方程

偏微分方程数值解法

第十章偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1差分方法的基本概念 1.1几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 Poisson 方程的第一边值问题为 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为 其中 n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 方程可以有两种不同类型的定解问题: 初值问题 初边值问题 其中 )(x ?,)(1t g ,)(2t g 为已知函数,且满足连接条件 边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条 件。 第二类和第三类边界条件为 其中0)(1≥t λ,0 )(2≥t λ。当0)()(21≡=t t λλ时,为第二 类边界条件, 否则称为第三类边界条件。 双曲型方程: 最简单形式为一阶双曲型方程 物理中常见的一维振动与波动问题可用二阶波动方程 描述,它是双曲型方程的典型形式。方程的初值问题为

边界条件一般也有三类,最简单的初边值问题为 1.2差分方法的基本概念 差分方法又称为有限差分方法或网格法,是求偏微分方程定 解问题的数值解中应用最广泛的方法之一。 它的基本思想是:先对求解区域作网格剖分,将自变量的连 续变化区域用有限离散点(网格点)集代替;将问题中出现的连 续变量的函数用定义在网格点上离散变量的函数代替;通过用网 格点上函数的差商代替导数,将含连续变量的偏微分方程定解问 题化成只含有限个未知数的代数方程组(称为差分格式)。如果 差分格式有解,且当网格无限变小时其解收敛于原微分方程定解 问题的解,则差分格式的解就作为原问题的近似解(数值解)。 因此,用差分方法求偏微分方程定解问题一般需要解决以下问题: (1)选取网格; (2)对微分方程及定解条件选择差分近似,列出差分格式; (3)求解差分格式; (4)讨论差分格式解对于微分方程解的收敛性及误差估计。 下面,用一个简单的例子来说明用差分方法求解偏微分方程 问题的一般过程及差分方法的基本概念。 设有一阶双曲型方程初值问题。 (1) 选取网格: -2h-h0h2h3h 首先对定解区域 }0,),{(≥+∞<<∞-=t x t x D 作网格剖 分,最简单 常用一种网格是用两族分别平行于 x 轴与 t 轴的等距直线 kh x x k ==, (0,1,2,0,1,2,)j t t j k j τ===±±=L L 将D 分成许 多小矩形 区域。这些直线称为网格线,其交点称为网格点,也称为节点, h 和τ 分别称作 x 方向和t 方向的步长。这种网格称为矩形网格。 (2) 对微分方程及定解条件选择差分近似,列出差分格式: 如果用向前差商表示一阶偏导数,即 其中 1,021<<θθ。

大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

相关文档
最新文档